2549 lines
90 KiB
C
2549 lines
90 KiB
C
|
///\file
|
||
|
|
||
|
/******************************************************************************
|
||
|
The MIT License(MIT)
|
||
|
|
||
|
Embedded Template Library.
|
||
|
https://github.com/ETLCPP/etl
|
||
|
https://www.etlcpp.com
|
||
|
|
||
|
Copyright(c) 2014 John Wellbelove, rlindeman
|
||
|
|
||
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||
|
of this software and associated documentation files(the "Software"), to deal
|
||
|
in the Software without restriction, including without limitation the rights
|
||
|
to use, copy, modify, merge, publish, distribute, sublicense, and / or sell
|
||
|
copies of the Software, and to permit persons to whom the Software is
|
||
|
furnished to do so, subject to the following conditions :
|
||
|
|
||
|
The above copyright notice and this permission notice shall be included in all
|
||
|
copies or substantial portions of the Software.
|
||
|
|
||
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE
|
||
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||
|
SOFTWARE.
|
||
|
******************************************************************************/
|
||
|
|
||
|
#ifndef ETL_MULTIMAP_INCLUDED
|
||
|
#define ETL_MULTIMAP_INCLUDED
|
||
|
|
||
|
#include "platform.h"
|
||
|
#include "algorithm.h"
|
||
|
#include "iterator.h"
|
||
|
#include "functional.h"
|
||
|
#include "pool.h"
|
||
|
#include "exception.h"
|
||
|
#include "error_handler.h"
|
||
|
#include "debug_count.h"
|
||
|
#include "nullptr.h"
|
||
|
#include "type_traits.h"
|
||
|
#include "nth_type.h"
|
||
|
#include "parameter_type.h"
|
||
|
#include "iterator.h"
|
||
|
#include "utility.h"
|
||
|
#include "placement_new.h"
|
||
|
#include "initializer_list.h"
|
||
|
|
||
|
#include <stddef.h>
|
||
|
|
||
|
#include "private/minmax_push.h"
|
||
|
#include "private/comparator_is_transparent.h"
|
||
|
|
||
|
//*****************************************************************************
|
||
|
/// A multimap with the capacity defined at compile time.
|
||
|
///\ingroup containers
|
||
|
//*****************************************************************************
|
||
|
|
||
|
namespace etl
|
||
|
{
|
||
|
//***************************************************************************
|
||
|
/// Exception for the map.
|
||
|
///\ingroup map
|
||
|
//***************************************************************************
|
||
|
class multimap_exception : public etl::exception
|
||
|
{
|
||
|
public:
|
||
|
|
||
|
multimap_exception(string_type reason_, string_type file_name_, numeric_type line_number_)
|
||
|
: exception(reason_, file_name_, line_number_)
|
||
|
{
|
||
|
}
|
||
|
};
|
||
|
|
||
|
//***************************************************************************
|
||
|
/// Full exception for the map.
|
||
|
///\ingroup map
|
||
|
//***************************************************************************
|
||
|
class multimap_full : public etl::multimap_exception
|
||
|
{
|
||
|
public:
|
||
|
|
||
|
multimap_full(string_type file_name_, numeric_type line_number_)
|
||
|
: etl::multimap_exception(ETL_ERROR_TEXT("multimap:full", ETL_MULTIMAP_FILE_ID"A"), file_name_, line_number_)
|
||
|
{
|
||
|
}
|
||
|
};
|
||
|
|
||
|
//***************************************************************************
|
||
|
/// Map out of bounds exception.
|
||
|
///\ingroup map
|
||
|
//***************************************************************************
|
||
|
class multimap_out_of_bounds : public etl::multimap_exception
|
||
|
{
|
||
|
public:
|
||
|
|
||
|
multimap_out_of_bounds(string_type file_name_, numeric_type line_number_)
|
||
|
: etl::multimap_exception(ETL_ERROR_TEXT("multimap:bounds", ETL_MULTIMAP_FILE_ID"B"), file_name_, line_number_)
|
||
|
{
|
||
|
}
|
||
|
};
|
||
|
|
||
|
//***************************************************************************
|
||
|
/// Iterator exception for the map.
|
||
|
///\ingroup map
|
||
|
//***************************************************************************
|
||
|
class multimap_iterator : public etl::multimap_exception
|
||
|
{
|
||
|
public:
|
||
|
|
||
|
multimap_iterator(string_type file_name_, numeric_type line_number_)
|
||
|
: etl::multimap_exception(ETL_ERROR_TEXT("multimap:iterator", ETL_MULTIMAP_FILE_ID"C"), file_name_, line_number_)
|
||
|
{
|
||
|
}
|
||
|
};
|
||
|
|
||
|
//***************************************************************************
|
||
|
/// The base class for all maps.
|
||
|
///\ingroup map
|
||
|
//***************************************************************************
|
||
|
class multimap_base
|
||
|
{
|
||
|
public:
|
||
|
|
||
|
typedef size_t size_type; ///< The type used for determining the size of map.
|
||
|
|
||
|
//*************************************************************************
|
||
|
/// Gets the size of the map.
|
||
|
//*************************************************************************
|
||
|
size_type size() const
|
||
|
{
|
||
|
return current_size;
|
||
|
}
|
||
|
|
||
|
//*************************************************************************
|
||
|
/// Gets the maximum possible size of the map.
|
||
|
//*************************************************************************
|
||
|
size_type max_size() const
|
||
|
{
|
||
|
return CAPACITY;
|
||
|
}
|
||
|
|
||
|
//*************************************************************************
|
||
|
/// Checks to see if the map is empty.
|
||
|
//*************************************************************************
|
||
|
bool empty() const
|
||
|
{
|
||
|
return current_size == 0;
|
||
|
}
|
||
|
|
||
|
//*************************************************************************
|
||
|
/// Checks to see if the map is full.
|
||
|
//*************************************************************************
|
||
|
bool full() const
|
||
|
{
|
||
|
return current_size == CAPACITY;
|
||
|
}
|
||
|
|
||
|
//*************************************************************************
|
||
|
/// Returns the capacity of the vector.
|
||
|
///\return The capacity of the vector.
|
||
|
//*************************************************************************
|
||
|
size_type capacity() const
|
||
|
{
|
||
|
return CAPACITY;
|
||
|
}
|
||
|
|
||
|
//*************************************************************************
|
||
|
/// Returns the remaining capacity.
|
||
|
///\return The remaining capacity.
|
||
|
//*************************************************************************
|
||
|
size_t available() const
|
||
|
{
|
||
|
return max_size() - size();
|
||
|
}
|
||
|
|
||
|
protected:
|
||
|
|
||
|
enum
|
||
|
{
|
||
|
kLeft,
|
||
|
kRight,
|
||
|
kNeither
|
||
|
};
|
||
|
|
||
|
//*************************************************************************
|
||
|
/// The node element in the multimap.
|
||
|
//*************************************************************************
|
||
|
struct Node
|
||
|
{
|
||
|
//***********************************************************************
|
||
|
/// Constructor
|
||
|
//***********************************************************************
|
||
|
Node() :
|
||
|
parent(ETL_NULLPTR),
|
||
|
weight((uint_least8_t) kNeither),
|
||
|
dir((uint_least8_t) kNeither)
|
||
|
{
|
||
|
children[0] = ETL_NULLPTR;
|
||
|
children[1] = ETL_NULLPTR;
|
||
|
}
|
||
|
|
||
|
//***********************************************************************
|
||
|
/// Marks the node as a leaf.
|
||
|
//***********************************************************************
|
||
|
void mark_as_leaf()
|
||
|
{
|
||
|
weight = (uint_least8_t) kNeither;
|
||
|
dir = (uint_least8_t) kNeither;
|
||
|
parent = ETL_NULLPTR;
|
||
|
children[0] = ETL_NULLPTR;
|
||
|
children[1] = ETL_NULLPTR;
|
||
|
}
|
||
|
|
||
|
Node* parent;
|
||
|
Node* children[2];
|
||
|
uint_least8_t weight;
|
||
|
uint_least8_t dir;
|
||
|
};
|
||
|
|
||
|
//*************************************************************************
|
||
|
/// The constructor that is called from derived classes.
|
||
|
//*************************************************************************
|
||
|
multimap_base(size_type max_size_)
|
||
|
: current_size(0)
|
||
|
, CAPACITY(max_size_)
|
||
|
, root_node(ETL_NULLPTR)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
//*************************************************************************
|
||
|
/// The constructor that is called from derived classes.
|
||
|
//*************************************************************************
|
||
|
~multimap_base()
|
||
|
{
|
||
|
}
|
||
|
|
||
|
//*************************************************************************
|
||
|
/// Balance the critical node at the position provided as needed
|
||
|
//*************************************************************************
|
||
|
void balance_node(Node*& critical_node)
|
||
|
{
|
||
|
// Step 1: Update weights for all children of the critical node up to the
|
||
|
// newly inserted node. This step is costly (in terms of traversing nodes
|
||
|
// multiple times during insertion) but doesn't require as much recursion
|
||
|
Node* weight_node = critical_node->children[critical_node->dir];
|
||
|
while (weight_node)
|
||
|
{
|
||
|
// Keep going until we reach a terminal node (dir == (uint_least8_t) kNeither)
|
||
|
if ((uint_least8_t) kNeither != weight_node->dir)
|
||
|
{
|
||
|
// Does this insert balance the previous weight factor value?
