adapted temp sensor to use °C limits, doc added

This commit is contained in:
Robin Müller 2020-02-16 14:59:45 +01:00
parent d8ed5bb1c1
commit ddae9ee80f
2 changed files with 105 additions and 58 deletions

View File

@ -16,12 +16,13 @@ public:
uint16_t confirmationLimit, T lowerLimit, T upperLimit, uint16_t confirmationLimit, T lowerLimit, T upperLimit,
Event belowLowEvent = MonitoringIF::VALUE_BELOW_LOW_LIMIT, Event belowLowEvent = MonitoringIF::VALUE_BELOW_LOW_LIMIT,
Event aboveHighEvent = MonitoringIF::VALUE_ABOVE_HIGH_LIMIT) : Event aboveHighEvent = MonitoringIF::VALUE_ABOVE_HIGH_LIMIT) :
MonitorBase<T>(reporterId, monitorId, parameterId, confirmationLimit), lowerLimit( MonitorBase<T>(reporterId, monitorId, parameterId, confirmationLimit),
lowerLimit), upperLimit(upperLimit), belowLowEvent( lowerLimit(lowerLimit), upperLimit(upperLimit), belowLowEvent(belowLowEvent),
belowLowEvent), aboveHighEvent(aboveHighEvent) { aboveHighEvent(aboveHighEvent) {
}
virtual ~LimitMonitor() {
} }
virtual ~LimitMonitor() {}
virtual ReturnValue_t checkSample(T sample, T* crossedLimit) { virtual ReturnValue_t checkSample(T sample, T* crossedLimit) {
*crossedLimit = 0.0; *crossedLimit = 0.0;
if (sample > upperLimit) { if (sample > upperLimit) {