|
||
|
if (weight_node->weight == 1 - weight_node->dir)
|
||
|
{
|
||
|
weight_node->weight = (uint_least8_t) kNeither;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
weight_node->weight = weight_node->dir;
|
||
|
}
|
||
|
|
||
|
// Update weight factor node to point to next node
|
||
|
weight_node = weight_node->children[weight_node->dir];
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
// Stop loop, terminal node found
|
||
|
break;
|
||
|
}
|
||
|
} // while(weight_node)
|
||
|
|
||
|
// Step 2: Update weight for critical_node or rotate tree to balance node
|
||
|
if ((uint_least8_t) kNeither == critical_node->weight)
|
||
|
{
|
||
|
critical_node->weight = critical_node->dir;
|
||
|
}
|
||
|
// If direction is different than weight, then it will now be balanced
|
||
|
else if (critical_node->dir != critical_node->weight)
|
||
|
{
|
||
|
critical_node->weight = (uint_least8_t) kNeither;
|
||
|
}
|
||
|
// Rotate is required to balance the tree at the critical node
|
||
|
else
|
||
|
{
|
||
|
// If critical node matches child node direction then perform a two
|
||
|
// node rotate in the direction of the critical node
|
||
|
if (critical_node->weight == critical_node->children[critical_node->dir]->dir)
|
||
|
{
|
||
|
rotate_2node(critical_node, critical_node->dir);
|
||
|
}
|
||
|
// Otherwise perform a three node rotation in the direction of the
|
||
|
// critical node
|
||
|
else
|
||
|
{
|
||
|
rotate_3node(critical_node, critical_node->dir,
|
||
|
critical_node->children[critical_node->dir]->children[1 - critical_node->dir]->dir);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
//*************************************************************************
|
||
|
/// Rotate two nodes at the position provided the to balance the tree
|
||
|
//*************************************************************************
|
||
|
void rotate_2node(Node*& position, uint_least8_t dir)
|
||
|
{
|
||
|
// A C A B
|
||
|
// B C -> A E OR B C -> D A
|
||
|
// D E B D D E E C
|
||
|
// C (new position) becomes the root
|
||
|
// A (position) takes ownership of D as its children[kRight] child
|
||
|
// C (new position) takes ownership of A as its left child
|
||
|
// OR
|
||
|
// B (new position) becomes the root
|
||
|
// A (position) takes ownership of E as its left child
|
||
|
// B (new position) takes ownership of A as its right child
|
||
|
|
||
|
// Capture new root (either B or C depending on dir) and its parent
|
||
|
Node* new_root = position->children[dir];
|
||
|
|
||
|
// Replace position's previous child with new root's other child
|
||
|
position->children[dir] = new_root->children[1 - dir];
|
||
|
// Update new root's other child parent pointer
|
||
|
if (position->children[dir])
|
||
|
{
|
||
|
position->children[dir]->parent = position;
|
||
|
}
|
||
|
|
||
|
// New root's parent becomes current position's parent
|
||
|
new_root->parent = position->parent;
|
||
|
new_root->children[1 - dir] = position;
|
||
|
new_root->dir = 1 - dir;
|
||
|
|
||
|
// Clear weight factor from current position
|
||
|
position->weight = (uint_least8_t) kNeither;
|
||
|
// Position's parent becomes new_root
|
||
|
position->parent = new_root;
|
||
|
position = new_root;
|
||
|
// Clear weight factor from new root
|
||
|
position->weight = (uint_least8_t) kNeither;
|
||
|
}
|
||
|
|
||
|
//*************************************************************************
|
||
|
/// Rotate three nodes at the position provided the to balance the tree
|
||
|
//*************************************************************************
|
||
|
void rotate_3node(Node*& position, uint_least8_t dir, uint_least8_t third)
|
||
|
{
|
||
|
// --A-- --E-- --A-- --D--
|
||
|
// _B_ C -> B A OR B _C_ -> A C
|
||
|
// D E D F G C D E B F G E
|
||
|
// F G F G
|
||
|
// E (new position) becomes the root
|
||
|
// B (position) takes ownership of F as its left child
|
||
|
// A takes ownership of G as its right child
|
||
|
// OR
|
||
|
// D (new position) becomes the root
|
||
|
// A (position) takes ownership of F as its right child
|
||
|
// C takes ownership of G as its left child
|
||
|
|
||
|
// Capture new root (either E or D depending on dir)
|
||
|
Node* new_root = position->children[dir]->children[1 - dir];
|
||
|
// Set weight factor for B or C based on F or G existing and being a different than dir
|
||
|
position->children[dir]->weight = third != (uint_least8_t) kNeither && third != dir ? dir : (uint_least8_t) kNeither;
|
||
|
|
||
|
// Detach new root from its tree (replace with new roots child)
|
||
|
position->children[dir]->children[1 - dir] = new_root->children[dir];
|
||
|
// Update new roots child parent pointer
|
||
|
if (new_root->children[dir])
|
||
|
{
|
||
|
new_root->children[dir]->parent = position->children[dir];
|
||
|
}
|
||
|
|
||
|
// Attach current left tree to new root and update its parent
|
||
|
new_root->children[dir] = position->children[dir];
|
||
|
position->children[dir]->parent = new_root;
|
||
|
|
||
|
// Set weight factor for A based on F or G
|
||
|
position->weight = third != (uint_least8_t) kNeither && third == dir ? 1 - dir : (uint_least8_t) kNeither;
|
||
|
|
||
|
// Move new root's right tree to current roots left tree
|
||
|
position->children[dir] = new_root->children[1 - dir];
|
||
|
if (new_root->children[1 - dir])
|
||
|
{
|
||
|
new_root->children[1 - dir]->parent = position;
|
||
|
}
|
||
|
|
||
|
// Attach current root to new roots right tree and assume its parent
|
||
|
new_root->parent = position->parent;
|
||
|
new_root->children[1 - dir] = position;
|
||
|
new_root->dir = 1 - dir;
|
||
|
|
||
|
// Update current position's parent and replace with new root
|
||
|
position->parent = new_root;
|
||
|
position = new_root;
|
||
|
// Clear weight factor for new current position
|
||
|
position->weight = (uint_least8_t) kNeither;
|
||
|
}
|
||
|
|
||
|
//*************************************************************************
|
||
|
/// Find the next node in sequence from the node provided
|
||
|
//*************************************************************************
|
||
|
void next_node(Node*& position) const
|
||
|
{
|
||
|
if (position)
|
||
|
{
|
||
|
// Is there a tree on the right? then find the minimum of that tree
|
||
|
if (position->children[(uint_least8_t) kRight])
|
||
|
{
|
||
|
// Return minimum node found
|
||
|
position = find_limit_node(position->children[(uint_least8_t) kRight], kLeft);
|
||
|
}
|
||
|
// Otherwise find the parent of this node
|
||
|
else
|
||
|
{
|
||
|
// Start with current position as parent
|
||
|
Node* parent = position;
|
||
|
do {
|
||
|
// Update current position as previous parent
|
||
|
position = parent;
|
||
|
// Find parent of current position
|
||
|
parent = position->parent; // find_parent_node(root_node, position);
|
||
|
// Repeat while previous position was on right side of parent tree
|
||
|
} while (parent && parent->children[(uint_least8_t) kRight] == position);
|
||
|
|
||
|
// Set parent node as the next position
|
||
|
position = parent;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
//*************************************************************************
|
||
|
/// Find the next node in sequence from the node provided
|
||
|
//*************************************************************************
|
||
|
void next_node(const Node*& position) const
|
||
|
{
|
||
|
if (position)
|
||
|
{
|
||
|
// Is there a tree on the right? then find the minimum of that tree
|
||
|
if (position->children[(uint_least8_t) kRight])
|
||
|
{
|
||
|
// Return minimum node found
|
||
|
position = find_limit_node(position->children[(uint_least8_t) kRight], kLeft);
|
||
|
}
|
||
|
// Otherwise find the parent of this node
|
||
|
else
|
||
|
{
|
||
|
// Start with current position as parent
|
||
|
const Node* parent = position;
|
||
|
do {
|
||
|
// Update current position as previous parent
|
||
|
position = parent;
|
||
|
// Find parent of current position
|
||
|
parent = position->parent;
|
||
|
// Repeat while previous position was on right side of parent tree
|
||
|
} while (parent && parent->children[(uint_least8_t) kRight] == position);
|
||
|
|
||
|
// Set parent node as the next position
|
||
|
position = parent;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
//*************************************************************************
|
||
|
/// Find the previous node in sequence from the node provided
|
||
|
//*************************************************************************
|
||
|
void prev_node(Node*& position) const
|
||
|
{
|
||
|
// If starting at the terminal end, the previous node is the maximum node
|
||
|
// from the root
|
||
|
if (!position)
|
||
|
{
|
||
|
position = find_limit_node(root_node, kRight);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
// Is there a tree on the left? then find the maximum of that tree
|
||
|
if (position->children[(uint_least8_t) kLeft])
|
||
|
{
|
||
|
// Return maximum node found
|
||
|
position = find_limit_node(position->children[(uint_least8_t) kLeft], kRight);
|
||
|
}
|
||
|
// Otherwise find the parent of this node
|
||
|
else
|
||
|
{
|
||
|
// Start with current position as parent
|
||
|
Node* parent = position;
|
||
|
do {
|
||
|
// Update current position as previous parent
|
||
|
position = parent;
|
||
|
// Find parent of current position
|
||
|
parent = position->parent;
|
||
|
// Repeat while previous position was on left side of parent tree
|
||
|
} while (parent && parent->children[(uint_least8_t) kLeft] == position);
|
||
|
|
||
|
// Set parent node as the next position
|
||
|
position = parent;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
//*************************************************************************
|
||
|
/// Find the previous node in sequence from the node provided
|
||
|
//*************************************************************************
|
||
|
void prev_node(const Node*& position) const
|
||
|
{
|
||
|
// If starting at the terminal end, the previous node is the maximum node
|
||
|
// from the root
|
||
|
if (!position)
|
||
|
{
|
||
|
position = find_limit_node(root_node, kRight);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
// Is there a tree on the left? then find the maximum of that tree
|
||
|
if (position->children[(uint_least8_t) kLeft])
|
||
|
{
|
||
|
// Return maximum node found
|
||
|
position = find_limit_node(position->children[(uint_least8_t) kLeft], kRight);
|
||
|
}
|
||
|
// Otherwise find the parent of this node
|
||
|
else
|
||
|
{
|
||
|
// Start with current position as parent
|
||
|
const Node* parent = position;
|
||
|
do {
|
||
|
// Update current position as previous parent
|
||
|
position = parent;
|
||
|
// Find parent of current position
|
||
|
parent = position->parent;
|
||
|
// Repeat while previous position was on left side of parent tree
|
||
|
} while (parent && parent->children[(uint_least8_t) kLeft] == position);
|
||
|
|
||
|
// Set parent node as the next position
|
||
|
position = parent;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
//*************************************************************************
|
||
|
/// Find the node whose key would go before all the other keys from the
|
||
|
/// position provided
|
||
|
//*************************************************************************
|
||
|
Node* find_limit_node(Node* position, const int8_t dir) const
|
||
|
{
|
||
|
// Something at this position and in the direction specified? keep going
|
||
|
Node* limit_node = position;
|
||
|
while (limit_node && limit_node->children[dir])
|
||
|
{
|
||
|
limit_node = limit_node->children[dir];
|
||
|
}
|
||
|
|
||
|
// Return the limit node position found
|
||
|
return limit_node;
|
||
|
}
|
||
|
|
||
|
//*************************************************************************
|
||
|
/// Attach the provided node to the position provided
|
||
|
//*************************************************************************
|
||
|
void attach_node(Node* parent, Node*& position, Node& node)
|
||
|
{
|
||
|
// Mark new node as leaf on attach to tree at position provided
|
||
|
node.mark_as_leaf();
|
||
|
|
||
|
// Keep track of this node's parent
|
||
|
node.parent = parent;
|
||
|
|
||
|
// Add the node here
|
||
|
position = &node;
|
||
|
|
||
|
// One more.
|
||
|
++current_size;
|
||
|
}
|
||
|
|
||
|
//*************************************************************************
|
||
|
/// Detach the node at the position provided
|
||
|
//*************************************************************************
|
||
|
void detach_node(Node*& position, Node*& replacement)
|
||
|
{
|
||
|
// Make temporary copy of actual nodes involved because we might lose
|
||
|
// their references in the process (e.g. position is the same as
|
||
|
// replacement or replacement is a child of position)
|
||
|
Node* detached = position;
|
||
|
Node* swap = replacement;
|
||
|
|
||
|
// Update current position to point to swap (replacement) node first
|
||
|
position = swap;
|
||
|
|
||
|
// Update replacement node to point to child in opposite direction
|
||
|
// otherwise we might lose the other child of the swap node
|
||
|
replacement = swap->children[1 - swap->dir];
|
||
|
|
||
|
if (replacement != ETL_NULLPTR)
|
||
|
{
|
||
|
replacement->parent = swap->parent;
|
||
|
}
|
||
|
|
||
|
// Point swap node to detached node's parent, children and weight
|
||
|
swap->parent = detached->parent;
|
||
|
swap->children[(uint_least8_t) kLeft] = detached->children[(uint_least8_t) kLeft];
|
||
|
swap->children[(uint_least8_t) kRight] = detached->children[(uint_least8_t) kRight];
|
||
|
if (swap->children[(uint_least8_t) kLeft])
|
||
|
{
|
||
|
swap->children[(uint_least8_t) kLeft]->parent = swap;
|
||
|
}
|
||
|
if (swap->children[(uint_least8_t) kRight])
|
||
|
{
|
||
|
swap->children[(uint_least8_t) kRight]->parent = swap;
|
||
|
}
|
||
|
swap->weight = detached->weight;
|
||
|
}
|
||
|
|
||
|
size_type current_size; ///< The number of the used nodes.
|
||
|
const size_type CAPACITY; ///< The maximum size of the map.
|
||
|
Node* root_node; ///< The node that acts as the multimap root.
|
||
|
ETL_DECLARE_DEBUG_COUNT;
|
||
|
};
|
||
|
|
||
|
//***************************************************************************
|
||
|
/// A templated base for all etl::multimap types.
|
||
|
///\ingroup map
|
||
|
//***************************************************************************
|
||
|
template <typename TKey, typename TMapped, typename TKeyCompare = etl::less<TKey> >
|
||
|
class imultimap : public etl::multimap_base
|
||
|
{
|
||
|
public:
|
||
|
|
||
|
typedef ETL_OR_STD::pair<const TKey, TMapped> value_type;
|
||
|
typedef const TKey key_type;
|
||
|
typedef TMapped mapped_type;
|
||
|
typedef TKeyCompare key_compare;
|
||
|
typedef value_type& reference;
|
||
|
typedef const value_type& const_reference;
|
||
|
#if ETL_USING_CPP11
|
||
|
typedef value_type&& rvalue_reference;
|
||
|
#endif
|
||
|
typedef value_type* pointer;
|
||
|
typedef const value_type* const_pointer;
|
||
|
typedef size_t size_type;
|
||
|
|
||
|
typedef const key_type& const_key_reference;
|
||
|
#if ETL_USING_CPP11
|
||
|
typedef key_type&& rvalue_key_reference;
|
||
|
#endif
|
||
|
|
||
|
class value_compare
|
||
|
{
|
||
|
public:
|
||
|
|
||
|
bool operator()(const_reference lhs, const_reference rhs) const
|
||
|
{
|
||
|
return (kcompare(lhs.first, rhs.first));
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
|
||
|
key_compare kcompare;
|
||
|
};
|
||
|
|
||
|
protected:
|
||
|
|
||
|
//*************************************************************************
|
||
|
/// The data node element in the multimap.
|
||
|
//*************************************************************************
|
||
|
struct Data_Node : public Node
|
||
|
{
|
||
|
explicit Data_Node(value_type value_)
|
||
|
: value(value_)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
value_type value;
|
||
|
};
|
||
|
|
||
|
//*************************************************************************
|
||
|
/// How to compare node elements.
|
||
|
//*************************************************************************
|
||
|
bool node_comp(const Data_Node& node1, const Data_Node& node2) const
|
||
|
{
|
||
|
return kcompare(node1.value.first, node2.value.first);
|
||
|
}
|
||
|
|
||
|
bool node_comp(const Data_Node& node, const_key_reference key) const
|
||
|
{
|
||
|
return kcompare(node.value.first, key);
|
||
|
}
|
||
|
|
||
|
bool node_comp(const_key_reference key, const Data_Node& node) const
|
||
|
{
|
||
|
return kcompare(key, node.value.first);
|
||
|
}
|
||
|
|
||
|
#if ETL_USING_CPP11
|
||
|
template <typename K, typename KC = TKeyCompare, etl::enable_if_t<comparator_is_transparent<KC>::value, int> = 0>
|
||
|
bool node_comp(const Data_Node& node, const K& key) const
|
||
|
{
|
||
|
return kcompare(node.value.first, key);
|
||
|
}
|
||
|
|
||
|
template <typename K, typename KC = TKeyCompare, etl::enable_if_t<comparator_is_transparent<KC>::value, int> = 0>
|
||
|
bool node_comp(const K& key, const Data_Node& node) const
|
||
|
{
|
||
|
return kcompare(key, node.value.first);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
private:
|
||
|
|
||
|
/// The pool of data nodes used in the multimap.
|
||
|
ipool* p_node_pool;
|
||
|
|
||
|
key_compare kcompare;
|
||
|
value_compare vcompare;
|
||
|
|
||
|
//*************************************************************************
|
||
|
/// Downcast a Node* to a Data_Node*
|
||
|
//*************************************************************************
|
||
|
static Data_Node* data_cast(Node* p_node)
|
||
|
{
|
||
|
return static_cast<Data_Node*>(p_node);
|
||
|
}
|
||
|
|
||
|
//*************************************************************************
|
||
|
/// Downcast a Node& to a Data_Node&
|
||
|
//*************************************************************************
|
||
|
static Data_Node& data_cast(Node& node)
|
||
|
{
|
||
|
return static_cast<Data_Node&>(node);
|
||
|
}
|
||
|
|
||
|
//*************************************************************************
|
||
|
/// Downcast a const Node* to a const Data_Node*
|
||
|
//*************************************************************************
|
||
|
static const Data_Node* data_cast(const Node* p_node)
|
||
|
{
|
||
|
return static_cast<const Data_Node*>(p_node);
|
||
|
}
|
||
|
|
||
|
//*************************************************************************
|
||
|
/// Downcast a const Node& to a const Data_Node&
|
||
|
//*************************************************************************
|
||
|
static const Data_Node& data_cast(const Node& node)
|
||
|
{
|
||
|
return static_cast<const Data_Node&>(node);
|
||
|
}
|
||
|
|
||
|
public:
|
||
|
//*************************************************************************
|
||
|
/// iterator.
|
||
|
//*************************************************************************
|
||
|
class iterator : public etl::iterator<ETL_OR_STD::bidirectional_iterator_tag, value_type>
|
||
|
{
|
||
|
public:
|
||
|
|
||
|
friend class imultimap;
|
||
|
friend class const_iterator;
|
||
|
|
||
|
iterator()
|
||
|
: p_multimap(ETL_NULLPTR)
|
||
|
, p_node(ETL_NULLPTR)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
iterator(imultimap& multimap)
|
||
|
: p_multimap(&multimap)
|
||
|
, p_node(ETL_NULLPTR)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
iterator(imultimap& multimap, Node* node)
|
||
|
: p_multimap(&multimap)
|
||
|
, p_node(node)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
iterator(const iterator& other)
|
||
|
: p_multimap(other.p_multimap)
|
||
|
, p_node(other.p_node)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
~iterator()
|
||
|
{
|
||
|
}
|
||
|
|
||
|
iterator& operator ++()
|
||
|
{
|
||
|
p_multimap->next_node(p_node);
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
iterator operator ++(int)
|
||
|
{
|
||
|
iterator temp(*this);
|
||
|
p_multimap->next_node(p_node);
|
||
|
return temp;
|
||
|
}
|
||
|
|
||
|
iterator& operator --()
|
||
|
{
|
||
|
p_multimap->prev_node(p_node);
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
iterator operator --(int)
|
||
|
{
|
||
|
iterator temp(*this);
|
||
|
p_multimap->prev_node(p_node);
|
||
|
return temp;
|
||
|
}
|
||
|
|
||
|
iterator& operator =(const iterator& other)
|
||
|
{
|
||
|
p_multimap = other.p_multimap;
|
||
|
p_node = other.p_node;
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
reference operator *() const
|
||
|
{
|
||
|
return imultimap::data_cast(p_node)->value;
|
||
|
}
|
||
|
|
||
|
pointer operator &() const
|
||
|
{
|
||
|
return &(imultimap::data_cast(p_node)->value);
|
||
|
}
|
||
|
|
||
|
pointer operator ->() const
|
||
|
{
|
||
|
return &(imultimap::data_cast(p_node)->value);
|
||
|
}
|
||
|
|
||
|
friend bool operator == (const iterator& lhs, const iterator& rhs)
|
||
|
{
|
||
|
return lhs.p_multimap == rhs.p_multimap && lhs.p_node == rhs.p_node;
|
||
|
}
|
||
|
|
||
|
friend bool operator != (const iterator& lhs, const iterator& rhs)
|
||
|
{
|
||
|
return !(lhs == rhs);
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
|
||
|
// Pointer to multimap associated with this iterator
|
||
|
imultimap* p_multimap;
|
||
|
|
||
|
// Pointer to the current node for this iterator
|
||
|
Node* p_node;
|
||
|
};
|
||
|
friend class iterator;
|
||
|
|
||
|
//*************************************************************************
|
||
|
/// const_iterator
|
||
|
//*************************************************************************
|
||
|
class const_iterator : public etl::iterator<ETL_OR_STD::bidirectional_iterator_tag, const value_type>
|
||
|
{
|
||
|
public:
|
||
|
|
||
|
friend class imultimap;
|
||
|
|
||
|
const_iterator()
|
||
|
: p_multimap(ETL_NULLPTR)
|
||
|
, p_node(ETL_NULLPTR)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
const_iterator(const imultimap& multimap)
|
||
|
: p_multimap(&multimap)
|
||
|
, p_node(ETL_NULLPTR)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
const_iterator(const imultimap& multimap, const Node* node)
|
||
|
: p_multimap(&multimap)
|
||
|
, p_node(node)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
const_iterator(const typename imultimap::iterator& other)
|
||
|
: p_multimap(other.p_multimap)
|
||
|
, p_node(other.p_node)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
const_iterator(const const_iterator& other)
|
||
|
: p_multimap(other.p_multimap)
|
||
|
, p_node(other.p_node)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
~const_iterator()
|
||
|
{
|
||
|
}
|
||
|
|
||
|
const_iterator& operator ++()
|
||
|
{
|
||
|
p_multimap->next_node(p_node);
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
const_iterator operator ++(int)
|
||
|
{
|
||
|
const_iterator temp(*this);
|
||
|
p_multimap->next_node(p_node);
|
||
|
return temp;
|
||
|
}
|
||
|
|
||
|
const_iterator& operator --()
|
||
|
{
|
||
|
p_multimap->prev_node(p_node);
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
const_iterator operator --(int)
|
||
|
{
|
||
|
const_iterator temp(*this);
|
||
|
p_multimap->prev_node(p_node);
|
||
|
return temp;
|
||
|
}
|
||
|
|
||
|
const_iterator& operator =(const const_iterator& other)
|
||
|
{
|
||
|
p_multimap = other.p_multimap;
|
||
|
p_node = other.p_node;
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
const_reference operator *() const
|
||
|
{
|
||
|
return imultimap::data_cast(p_node)->value;
|
||
|
}
|
||
|
|
||
|
const_pointer operator &() const
|
||
|
{
|
||
|
return imultimap::data_cast(p_node)->value;
|
||
|
}
|
||
|
|
||
|
const_pointer operator ->() const
|
||
|
{
|
||
|
return &(imultimap::data_cast(p_node)->value);
|
||
|
}
|
||
|
|
||
|
friend bool operator == (const const_iterator& lhs, const const_iterator& rhs)
|
||
|
{
|
||
|
return lhs.p_multimap == rhs.p_multimap && lhs.p_node == rhs.p_node;
|
||
|
}
|
||
|
|
||
|
friend bool operator != (const const_iterator& lhs, const const_iterator& rhs)
|
||
|
{
|
||
|
return !(lhs == rhs);
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
|
||
|
// Convert to an iterator.
|
||
|
imultimap::iterator to_iterator() const
|
||
|
{
|
||
|
return imultimap::iterator(const_cast<imultimap&>(*p_multimap), const_cast<Node*>(p_node));
|
||
|
}
|
||
|
|
||
|
// Pointer to multimap associated with this iterator
|
||
|
const imultimap* p_multimap;
|
||
|
|
||
|
// Pointer to the current node for this iterator
|
||
|
const Node* p_node;
|
||
|
};
|
||
|
friend class const_iterator;
|
||
|
|
||
|
typedef typename etl::iterator_traits<iterator>::difference_type difference_type;
|
||
|
|
||
|
typedef ETL_OR_STD::reverse_iterator<iterator> reverse_iterator;
|
||
|
typedef ETL_OR_STD::reverse_iterator<const_iterator> const_reverse_iterator;
|
||
|
|
||
|
//*************************************************************************
|
||
|
/// Gets the beginning of the multimap.
|
||
|
//*************************************************************************
|
||
|
iterator begin()
|
||
|
{
|
||
|
return iterator(*this, find_limit_node(root_node, kLeft));
|
||
|
}
|
||
|
|
||
|
//*************************************************************************
|
||
|
/// Gets the beginning of the multimap.
|
||
|
//*************************************************************************
|
||
|
const_iterator begin() const
|
||
|
{
|
||
|
return const_iterator(*this, find_limit_node(root_node, kLeft));
|
||
|
}
|
||
|
|
||
|
//*************************************************************************
|
||
|
/// Gets the end of the multimap.