View File

@ -1,105 +1,142 @@
#ifndef TEMPERATURESENSOR_H_ #ifndef TEMPERATURESENSOR_H_
#define TEMPERATURESENSOR_H_ #define TEMPERATURESENSOR_H_
#include <framework/thermal/AbstractTemperatureSensor.h>
#include <framework/datapool/DataSet.h> #include <framework/datapool/DataSet.h>
#include "AbstractTemperatureSensor.h"
#include <framework/monitoring/LimitMonitor.h> #include <framework/monitoring/LimitMonitor.h>
/** /**
* @brief This building block handles non-linear value conversion and * @brief This building block handles non-linear value conversion and
* range checks for analog temperature sensors. * range checks for analog temperature sensors.
* @details HOW TO USE * @details This class can be used to perform all necessary tasks for temperature sensors.
* A sensor can be instantiated by calling the constructor.
* The temperature is calculated from an input value with
* the calculateOutputTemperature() function. Range checking and
* limit monitoring is performed automatically.
* *
* @ingroup thermal
*/ */
template<typename T> template<typename T>
class TemperatureSensor: public AbstractTemperatureSensor { class TemperatureSensor: public AbstractTemperatureSensor {
public: public:
/** /**
* What are a,b and c? * This structure contains parameters required for range checking
* and the conversion from the input value to the output temperature.
* a, b and c can be any parameters required to calculate the output
* temperature from the input value, for example parameters for the
* Callendar-Van-Dusen equation(see datasheet of used sensor / ADC)
*
* The parameters a,b and c are used in the calculateOutputTemperature() call.
*
* The lower and upper limits can be specified in °C or in the input value
* format
*/ */
struct Parameters { struct Parameters {
float a; float a;
float b; float b;
float c; float c;
T lowerLimit; float maxGradient;
T upperLimit;
float gradient;
}; };
/** /**
* How to use me. * Forward declaration for explicit instantiation of used parameters.
* @param setObjectid
* @param inputTemperature
* @param poolVariable
* @param vectorIndex
* @param parameters
* @param datapoolId
* @param outputSet
* @param thermalModule
*/ */
TemperatureSensor(object_id_t setObjectid,
T *inputTemperature, PoolVariableIF *poolVariable,
uint8_t vectorIndex, Parameters parameters, uint32_t datapoolId,
DataSet *outputSet, ThermalModuleIF *thermalModule) :
AbstractTemperatureSensor(setObjectid, thermalModule), parameters(parameters),
inputTemperature(inputTemperature), poolVariable(poolVariable),
outputTemperature(datapoolId, outputSet, PoolVariableIF::VAR_WRITE),
sensorMonitor(setObjectid, DOMAIN_ID_SENSOR,
DataPool::poolIdAndPositionToPid(poolVariable->getDataPoolId(), vectorIndex),
DEFAULT_CONFIRMATION_COUNT, parameters.lowerLimit,parameters.upperLimit,
TEMP_SENSOR_LOW, TEMP_SENSOR_HIGH),
oldTemperature(20), uptimeOfOldTemperature( { INVALID_TEMPERATURE, 0 }) {
}
struct UsedParameters { struct UsedParameters {
UsedParameters(Parameters parameters) : UsedParameters(Parameters parameters) :
a(parameters.a), b(parameters.b), c(parameters.c), a(parameters.a), b(parameters.b), c(parameters.c),
gradient(parameters.gradient) {} gradient(parameters.maxGradient) {}
float a; float a;
float b; float b;
float c; float c;
float gradient; float gradient;
}; };
static const uint16_t ADDRESS_A = 0; /**
static const uint16_t ADDRESS_B = 1; * Constructor to check against raw input values
static const uint16_t ADDRESS_C = 2; * @param setObjectid objectId of the sensor object
static const uint16_t ADDRESS_GRADIENT = 3; * @param inputValue Input value which is converted to a temperature
* @param poolVariable Pool Variable to store the temperature value
* @param vectorIndex Vector Index for the sensor monitor
* @param parameters Calculation parameters, temperature limits, gradient limit
* @param datapoolId Datapool ID of the output temperature
* @param outputSet Output dataset for the output temperature to fetch it with read()
* @param thermalModule respective thermal module, if it has one
*/
TemperatureSensor(object_id_t setObjectid,
T *inputValue, T lowerLimit, T upperLimit, PoolVariableIF *poolVariable,
uint8_t vectorIndex, uint32_t datapoolId, Parameters parameters = {0, 0, 0, 0},
DataSet *outputSet = NULL, ThermalModuleIF *thermalModule = NULL) :
AbstractTemperatureSensor(setObjectid, thermalModule), parameters(parameters),
inputValue(inputValue), poolVariable(poolVariable),
outputTemperature(datapoolId, outputSet, PoolVariableIF::VAR_WRITE),