|
||
|
//*************************************************************************
|
||
|
iterator end()
|
||
|
{
|
||
|
return iterator(*this);
|
||
|
}
|
||
|
|
||
|
//*************************************************************************
|
||
|
/// Gets the end of the multimap.
|
||
|
//*************************************************************************
|
||
|
const_iterator end() const
|
||
|
{
|
||
|
return const_iterator(*this);
|
||
|
}
|
||
|
|
||
|
//*************************************************************************
|
||
|
/// Gets the beginning of the multimap.
|
||
|
//*************************************************************************
|
||
|
const_iterator cbegin() const
|
||
|
{
|
||
|
return const_iterator(*this, find_limit_node(root_node, kLeft));
|
||
|
}
|
||
|
|
||
|
//*************************************************************************
|
||
|
/// Gets the end of the multimap.
|
||
|
//*************************************************************************
|
||
|
const_iterator cend() const
|
||
|
{
|
||
|
return const_iterator(*this);
|
||
|
}
|
||
|
|
||
|
//*************************************************************************
|
||
|
/// Gets the reverse beginning of the list.
|
||
|
//*************************************************************************
|
||
|
reverse_iterator rbegin()
|
||
|
{
|
||
|
return reverse_iterator(iterator(*this));
|
||
|
}
|
||
|
|
||
|
//*************************************************************************
|
||
|
/// Gets the reverse beginning of the list.
|
||
|
//*************************************************************************
|
||
|
const_reverse_iterator rbegin() const
|
||
|
{
|
||
|
return const_reverse_iterator(const_iterator(*this));
|
||
|
}
|
||
|
|
||
|
//*************************************************************************
|
||
|
/// Gets the reverse end of the list.
|
||
|
//*************************************************************************
|
||
|
reverse_iterator rend()
|
||
|
{
|
||
|
return reverse_iterator(iterator(*this, find_limit_node(root_node, kLeft)));
|
||
|
}
|
||
|
|
||
|
//*************************************************************************
|
||
|
/// Gets the reverse end of the list.
|
||
|
//*************************************************************************
|
||
|
const_reverse_iterator rend() const
|
||
|
{
|
||
|
return const_reverse_iterator(iterator(*this, find_limit_node(root_node, kLeft)));
|
||
|
}
|
||
|
|
||
|
//*************************************************************************
|
||
|
/// Gets the reverse beginning of the list.
|
||
|
//*************************************************************************
|
||
|
const_reverse_iterator crbegin() const
|
||
|
{
|
||
|
return const_reverse_iterator(const_iterator(*this));
|
||
|
}
|
||
|
|
||
|
//*************************************************************************
|
||
|
/// Gets the reverse end of the list.
|
||
|
//*************************************************************************
|
||
|
const_reverse_iterator crend() const
|
||
|
{
|
||
|
return const_reverse_iterator(const_iterator(*this, find_limit_node(root_node, kLeft)));
|
||
|
}
|
||
|
|
||
|
//*********************************************************************
|
||
|
/// Assigns values to the multimap.
|
||
|
/// If asserts or exceptions are enabled, emits map_full if the multimap does not have enough free space.
|
||
|
/// If asserts or exceptions are enabled, emits map_iterator if the iterators are reversed.
|
||
|
///\param first The iterator to the first element.
|
||
|
///\param last The iterator to the last element + 1.
|
||
|
//*********************************************************************
|
||
|
template <typename TIterator>
|
||
|
void assign(TIterator first, TIterator last)
|
||
|
{
|
||
|
initialise();
|
||
|
insert(first, last);
|
||
|
}
|
||
|
|
||
|
//*************************************************************************
|
||
|
/// Clears the multimap.
|
||
|
//*************************************************************************
|
||
|
void clear()
|
||
|
{
|
||
|
initialise();
|
||
|
}
|
||
|
|
||
|
//*********************************************************************
|
||
|
/// Counts the number of elements that contain the key specified.
|
||
|
///\param key The key to search for.
|
||
|
///\return 1 if element was found, 0 otherwise.
|
||
|
//*********************************************************************
|
||
|
size_type count(const_key_reference key) const
|
||
|
{
|
||
|
return count_nodes(key);
|
||
|
}
|
||
|
|
||
|
#if ETL_USING_CPP11
|
||
|
//*********************************************************************
|
||
|
template <typename K, typename KC = TKeyCompare, etl::enable_if_t<comparator_is_transparent<KC>::value, int> = 0>
|
||
|
size_type count(const K& key) const
|
||
|
{
|
||
|
return count_nodes(key);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
//*************************************************************************
|
||
|
/// Returns two iterators with bounding (lower bound, upper bound) the key
|
||
|
/// provided
|
||
|
//*************************************************************************
|
||
|
ETL_OR_STD::pair<iterator, iterator> equal_range(const_key_reference key)
|
||
|
{
|
||
|
return ETL_OR_STD::make_pair<iterator, iterator>(iterator(*this, find_lower_node(root_node, key)),
|
||
|
iterator(*this, find_upper_node(root_node, key)));
|
||
|
}
|
||
|
|
||
|
#if ETL_USING_CPP11
|
||
|
//*************************************************************************
|
||
|
template <typename K, typename KC = TKeyCompare, etl::enable_if_t<comparator_is_transparent<KC>::value, int> = 0>
|
||
|
ETL_OR_STD::pair<iterator, iterator> equal_range(const K& key)
|
||
|
{
|
||
|
return ETL_OR_STD::make_pair<iterator, iterator>(iterator(*this, find_lower_node(root_node, key)),
|
||
|
iterator(*this, find_upper_node(root_node, key)));
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
//*************************************************************************
|
||
|
/// Returns two const iterators with bounding (lower bound, upper bound)
|
||
|
/// the key provided.
|
||
|
//*************************************************************************
|
||
|
ETL_OR_STD::pair<const_iterator, const_iterator> equal_range(const_key_reference key) const
|
||
|
{
|
||
|
return ETL_OR_STD::make_pair<const_iterator, const_iterator>(const_iterator(*this, find_lower_node(root_node, key)),
|
||
|
const_iterator(*this, find_upper_node(root_node, key)));
|
||
|
}
|
||
|
|
||
|
#if ETL_USING_CPP11
|
||
|
//*************************************************************************
|
||
|
template <typename K, typename KC = TKeyCompare, etl::enable_if_t<comparator_is_transparent<KC>::value, int> = 0>
|
||
|
ETL_OR_STD::pair<const_iterator, const_iterator> equal_range(const K& key) const
|
||
|
{
|
||
|
return ETL_OR_STD::make_pair<const_iterator, const_iterator>(const_iterator(*this, find_lower_node(root_node, key)),
|
||
|
const_iterator(*this, find_upper_node(root_node, key)));
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
//*************************************************************************
|
||
|
/// Erases the value at the specified position.
|
||
|
//*************************************************************************
|
||
|
iterator erase(iterator position)
|
||
|
{
|
||
|
// Remove the node by its node specified in iterator position
|
||
|
return erase(const_iterator(position));
|
||
|
}
|
||
|
|
||
|
//*************************************************************************
|
||
|
/// Erases the value at the specified position.
|
||
|
//*************************************************************************
|
||
|
iterator erase(const_iterator position)
|
||
|
{
|
||
|
// Cast const away from node to be removed. This is necessary because the
|
||
|
// STL definition of this method requires we provide the next node in the
|
||
|
// sequence as an iterator.
|
||
|
Node* node = const_cast<Node*>(position.p_node);
|
||
|
iterator next(*this, node);
|
||
|
++next;
|
||
|
|
||
|
// Remove the non-const node provided
|
||
|
remove_node(node);
|
||
|
|
||
|
return next;
|
||
|
}
|
||
|
|
||
|
//*************************************************************************
|
||
|
// Erase the key specified.
|
||
|
//*************************************************************************
|
||
|
size_type erase(const_key_reference key)
|
||
|
{
|
||
|
// Number of nodes removed
|
||
|
size_type d = 0;
|
||
|
const_iterator lower(*this, find_lower_node(root_node, key));
|
||
|
const_iterator upper(*this, find_upper_node(root_node, key));
|
||
|
while (lower != upper)
|
||
|
{
|
||
|
// Increment count for each node removed
|
||
|
++d;
|
||
|
// Remove node using the other erase method
|
||
|
lower = erase(lower);
|
||
|
}
|
||
|
|
||
|
// Return the total count erased
|
||
|
return d;
|
||
|
}
|
||
|
|
||
|
//*************************************************************************
|
||
|
#if ETL_USING_CPP11
|
||
|
template <typename K, typename KC = TKeyCompare, etl::enable_if_t<comparator_is_transparent<KC>::value, int> = 0>
|
||
|
size_type erase(K&& key)
|
||
|
{
|
||
|
// Number of nodes removed
|
||
|
size_type d = 0;
|
||
|
const_iterator lower(*this, find_lower_node(root_node, etl::forward<K>(key)));
|
||
|
const_iterator upper(*this, find_upper_node(root_node, etl::forward<K>(key)));
|
||
|
while (lower != upper)
|
||
|
{
|
||
|
// Increment count for each node removed
|
||
|
++d;
|
||
|
// Remove node using the other erase method
|
||
|
lower = erase(lower);
|
||
|
}
|
||
|
|
||
|
// Return the total count erased
|
||
|
return d;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
//*************************************************************************
|
||
|
/// Erases a range of elements.
|
||
|
//*************************************************************************
|
||
|
iterator erase(const_iterator first, const_iterator last)
|
||
|
{
|
||
|
while (first != last)
|
||
|
{
|
||
|
first = erase(first);
|
||
|
}
|
||
|
|
||
|
return last.to_iterator();
|
||
|
}
|
||
|
|
||
|
//*********************************************************************
|
||
|
/// Finds an element.
|
||
|
///\param key The key to search for.
|
||
|
///\return An iterator pointing to the element or end() if not found.
|
||
|
//*********************************************************************
|
||
|
iterator find(const_key_reference key)
|
||
|
{
|
||
|
return iterator(*this, find_node(root_node, key));
|
||
|
}
|
||
|
|
||
|
#if ETL_USING_CPP11
|
||
|
//*********************************************************************
|
||
|
template <typename K, typename KC = TKeyCompare, etl::enable_if_t<comparator_is_transparent<KC>::value, int> = 0>
|
||
|
iterator find(const K& k)
|
||
|
{
|
||
|
return iterator(*this, find_node(root_node, k));
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
//*********************************************************************
|
||
|
/// Finds an element.
|
||
|
///\param key The key to search for.
|
||
|
///\return An iterator pointing to the element or end() if not found.
|
||
|
//*********************************************************************
|
||
|
const_iterator find(const_key_reference key) const
|
||
|
{
|
||
|
return const_iterator(*this, find_node(root_node, key));
|
||
|
}
|
||
|
|
||
|
#if ETL_USING_CPP11
|
||
|
//*********************************************************************
|
||
|
template <typename K, typename KC = TKeyCompare, etl::enable_if_t<comparator_is_transparent<KC>::value, int> = 0>
|
||
|
const_iterator find(const K& k) const
|
||
|
{
|
||
|
return const_iterator(*this, find_node(root_node, k));
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
//*********************************************************************
|
||
|
/// Inserts a value to the multimap.
|
||
|
/// If asserts or exceptions are enabled, emits map_full if the multimap is already full.
|
||
|
///\param value The value to insert.
|
||
|
//*********************************************************************
|
||
|
iterator insert(const_reference value)
|
||
|
{
|
||
|
// Default to no inserted node
|
||
|
Node* inserted_node = ETL_NULLPTR;
|
||
|
|
||
|
ETL_ASSERT(!full(), ETL_ERROR(multimap_full));
|
||
|
|
||
|
// Get next available free node
|
||
|
Data_Node& node = allocate_data_node(value);
|
||
|
|
||
|
// Obtain the inserted node (might be ETL_NULLPTR if node was a duplicate)
|
||
|
inserted_node = insert_node(root_node, node);
|
||
|
|
||
|
// Insert node into tree and return iterator to new node location in tree
|
||
|
return iterator(*this, inserted_node);
|
||
|
}
|
||
|
|
||
|
#if ETL_USING_CPP11
|
||
|
//*********************************************************************
|
||
|
/// Inserts a value to the multimap.
|
||
|
/// If asserts or exceptions are enabled, emits map_full if the multimap is already full.
|
||
|
///\param value The value to insert.
|
||
|
//*********************************************************************
|
||
|
iterator insert(rvalue_reference value)
|
||
|
{
|
||
|
// Default to no inserted node
|
||
|
Node* inserted_node = ETL_NULLPTR;
|
||
|
|
||
|
ETL_ASSERT(!full(), ETL_ERROR(multimap_full));
|
||
|
|
||
|
// Get next available free node
|
||
|
Data_Node& node = allocate_data_node(etl::move(value));
|
||
|
|
||
|
// Obtain the inserted node (might be ETL_NULLPTR if node was a duplicate)
|
||
|
inserted_node = insert_node(root_node, node);
|
||
|
|
||
|
// Insert node into tree and return iterator to new node location in tree
|
||
|
return iterator(*this, inserted_node);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
//*********************************************************************
|
||
|
/// Inserts a value to the multimap starting at the position recommended.
|
||
|
/// If asserts or exceptions are enabled, emits map_full if the multimap is already full.
|
||
|
///\param position The position that would precede the value to insert.
|
||
|
///\param value The value to insert.
|
||
|
//*********************************************************************
|
||
|
iterator insert(const_iterator /*position*/, const_reference value)
|
||
|
{
|
||
|
// Ignore position provided and just do a normal insert
|
||
|
return insert(value);
|
||
|
}
|
||
|
|
||
|
#if ETL_USING_CPP11
|
||
|
//*********************************************************************
|
||
|
/// Inserts a value to the multimap starting at the position recommended.
|
||
|
/// If asserts or exceptions are enabled, emits map_full if the multimap is already full.
|
||
|
///\param position The position that would precede the value to insert.
|
||
|
///\param value The value to insert.
|
||
|
//*********************************************************************
|
||
|
iterator insert(const_iterator /*position*/, rvalue_reference value)
|
||
|
{
|
||
|
// Ignore position provided and just do a normal insert
|
||
|
return insert(etl::move(value));
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
//*********************************************************************
|
||
|
/// Inserts a range of values to the multimap.
|
||
|
/// If asserts or exceptions are enabled, emits map_full if the multimap does not have enough free space.
|
||
|
///\param position The position to insert at.
|
||
|
///\param first The first element to add.
|
||
|
///\param last The last + 1 element to add.
|
||
|
//*********************************************************************
|
||
|
template <class TIterator>
|
||
|
void insert(TIterator first, TIterator last)
|
||
|
{
|
||
|
while (first != last)
|
||
|
{
|
||
|
insert(*first);
|
||
|
++first;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
//*********************************************************************
|
||
|
/// Returns an iterator pointing to the first element in the container
|
||
|
/// whose key is not considered to go before the key provided or end()
|
||
|
/// if all keys are considered to go before the key provided.
|
||
|
///\return An iterator pointing to the element not before key or end()
|
||
|
//*********************************************************************
|
||
|
iterator lower_bound(const_key_reference key)
|
||
|
{
|
||
|
return iterator(*this, find_lower_node(root_node, key));
|
||
|
}
|
||
|
|
||
|
#if ETL_USING_CPP11
|
||
|
//*********************************************************************
|
||
|
template <typename K, typename KC = TKeyCompare, etl::enable_if_t<comparator_is_transparent<KC>::value, int> = 0>
|
||
|
iterator lower_bound(const K& key)
|
||
|
{
|
||
|
return iterator(*this, find_lower_node(root_node, key));
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
//*********************************************************************
|
||
|
/// Returns a const_iterator pointing to the first element in the
|
||
|
/// container whose key is not considered to go before the key provided
|
||
|
/// or end() if all keys are considered to go before the key provided.
|
||
|
///\return An const_iterator pointing to the element not before key or end()
|
||
|
//*********************************************************************
|
||
|
const_iterator lower_bound(const_key_reference key) const
|
||
|
{
|
||
|
return const_iterator(*this, find_lower_node(root_node, key));
|
||
|
}
|
||
|
|
||
|
#if ETL_USING_CPP11
|
||
|
//*********************************************************************
|
||
|
template <typename K, typename KC = TKeyCompare, etl::enable_if_t<comparator_is_transparent<KC>::value, int> = 0>
|
||
|
const_iterator lower_bound(const K& key) const
|
||
|
{
|
||
|
return const_iterator(*this, find_lower_node(root_node, key));
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
//*********************************************************************
|
||
|
/// Returns an iterator pointing to the first element in the container
|
||
|
/// whose key is not considered to go after the key provided or end()
|
||
|
/// if all keys are considered to go after the key provided.
|
||
|
///\return An iterator pointing to the element after key or end()
|
||
|
//*********************************************************************
|
||
|
iterator upper_bound(const_key_reference key)
|
||
|
{
|
||
|
return iterator(*this, find_upper_node(root_node, key));
|
||
|
}
|
||
|
|
||
|
#if ETL_USING_CPP11
|
||
|
//*********************************************************************
|
||
|
template <typename K, typename KC = TKeyCompare, etl::enable_if_t<comparator_is_transparent<KC>::value, int> = 0>
|
||
|
iterator upper_bound(const K& key)
|
||
|
{
|
||
|
return iterator(*this, find_upper_node(root_node, key));
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
//*********************************************************************
|
||
|
/// Returns a const_iterator pointing to the first element in the
|
||
|
/// container whose key is not considered to go after the key provided
|
||
|
/// or end() if all keys are considered to go after the key provided.
|
||
|
///\return An const_iterator pointing to the element after key or end()
|
||
|
//*********************************************************************
|
||
|
const_iterator upper_bound(const_key_reference key) const
|
||
|
{
|
||
|
return const_iterator(*this, find_upper_node(root_node, key));
|
||
|
}
|
||
|
|
||
|
#if ETL_USING_CPP11
|
||
|
//*********************************************************************
|
||
|
template <typename K, typename KC = TKeyCompare, etl::enable_if_t<comparator_is_transparent<KC>::value, int> = 0>
|
||
|
const_iterator upper_bound(const K& key) const
|
||
|
{
|
||
|
return const_iterator(*this, find_upper_node(root_node, key));
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
//*************************************************************************
|
||
|
/// Assignment operator.
|
||
|
//*************************************************************************
|
||
|
imultimap& operator = (const imultimap& rhs)
|
||
|
{
|
||
|
// Skip if doing self assignment
|
||
|
if (this != &rhs)
|
||
|
{
|
||
|
assign(rhs.cbegin(), rhs.cend());
|
||
|
}
|
||
|
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
#if ETL_USING_CPP11
|
||
|
//*************************************************************************
|
||
|
/// Move assignment operator.
|
||
|
//*************************************************************************
|
||
|
imultimap& operator = (imultimap&& rhs)
|
||
|
{
|
||
|
// Skip if doing self assignment
|
||
|
if (this != &rhs)
|
||
|
{
|
||
|
this->clear();
|
||
|
|
||
|
iterator from = rhs.begin();
|
||
|
|
||
|
while (from != rhs.end())
|
||
|
{
|
||
|
this->insert(etl::move(*from));
|
||
|
++from;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return *this;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
//*************************************************************************
|
||
|
/// How to compare two key elements.
|
||
|
//*************************************************************************
|
||
|
key_compare key_comp() const
|
||
|
{
|
||
|
return kcompare;
|
||
|
};
|
||
|
|
||
|
//*************************************************************************
|
||
|
/// How to compare two value elements.
|
||
|
//*************************************************************************
|
||
|
value_compare value_comp() const
|
||
|
{
|
||
|
return vcompare;
|
||
|
};
|
||
|
|
||
|
//*************************************************************************
|
||
|
/// Check if the map contains the key.
|
||
|
//*************************************************************************
|
||
|
bool contains(const TKey& key) const
|
||
|
{
|
||
|
return find(key) != end();
|
||
|
}
|
||
|
|
||
|
#if ETL_USING_CPP11
|
||
|
//*************************************************************************
|
||
|
template <typename K, typename KC = TKeyCompare, etl::enable_if_t<comparator_is_transparent<KC>::value, int> = 0>
|
||
|
bool contains(const K& k) const
|
||
|
{
|
||
|
return find(k) != end();
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
protected:
|
||
|
|
||
|
//*************************************************************************
|
||
|
/// Constructor.
|
||
|
//*************************************************************************
|
||
|
imultimap(etl::ipool& node_pool, size_t max_size_)
|
||
|
: multimap_base(max_size_)
|
||
|
, p_node_pool(&node_pool)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
//*************************************************************************
|
||
|
/// Initialise the multimap.
|
||
|
//*************************************************************************
|
||
|
void initialise()
|
||
|
{
|
||
|
const_iterator item = begin();
|
||
|
|
||
|
while (item != end())
|
||
|
{
|
||
|
item = erase(item);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
|
||
|
//*************************************************************************
|
||
|
/// Allocate a Data_Node.
|
||
|
//*************************************************************************
|
||
|
Data_Node& allocate_data_node(const_reference value)
|
||
|
{
|
||
|
Data_Node* node = allocate_data_node();
|
||
|
::new (&node->value) const value_type(value);
|
||
|
ETL_INCREMENT_DEBUG_COUNT;
|
||
|
return *node;
|
||
|
}
|
||
|
|
||
|
#if ETL_USING_CPP11
|
||
|
//*************************************************************************
|
||
|
/// Allocate a Data_Node.
|
||
|
//*************************************************************************
|
||
|
Data_Node& allocate_data_node(rvalue_reference value)
|
||
|
{
|
||
|
Data_Node* node = allocate_data_node();
|
||
|
::new (&node->value) const value_type(etl::move(value));
|
||
|
ETL_INCREMENT_DEBUG_COUNT;
|
||
|
return *node;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
//*************************************************************************
|
||
|
/// Create a Data_Node.
|
||
|
//*************************************************************************
|
||
|
Data_Node* allocate_data_node()
|
||
|
{
|
||
|
Data_Node* (etl::ipool::*func)() = &etl::ipool::allocate<Data_Node>;
|
||
|
return (p_node_pool->*func)();
|
||
|
}
|
||
|
|
||
|
//*************************************************************************
|
||
|
/// Destroy a Data_Node.
|
||
|
//*************************************************************************
|
||
|
void destroy_data_node(Data_Node& node)
|
||
|
{
|
||
|
node.value.~value_type();
|
||
|
p_node_pool->release(&node);
|
||
|
ETL_DECREMENT_DEBUG_COUNT;
|
||
|
}
|
||
|
|
||
|
//*************************************************************************
|
||
|
/// Count the nodes that match the key provided
|
||
|
//*************************************************************************
|
||
|
size_type count_nodes(const_key_reference key) const
|
||
|
{
|
||
|
// Number of nodes that match the key provided result
|
||
|
size_type result = 0;
|
||
|
|
||
|
// Find lower and upper nodes for the key provided
|
||
|
const Node* lower = find_lower_node(root_node, key);
|
||
|
const Node* upper = find_upper_node(root_node, key);
|
||
|
|
||
|
// Loop from lower node to upper node and find nodes that match
|
||
|
while (lower != upper)
|
||
|
{
|
||
|
// Downcast found to Data_Node class for comparison and other operations
|
||
|
const Data_Node& data_node = imultimap::data_cast(*lower);
|
||
|
|
||
|
if (!node_comp(key, data_node) && !node_comp(data_node, key))
|
||
|
{
|
||
|
// This node matches the key provided
|
||
|
++result;
|
||
|
}
|
||
|
|
||
|
// Move on to the next node
|
||
|
next_node(lower);
|
||
|
}
|
||
|
|
||
|
// Return the number of nodes that match
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
#if ETL_USING_CPP11
|
||
|
//*************************************************************************
|
||
|
template <typename K, typename KC = TKeyCompare, etl::enable_if_t<comparator_is_transparent<KC>::value, int> = 0>
|
||
|
size_type count_nodes(const K& key) const
|
||
|
{
|
||
|
// Number of nodes that match the key provided result
|
||
|
size_type result = 0;
|
||
|
|
||
|
// Find lower and upper nodes for the key provided
|
||
|
const Node* lower = find_lower_node(root_node, key);
|
||
|
const Node* upper = find_upper_node(root_node, key);
|
||
|
|
||
|
// Loop from lower node to upper node and find nodes that match
|
||
|
while (lower != upper)
|
||
|
{
|
||
|
// Downcast found to Data_Node class for comparison and other operations
|
||
|
const Data_Node& data_node = imultimap::data_cast(*lower);
|
||
|
|
||
|
if (!node_comp(key, data_node) && !node_comp(data_node, key))
|
||
|
{
|
||
|
// This node matches the key provided
|
||
|
++result;
|
||
|
}
|
||
|
|
||
|
// Move on to the next node
|
||
|
next_node(lower);
|
||
|
}
|
||
|
|
||
|
// Return the number of nodes that match
|
||
|
return result;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
//*************************************************************************
|
||
|
/// Find the value matching the node provided
|
||
|
//*************************************************************************
|
||
|
Node* find_node(Node* position, const_key_reference key)
|
||
|
{
|
||
|
Node* found = ETL_NULLPTR;
|
||
|
while (position)
|
||
|
{
|
||
|
// Downcast found to Data_Node class for comparison and other operations
|
||
|
Data_Node& data_node = imultimap::data_cast(*position);
|
||
|
// Compare the node value to the current position value
|
||
|
if (node_comp(key, data_node))
|
||
|
{
|
||
|
// Keep searching for the node on the left
|
||
|
position = position->children[(uint_least8_t) kLeft];
|
||
|
}
|
||
|
else if (node_comp(data_node, key))
|
||
|
{
|
||
|
// Keep searching for the node on the right
|
||
|
position = position->children[(uint_least8_t) kRight];
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
// We found one, keep looking for more on the left
|
||
|
found = position;
|
||
|
position = position->children[(uint_least8_t) kLeft];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Return the node found (might be ETL_NULLPTR)
|
||
|
return found;
|
||
|
}
|
||
|
|
||
|
#if ETL_USING_CPP11
|
||
|
//*************************************************************************
|
||
|
template <typename K, typename KC = TKeyCompare, etl::enable_if_t<comparator_is_transparent<KC>::value, int> = 0>
|
||
|
Node* find_node(Node* position, const K& key)
|
||
|
{
|
||
|
Node* found = ETL_NULLPTR;
|
||
|
while (position)
|
||
|
{
|
||
|
// Downcast found to Data_Node class for comparison and other operations
|
||
|
Data_Node& data_node = imultimap::data_cast(*position);
|
||
|
// Compare the node value to the current position value
|
||
|
if (node_comp(key, data_node))
|
||
|
{
|
||
|
// Keep searching for the node on the left
|
||
|
position = position->children[(uint_least8_t)kLeft];
|
||
|
}
|
||
|
else if (node_comp(data_node, key))
|
||
|
{
|
||
|
// Keep searching for the node on the right
|
||
|
position = position->children[(uint_least8_t)kRight];
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
// We found one, keep looking for more on the left
|
||
|
found = position;
|
||
|
position = position->children[(uint_least8_t)kLeft];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Return the node found (might be ETL_NULLPTR)
|
||
|
return found;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
//*************************************************************************
|
||
|
/// Find the value matching the node provided
|
||
|
//*************************************************************************
|
||
|
const Node* find_node(const Node* position, const_key_reference key) const
|
||
|
{
|
||
|
const Node* found = ETL_NULLPTR;
|
||
|
while (position)
|
||
|
{
|
||
|
// Downcast found to Data_Node class for comparison and other operations
|
||
|
const Data_Node& data_node = imultimap::data_cast(*position);
|
||
|
// Compare the node value to the current position value
|
||
|
if (node_comp(key, data_node))
|
||
|
{
|
||
|
// Keep searching for the node on the left
|
||
|
position = position->children[(uint_least8_t) kLeft];
|
||
|
}
|
||
|
else if (node_comp(data_node, key))
|
||
|
{
|
||
|
// Keep searching for the node on the right
|
||
|
position = position->children[(uint_least8_t) kRight];
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
// We found one, keep looking for more on the left
|
||
|
found = position;
|
||
|
position = position->children[(uint_least8_t) kLeft];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Return the node found (might be ETL_NULLPTR)
|
||
|
return found;
|
||
|
}
|
||
|
|
||
|
#if ETL_USING_CPP11
|
||
|
//*************************************************************************
|
||
|
/// Find the value matching the node provided
|
||
|
//*************************************************************************
|
||
|
template <typename K, typename KC = TKeyCompare, etl::enable_if_t<comparator_is_transparent<KC>::value, int> = 0>
|
||
|
const Node* find_node(const Node* position, const K& key) const
|
||
|
{
|
||
|
const Node* found = ETL_NULLPTR;
|
||
|
while (position)
|
||
|
{
|
||
|
// Downcast found to Data_Node class for comparison and other operations
|
||
|
const Data_Node& data_node = imultimap::data_cast(*position);
|
||
|
// Compare the node value to the current position value
|
||
|
if (node_comp(key, data_node))
|
||
|
{
|
||
|
// Keep searching for the node on the left
|
||
|
position = position->children[(uint_least8_t)kLeft];
|
||
|
}
|
||
|
else if (node_comp(data_node, key))
|
||
|
{
|
||
|
// Keep searching for the node on the right
|
||
|
position = position->children[(uint_least8_t)kRight];
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
// We found one, keep looking for more on the left
|
||
|
found = position;
|
||
|
position = position->children[(uint_least8_t)kLeft];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Return the node found (might be ETL_NULLPTR)
|
||
|
return found;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
//*************************************************************************
|
||
|
/// Find the node whose key is not considered to go before the key provided
|
||
|
//*************************************************************************
|
||
|
Node* find_lower_node(Node* position, const_key_reference key) const
|
||
|
{
|
||
|
// Something at this position? keep going
|
||
|
Node* lower_node = ETL_NULLPTR;
|
||
|
while (position)
|
||
|
{
|
||
|
// Downcast lower node to Data_Node reference for key comparisons
|
||
|
Data_Node& data_node = imultimap::data_cast(*position);
|
||
|
// Compare the key value to the current lower node key value
|
||
|
if (node_comp(key, data_node))
|
||
|
{
|
||
|
lower_node = position;
|
||
|
if (position->children[(uint_least8_t) kLeft])
|
||
|
{
|
||
|
position = position->children[(uint_least8_t) kLeft];
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
// Found lowest node
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
else if (node_comp(data_node, key))
|
||
|
{
|
||
|
position = position->children[(uint_least8_t) kRight];
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
// Make note of current position, but keep looking to left for more
|
||
|
lower_node = position;
|
||
|
position = position->children[(uint_least8_t) kLeft];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Return the lower_node position found
|
||
|
return lower_node;
|
||
|
}
|
||
|
|
||
|
#if ETL_USING_CPP11
|
||
|
//*************************************************************************
|
||
|
template <typename K, typename KC = TKeyCompare, etl::enable_if_t<comparator_is_transparent<KC>::value, int> = 0>
|
||
|
Node* find_lower_node(Node* position, const K& key) const
|
||
|
{
|
||
|
// Something at this position? keep going
|
||
|
Node* lower_node = ETL_NULLPTR;
|
||
|
while (position)
|
||
|
{
|
||
|
// Downcast lower node to Data_Node reference for key comparisons
|
||
|
Data_Node& data_node = imultimap::data_cast(*position);
|
||
|
// Compare the key value to the current lower node key value
|
||
|
if (node_comp(key, data_node))
|
||
|
{
|
||
|
lower_node = position;
|
||
|
if (position->children[(uint_least8_t)kLeft])
|
||
|
{
|
||
|
position = position->children[(uint_least8_t)kLeft];
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
// Found lowest node
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
else if (node_comp(data_node, key))
|
||
|
{
|
||
|
position = position->children[(uint_least8_t)kRight];
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
// Make note of current position, but keep looking to left for more
|
||
|
lower_node = position;
|
||
|
position = position->children[(uint_least8_t)kLeft];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Return the lower_node position found
|
||
|
return lower_node;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
//*************************************************************************
|
||
|
/// Find the node whose key is considered to go after the key provided
|
||
|
//*************************************************************************
|
||
|
Node* find_upper_node(Node* position, const_key_reference key) const
|
||
|
{
|
||
|
// Keep track of parent of last upper node
|
||
|
Node* upper_node = ETL_NULLPTR;
|
||
|
// Has an equal node been found? start with no
|
||
|
bool found = false;
|
||
|
while (position)
|
||
|
{
|
||
|
// Downcast position to Data_Node reference for key comparisons
|
||
|
Data_Node& data_node = imultimap::data_cast(*position);
|
||
|
// Compare the key value to the current upper node key value
|
||
|
if (node_comp(data_node, key))
|
||
|
{
|
||
|
position = position->children[(uint_least8_t) kRight];
|
||
|
}
|
||
|
else if (node_comp(key, data_node))
|
||
|
{
|
||
|
upper_node = position;
|
||
|
// If a node equal to key hasn't been found go left
|
||
|
if (!found && position->children[(uint_least8_t) kLeft])
|
||
|
{
|
||
|
position = position->children[(uint_least8_t) kLeft];
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
// We found an equal item, break on next bigger item
|
||
|
found = true;
|
||
|
next_node(position);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Return the upper node position found (might be ETL_NULLPTR)
|
||
|
return upper_node;
|
||
|
}
|
||
|
|
||
|
#if ETL_USING_CPP11
|
||
|
//*************************************************************************
|
||
|
template <typename K, typename KC = TKeyCompare, etl::enable_if_t<comparator_is_transparent<KC>::value, int> = 0>
|
||
|
Node* find_upper_node(Node* position, const K& key) const
|
||
|
{
|
||
|
// Keep track of parent of last upper node
|
||
|
Node* upper_node = ETL_NULLPTR;
|
||
|
// Has an equal node been found? start with no
|
||
|
bool found = false;
|
||
|
while (position)
|
||
|
{
|
||
|
// Downcast position to Data_Node reference for key comparisons
|
||
|
Data_Node& data_node = imultimap::data_cast(*position);
|
||
|
// Compare the key value to the current upper node key value
|
||
|
if (node_comp(data_node, key))
|
||
|
{
|
||
|
position = position->children[(uint_least8_t)kRight];
|
||
|
}
|
||
|
else if (node_comp(key, data_node))
|
||
|
{
|
||
|
upper_node = position;
|
||
|
// If a node equal to key hasn't been found go left
|
||
|
if (!found && position->children[(uint_least8_t)kLeft])
|
||
|
{
|
||
|
position = position->children[(uint_least8_t)kLeft];
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
// We found an equal item, break on next bigger item
|
||
|
found = true;
|
||
|
next_node(position);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Return the upper node position found (might be ETL_NULLPTR)
|
||
|
return upper_node;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
//*************************************************************************
|
||
|
/// Insert a node.
|
||
|
//*************************************************************************
|
||
|
Node* insert_node(Node*& position, Data_Node& node)
|
||
|
{
|
||
|
// Find the location where the node belongs
|
||
|
Node* found = position;
|
||
|
|
||
|
// Was position provided not empty? then find where the node belongs
|
||
|
if (position)
|
||
|
{
|
||
|
// Find the critical parent node (default to ETL_NULLPTR)
|
||
|
Node* critical_parent_node = ETL_NULLPTR;
|
||
|
Node* critical_node = root_node;
|
||
|
|
||
|
while (found)
|
||
|
{
|
||
|
// Search for critical weight node (all nodes whose weight factor
|
||
|
// is set to (uint_least8_t) kNeither (balanced)
|
||
|
if ((uint_least8_t) kNeither != found->weight)
|
||
|
{
|
||
|
critical_node = found;
|
||
|
}
|
||
|
|
||
|
// Downcast found to Data_Node class for comparison and other operations
|
||
|
Data_Node& found_data_node = imultimap::data_cast(*found);
|
||
|
|
||
|
// Is the node provided to the left of the current position?
|
||
|
if (node_comp(node, found_data_node))
|
||
|
{
|
||
|
// Update direction taken to insert new node in parent node
|
||
|
found->dir = (uint_least8_t) kLeft;
|
||
|
}
|
||
|
// Is the node provided to the right of the current position?
|
||
|
else if (node_comp(found_data_node, node))
|
||
|
{
|
||
|
// Update direction taken to insert new node in parent node
|
||
|
found->dir = (uint_least8_t) kRight;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
// Update direction taken to insert new node in parent (and
|
||
|
// duplicate) node to the right.
|
||
|
found->dir = (uint_least8_t) kRight;
|
||
|
}
|
||
|
|
||
|
// Is there a child of this parent node?
|
||
|
if (found->children[found->dir])
|
||
|
{
|
||
|
// Will this node be the parent of the next critical node whose
|
||
|
// weight factor is set to (uint_least8_t) kNeither (balanced)?
|
||
|
if ((uint_least8_t) kNeither != found->children[found->dir]->weight)
|
||
|
{
|
||
|
critical_parent_node = found;
|
||
|
}
|
||
|
|
||
|
// Keep looking for empty spot to insert new node
|
||
|
found = found->children[found->dir];
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
// Attach node as a child of the parent node found
|
||
|
attach_node(found, found->children[found->dir], node);
|
||
|
|
||
|
// Return newly added node
|
||
|
found = found->children[found->dir];
|
||
|
|
||
|
// Exit loop
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Was a critical node found that should be checked for balance?
|
||
|
if (critical_node)
|
||
|
{
|
||
|
if (critical_parent_node == ETL_NULLPTR && critical_node == root_node)
|
||
|
{
|
||
|
balance_node(root_node);
|
||
|
}
|
||
|
else if (critical_parent_node == ETL_NULLPTR && critical_node == position)
|
||
|
{
|
||
|
balance_node(position);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
if (critical_parent_node != ETL_NULLPTR)
|
||
|
{
|
||
|
balance_node(critical_parent_node->children[critical_parent_node->dir]);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
// Attach node to current position (which is assumed to be root)
|
||
|
attach_node(ETL_NULLPTR, position, node);
|
||
|
|
||
|
// Return newly added node at current position
|
||
|
found = position;
|
||
|
}
|
||
|
|
||
|
// Return the node found (might be ETL_NULLPTR)
|
||
|
return found;
|
||
|
}
|
||
|
|
||
|
//*************************************************************************
|
||
|
/// Remove the node specified from somewhere starting at the position
|
||
|
/// provided
|
||
|
//*************************************************************************
|
||
|
void remove_node(Node* node)
|
||
|
{
|
||
|
// If valid found node was provided then proceed with steps 1 through 5
|
||
|
if (node)
|
||
|
{
|
||
|
// Downcast found node provided to Data_Node class
|
||
|
Data_Node& data_node = imultimap::data_cast(*node);
|
||
|
|
||
|
// Keep track of node as found node
|
||
|
Node* found = node;
|
||
|
|
||
|
// Step 1: Mark path from node provided back to the root node using the
|
||
|
// internal temporary dir member value and using the parent pointer. This
|
||
|
// will allow us to avoid recursion in finding the node in a tree that
|
||
|
//might contain duplicate keys to be found.
|
||
|
while (node)
|
||
|
{
|
||
|
if (node->parent)
|
||
|
{
|
||
|
// Which direction does parent use to get to this node?
|
||
|
node->parent->dir =
|
||
|
node->parent->children[(uint_least8_t) kLeft] == node ? (uint_least8_t) kLeft : (uint_least8_t) kRight;
|
||
|
|
||
|
// Make this nodes parent the next node
|
||
|
node = node->parent;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
// Root node found - break loop
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Step 2: Follow the path provided above until we reach the node
|
||
|
// provided and look for the balance node to start rebalancing the tree
|
||
|
// from (up to the replacement node that will be found in step 3)
|
||
|
Node* balance = root_node;
|
||
|
while (node)
|
||
|
{
|
||
|
// Did we reach the node provided originally (found) then go to step 3
|
||
|
if (node == found)
|
||
|
{
|
||
|
// Update the direction towards a replacement node at the found node
|
||
|
node->dir = node->children[(uint_least8_t) kLeft] ? (uint_least8_t) kLeft : (uint_least8_t) kRight;
|
||
|
|
||
|
// Exit loop and proceed with step 3
|
||
|
break;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
// If this nodes weight is (uint_least8_t) kNeither or we are taking the shorter path
|
||
|
// to the next node and our sibling (on longer path) is balanced then
|
||
|
// we need to update the balance node to this node but all our
|
||
|
// ancestors will not require rebalancing
|
||
|
if ((node->weight == (uint_least8_t) kNeither) ||
|
||
|
(node->weight == (1 - node->dir) &&
|
||
|
node->children[1 - node->dir]->weight == (uint_least8_t) kNeither))
|
||
|
{
|
||
|
// Update balance node to this node
|
||
|
balance = node;
|
||
|
}
|
||
|
|
||
|
// Keep searching for found in the direction provided in step 1
|
||
|
node = node->children[node->dir];
|
||
|
}
|
||
|
}
|
||
|
// The value for node should not be ETL_NULLPTR at this point otherwise
|
||
|
// step 1 failed to provide the correct path to found. Step 5 will fail
|
||
|
// (probably subtly) if node should be ETL_NULLPTR at this point
|
||
|
|
||
|
// Step 3: Find the node (node should be equal to found at this point)
|
||
|
// to replace found with (might end up equal to found) while also
|
||
|
// continuing to update balance the same as in step 2 above.
|
||
|
while (node)
|
||
|
{
|
||
|
// Replacement node found if its missing a child in the replace->dir
|
||
|
// value set at the end of step 2 above
|
||
|
if (node->children[node->dir] == ETL_NULLPTR)
|
||
|
{
|
||
|
// Exit loop once node to replace found is determined
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
// If this nodes weight is (uint_least8_t) kNeither or we are taking the shorter path
|
||
|
// to the next node and our sibling (on longer path) is balanced then
|
||
|
// we need to update the balance node to this node but all our
|
||
|
// ancestors will not require rebalancing
|
||
|
if ((node->weight == (uint_least8_t) kNeither) ||
|
||
|
(node->weight == (1 - node->dir) &&
|
||
|
node->children[1 - node->dir]->weight == (uint_least8_t) kNeither))
|
||
|
{
|
||
|
// Update balance node to this node
|
||
|
balance = node;
|
||
|
}
|
||
|
|
||
|
// Keep searching for replacement node in the direction specified above
|
||
|
node = node->children[node->dir];
|
||
|
|
||
|
// Downcast node to Data_Node class for comparison operations
|
||
|
Data_Node& replace_data_node = imultimap::data_cast(*node);
|
||
|
|
||
|
// Compare the key provided to the replace data node key
|
||
|
if (node_comp(data_node, replace_data_node))
|
||
|
{
|
||
|
// Update the direction to the replace node
|
||
|
node->dir = (uint_least8_t) kLeft;
|
||
|
}
|
||
|
else if (node_comp(replace_data_node, data_node))
|
||
|
{
|
||
|
// Update the direction to the replace node
|
||
|
node->dir = (uint_least8_t) kRight;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
// Update the direction to the replace node
|
||
|
node->dir = node->children[(uint_least8_t) kLeft] ? (uint_least8_t) kLeft : (uint_least8_t) kRight;
|
||
|
}
|
||
|
} // while(node)
|
||
|
|
||
|
// Step 4: Update weights from balance to parent of node determined
|
||
|
// in step 3 above rotating (2 or 3 node rotations) as needed.
|
||
|
while (balance)
|
||
|
{
|
||
|
// Break when balance node reaches the parent of replacement node
|
||
|
if (balance->children[balance->dir] == ETL_NULLPTR)
|
||
|
{
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
// If balance node is balanced already ((uint_least8_t) kNeither) then just imbalance
|
||
|
// the node in the opposite direction of the node being removed
|
||
|
if (balance->weight == (uint_least8_t) kNeither)
|
||
|
{
|
||
|
balance->weight = 1 - balance->dir;
|
||
|
}
|
||
|
// If balance node is imbalanced in the opposite direction of the
|
||
|
// node being removed then the node now becomes balanced
|
||
|
else if (balance->weight == balance->dir)
|
||
|
{
|
||
|
balance->weight = (uint_least8_t) kNeither;
|
||
|
}
|
||
|
// Otherwise a rotation is required at this node
|
||
|
else
|
||
|
{
|
||
|
int weight = balance->children[1 - balance->dir]->weight;
|
||
|
// Perform a 3 node rotation if weight is same as balance->dir
|
||
|
if (weight == balance->dir)
|
||
|
{
|
||
|
// Is the root node being rebalanced (no parent)
|
||
|
if (balance->parent == ETL_NULLPTR)
|
||
|
{
|
||
|
rotate_3node(root_node, 1 - balance->dir,
|
||
|
balance->children[1 - balance->dir]->children[balance->dir]->weight);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
rotate_3node(balance->parent->children[balance->parent->dir], 1 - balance->dir,
|
||
|
balance->children[1 - balance->dir]->children[balance->dir]->weight);
|
||
|
}
|
||
|
}
|
||
|
// Already balanced, rebalance and make it heavy in opposite
|
||
|
// direction of the node being removed
|
||
|
else if (weight == (uint_least8_t) kNeither)
|
||
|
{
|
||
|
// Is the root node being rebalanced (no parent)
|
||
|
if (balance->parent == ETL_NULLPTR)
|
||
|
{
|
||
|
rotate_2node(root_node, 1 - balance->dir);
|
||
|
root_node->weight = balance->dir;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
// Balance parent might change during rotate, keep local copy
|
||
|
// to old parent so its weight can be updated after the 2 node
|
||
|
// rotate is completed
|
||
|
Node* old_parent = balance->parent;
|
||
|
rotate_2node(balance->parent->children[balance->parent->dir], 1 - balance->dir);
|
||
|
old_parent->children[old_parent->dir]->weight = balance->dir;
|
||
|
}
|
||
|
// Update balance node weight in opposite direction of node removed
|
||
|
balance->weight = 1 - balance->dir;
|
||
|
}
|
||
|
// Rebalance and leave it balanced
|
||
|
else
|
||
|
{
|
||
|
// Is the root node being rebalanced (no parent)
|
||
|
if (balance->parent == ETL_NULLPTR)
|
||
|
{
|
||
|
rotate_2node(root_node, 1 - balance->dir);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
rotate_2node(balance->parent->children[balance->parent->dir], 1 - balance->dir);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Next balance node to consider
|
||
|
balance = balance->children[balance->dir];
|
||
|
} // while(balance)
|
||
|
|
||
|
// Step 5: Swap found with node (replacement)
|
||
|
if (found->parent)
|
||
|
{
|
||
|
// Handle traditional case
|
||
|
detach_node(found->parent->children[found->parent->dir],
|
||
|
node->parent->children[node->parent->dir]);
|
||
|
}
|
||
|
// Handle root node removal
|
||
|
else
|
||
|
{
|
||
|
// Valid replacement node for root node being removed?
|
||
|
if (node->parent)
|
||
|
{
|
||
|
detach_node(root_node, node->parent->children[node->parent->dir]);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
// Found node and replacement node are both root node
|
||
|
detach_node(root_node, root_node);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// One less.
|
||
|
--current_size;
|
||
|
|
||
|
// Destroy the node detached above
|
||
|
destroy_data_node(data_node);
|
||
|
} // if(found)
|
||
|
}
|
||
|
|
||
|
// Disable copy construction.
|
||
|
imultimap(const imultimap&);
|
||
|
|
||
|
//*************************************************************************
|
||
|
/// Destructor.
|
||
|
//*************************************************************************
|
||
|
#if defined(ETL_POLYMORPHIC_MULTIMAP) || defined(ETL_POLYMORPHIC_CONTAINERS)
|
||
|
public:
|
||
|
virtual ~imultimap()
|
||
|
{
|
||
|
}
|
||
|
#else
|
||
|
protected:
|
||
|
~imultimap()
|
||
|
{
|
||
|
}
|
||
|
#endif
|
||
|
};
|
||
|
|
||
|
//*************************************************************************
|
||
|
/// A templated multimap implementation that uses a fixed size buffer.
|
||
|
//*************************************************************************
|
||
|
template <typename TKey, typename TValue, const size_t MAX_SIZE_, typename TCompare = etl::less<TKey> >
|
||
|
class multimap : public etl::imultimap<TKey, TValue, TCompare>
|
||
|
{
|
||
|
public:
|
||
|
|
||
|
static ETL_CONSTANT size_t MAX_SIZE = MAX_SIZE_;
|
||
|
|
||
|
//*************************************************************************
|
||
|
/// Default constructor.
|
||
|
//*************************************************************************
|
||
|
multimap()
|
||
|
: etl::imultimap<TKey, TValue, TCompare>(node_pool, MAX_SIZE)
|
||
|
{
|
||
|
this->initialise();
|
||
|
}
|
||
|
|
||
|
//*************************************************************************
|
||
|
/// Copy constructor.
|
||
|
//*************************************************************************
|
||
|
multimap(const multimap& other)
|
||
|
: etl::imultimap<TKey, TValue, TCompare>(node_pool, MAX_SIZE)
|
||
|
{
|
||
|
if (this != &other)
|
||
|
{
|
||
|
this->assign(other.cbegin(), other.cend());
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#if ETL_USING_CPP11
|
||
|
//*************************************************************************
|
||
|
/// Move constructor.
|
||
|
//*************************************************************************
|
||
|
multimap(multimap&& other)
|
||
|
: etl::imultimap<TKey, TValue, TCompare>(node_pool, MAX_SIZE)
|
||
|
{
|
||
|
if (this != &other)
|
||
|
{
|
||
|
typename etl::imultimap<TKey, TValue, TCompare>::iterator from = other.begin();
|
||
|
|
||
|
while (from != other.end())
|
||
|
{
|
||
|
typename etl::imultimap<TKey, TValue, TCompare>::iterator temp = from;
|
||
|
++temp;
|
||
|
|
||
|
this->insert(etl::move(*from));
|
||
|
from = temp;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
//*************************************************************************
|
||
|
/// Constructor, from an iterator range.
|
||
|
///\tparam TIterator The iterator type.
|
||
|
///\param first The iterator to the first element.
|
||
|
///\param last The iterator to the last element + 1.
|
||
|
//*************************************************************************
|
||
|
template <typename TIterator>
|
||
|
multimap(TIterator first, TIterator last)
|
||
|
: etl::imultimap<TKey, TValue, TCompare>(node_pool, MAX_SIZE)
|
||
|
{
|
||
|
this->assign(first, last);
|
||
|
}
|
||
|
|
||
|
#if ETL_HAS_INITIALIZER_LIST
|
||
|
//*************************************************************************
|
||
|
/// Constructor, from an initializer_list.
|
||
|
//*************************************************************************
|
||
|
multimap(std::initializer_list<typename etl::imultimap<TKey, TValue, TCompare>::value_type> init)
|
||
|
: etl::imultimap<TKey, TValue, TCompare>(node_pool, MAX_SIZE)
|
||
|
{
|
||
|
this->assign(init.begin(), init.end());
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
//*************************************************************************
|
||
|
/// Destructor.
|
||
|
//*************************************************************************
|
||
|
~multimap()
|
||
|
{
|
||
|
this->initialise();
|
||
|
}
|
||
|
|
||
|
//*************************************************************************
|
||
|
/// Assignment operator.
|
||
|
//*************************************************************************
|
||
|
multimap& operator = (const multimap& rhs)
|
||
|
{
|
||
|
// Skip if doing self assignment
|
||
|
if (this != &rhs)
|
||
|
{
|
||
|
this->assign(rhs.cbegin(), rhs.cend());
|
||
|
}
|
||
|
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
#if ETL_USING_CPP11
|
||
|
//*************************************************************************
|
||
|
/// Move assignment operator.
|
||
|
//*************************************************************************
|
||
|
multimap& operator = (multimap&& rhs)
|
||
|
{
|
||
|
if (this != &rhs)
|
||
|
{
|
||
|
typename etl::imultimap<TKey, TValue, TCompare>::iterator from = rhs.begin();
|
||
|
|
||
|
while (from != rhs.end())
|
||
|
{
|
||
|
typename etl::imultimap<TKey, TValue, TCompare>::iterator temp = from;
|
||
|
++temp;
|
||
|
|
||
|
this->insert(etl::move(*from));
|
||
|
from = temp;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return *this;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
private:
|
||
|
|
||
|
/// The pool of data nodes used for the multimap.
|
||
|
etl::pool<typename etl::imultimap<TKey, TValue, TCompare>::Data_Node, MAX_SIZE> node_pool;
|
||
|
};
|
||
|
|
||
|
template <typename TKey, typename TValue, const size_t MAX_SIZE_, typename TCompare>
|
||
|
ETL_CONSTANT size_t multimap<TKey, TValue, MAX_SIZE_, TCompare>::MAX_SIZE;
|
||
|
|
||
|
//*************************************************************************
|
||
|
/// Template deduction guides.
|
||
|
//*************************************************************************
|
||
|
#if ETL_USING_CPP17 && ETL_HAS_INITIALIZER_LIST
|
||
|
template <typename... TPairs>
|
||
|
multimap(TPairs...) -> multimap<typename etl::nth_type_t<0, TPairs...>::first_type,
|
||
|
typename etl::nth_type_t<0, TPairs...>::second_type,
|
||
|
sizeof...(TPairs)>;
|
||
|
#endif
|
||
|
|
||
|
//*************************************************************************
|
||
|
/// Make
|
||
|
//*************************************************************************
|
||
|
#if ETL_USING_CPP11 && ETL_HAS_INITIALIZER_LIST
|
||
|
template <typename TKey, typename TMapped, typename TKeyCompare = etl::less<TKey>, typename... TPairs>
|
||
|
constexpr auto make_multimap(TPairs&&... pairs) -> etl::multimap<TKey, TMapped, sizeof...(TPairs), TKeyCompare>
|
||
|
{
|
||
|
return { etl::forward<TPairs>(pairs)... };
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
//***************************************************************************
|
||
|
/// Equal operator.
|
||
|
///\param lhs Reference to the first lookup.
|
||
|
///\param rhs Reference to the second lookup.
|
||
|
///\return <b>true</b> if the arrays are equal, otherwise <b>false</b>
|
||
|
///\ingroup lookup
|
||
|
//***************************************************************************
|
||
|
template <typename TKey, typename TMapped, typename TKeyCompare>
|
||
|
bool operator ==(const etl::imultimap<TKey, TMapped, TKeyCompare>& lhs, const etl::imultimap<TKey, TMapped, TKeyCompare>& rhs)
|
||
|
{
|
||
|
return (lhs.size() == rhs.size()) && etl::equal(lhs.begin(), lhs.end(), rhs.begin());
|
||
|
}
|
||
|
|
||
|
//***************************************************************************
|
||
|
/// Not equal operator.
|
||
|
///\param lhs Reference to the first lookup.
|
||
|
///\param rhs Reference to the second lookup.
|
||
|
///\return <b>true</b> if the arrays are not equal, otherwise <b>false</b>
|
||
|
///\ingroup lookup
|
||
|
//***************************************************************************
|
||
|
template <typename TKey, typename TMapped, typename TKeyCompare>
|
||
|
bool operator !=(const etl::imultimap<TKey, TMapped, TKeyCompare>& lhs, const etl::imultimap<TKey, TMapped, TKeyCompare>& rhs)
|
||
|
{
|
||
|
return !(lhs == rhs);
|
||
|
}
|
||
|
|
||
|
//*************************************************************************
|
||
|
/// Less than operator.
|
||
|
///\param lhs Reference to the first list.
|
||
|
///\param rhs Reference to the second list.
|
||
|
///\return <b>true</b> if the first list is lexicographically less than the
|
||
|
/// second, otherwise <b>false</b>.
|
||
|
//*************************************************************************
|
||
|
template <typename TKey, typename TMapped, typename TKeyCompare>
|
||
|
bool operator <(const etl::imultimap<TKey, TMapped, TKeyCompare>& lhs, const etl::imultimap<TKey, TMapped, TKeyCompare>& rhs)
|
||
|
{
|
||
|
return etl::lexicographical_compare(lhs.begin(), lhs.end(), rhs.begin(), rhs.end());
|
||
|
}
|
||
|
|
||
|
//*************************************************************************
|
||
|
/// Greater than operator.
|
||
|
///\param lhs Reference to the first list.
|
||
|
///\param rhs Reference to the second list.
|
||
|
///\return <b>true</b> if the first list is lexicographically greater than the
|
||
|
/// second, otherwise <b>false</b>.
|
||
|
//*************************************************************************
|
||
|
template <typename TKey, typename TMapped, typename TKeyCompare>
|
||
|
bool operator >(const etl::imultimap<TKey, TMapped, TKeyCompare>& lhs, const etl::imultimap<TKey, TMapped, TKeyCompare>& rhs)
|
||
|
{
|
||
|
return (rhs < lhs);
|
||
|
}
|
||
|
|
||
|
//*************************************************************************
|
||
|
/// Less than or equal operator.
|
||
|
///\param lhs Reference to the first list.
|
||
|
///\param rhs Reference to the second list.
|
||
|
///\return <b>true</b> if the first list is lexicographically less than or equal
|
||
|
/// to the second, otherwise <b>false</b>.
|
||
|
//*************************************************************************
|
||
|
template <typename TKey, typename TMapped, typename TKeyCompare>
|
||
|
bool operator <=(const etl::imultimap<TKey, TMapped, TKeyCompare>& lhs, const etl::imultimap<TKey, TMapped, TKeyCompare>& rhs)
|
||
|
{
|
||
|
return !(lhs > rhs);
|
||
|
}
|
||
|
|
||
|
//*************************************************************************
|
||
|
/// Greater than or equal operator.
|
||
|
///\param lhs Reference to the first list.
|
||
|
///\param rhs Reference to the second list.
|
||
|
///\return <b>true</b> if the first list is lexicographically greater than or
|
||
|
/// equal to the second, otherwise <b>false</b>.
|
||
|
//*************************************************************************
|
||
|
template <typename TKey, typename TMapped, typename TKeyCompare>
|
||
|
bool operator >=(const etl::imultimap<TKey, TMapped, TKeyCompare>& lhs, const etl::imultimap<TKey, TMapped, TKeyCompare>& rhs)
|
||
|
{
|
||
|
return !(lhs < rhs);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#include "private/minmax_pop.h"
|
||
|
|
||
|
#endif
|