oldTemperature(20), uptimeOfOldTemperature( { INVALID_TEMPERATURE, 0 })
{
sensorMonitorRaw = new LimitMonitor<T>(setObjectid, DOMAIN_ID_SENSOR,
DataPool::poolIdAndPositionToPid(poolVariable->getDataPoolId(), vectorIndex),
DEFAULT_CONFIRMATION_COUNT, lowerLimit, upperLimit,
TEMP_SENSOR_LOW, TEMP_SENSOR_HIGH);
delete sensorMonitor;
}
/**
* Constructor do check against °C values
*/
TemperatureSensor(object_id_t setObjectid,
T *inputValue, float lowerLimit, float upperLimit, PoolVariableIF *poolVariable,
uint8_t vectorIndex, uint32_t datapoolId, Parameters parameters = {0, 0, 0, 0},
DataSet *outputSet = NULL, ThermalModuleIF *thermalModule = NULL) :
AbstractTemperatureSensor(setObjectid, thermalModule), parameters(parameters),
inputValue(inputValue), poolVariable(poolVariable),
outputTemperature(datapoolId, outputSet, PoolVariableIF::VAR_WRITE),
oldTemperature(20), uptimeOfOldTemperature( { INVALID_TEMPERATURE, 0 })
{
sensorMonitor = new LimitMonitor<float>(setObjectid, DOMAIN_ID_SENSOR,
DataPool::poolIdAndPositionToPid(poolVariable->getDataPoolId(), vectorIndex),
DEFAULT_CONFIRMATION_COUNT, lowerLimit, upperLimit,
TEMP_SENSOR_LOW, TEMP_SENSOR_HIGH);
delete sensorMonitorRaw;
}
protected:
/**
* This formula is used to calculate the temperature from an input value
* with an arbitrary type.
* A default implementation is provided but can be replaced depending
* on the required calculation.
* @param inputTemperature
* @return
*/
virtual float calculateOutputTemperature(T inputValue) {
return parameters.a * inputValue * inputValue
+ parameters.b * inputValue + parameters.c;
}
static const uint16_t DEFAULT_CONFIRMATION_COUNT = 1; //!< Changed due to issue with later temperature checking even tough the sensor monitor was confirming already (Was 10 before with comment = Correlates to a 10s confirmation time. Chosen rather large, should not be so bad for components and helps survive glitches.)
static const uint8_t DOMAIN_ID_SENSOR = 1;
private: private:
void setInvalid() { void setInvalid() {
outputTemperature = INVALID_TEMPERATURE; outputTemperature = INVALID_TEMPERATURE;
outputTemperature.setValid(false); outputTemperature.setValid(false);
uptimeOfOldTemperature.tv_sec = INVALID_UPTIME; uptimeOfOldTemperature.tv_sec = INVALID_UPTIME;
sensorMonitor.setToInvalid(); sensorMonitor->setToInvalid();
} }
protected: protected:
static const int32_t INVALID_UPTIME = 0; static const int32_t INVALID_UPTIME = 0;
UsedParameters parameters; UsedParameters parameters;
T *inputTemperature; T * inputValue;
PoolVariableIF *poolVariable; PoolVariableIF *poolVariable;
PoolVariable<float> outputTemperature; PoolVariable<float> outputTemperature;
LimitMonitor<T> sensorMonitor; LimitMonitor<T> * sensorMonitorRaw;
LimitMonitor<float> * sensorMonitor;
float oldTemperature; float oldTemperature;
timeval uptimeOfOldTemperature; timeval uptimeOfOldTemperature;
virtual float calculateOutputTemperature(T inputTemperature) {
return parameters.a * inputTemperature * inputTemperature
+ parameters.b * inputTemperature + parameters.c;
}
void doChildOperation() { void doChildOperation() {
if (!poolVariable->isValid() if (!poolVariable->isValid()
|| !healthHelper.healthTable->isHealthy(getObjectId())) { || !healthHelper.healthTable->isHealthy(getObjectId())) {
@ -107,7 +144,7 @@ protected:
return; return;
} }
outputTemperature = calculateOutputTemperature(*inputTemperature); outputTemperature = calculateOutputTemperature(*inputValue);
outputTemperature.setValid(PoolVariableIF::VALID); outputTemperature.setValid(PoolVariableIF::VALID);
timeval uptime; timeval uptime;
@ -115,7 +152,7 @@ protected:
if (uptimeOfOldTemperature.tv_sec != INVALID_UPTIME) { if (uptimeOfOldTemperature.tv_sec != INVALID_UPTIME) {
//In theory, we could use an AbsValueMonitor to monitor the gradient. //In theory, we could use an AbsValueMonitor to monitor the gradient.
//But this would require storing the gradient in DP and quite some overhead. //But this would require storing the maxGradient in DP and quite some overhead.
//The concept of delta limits is a bit strange anyway. //The concept of delta limits is a bit strange anyway.
float deltaTime; float deltaTime;
float deltaTemp; float deltaTemp;
@ -133,10 +170,10 @@ protected:
} }
} }
//Check is done against raw limits. SHOULDDO: Why? Using °C would be more easy to handle. //Check is done against raw limits. SHOULDDO: Why? Using °C would be more easy to handle.
sensorMonitor.doCheck(*inputTemperature); sensorMonitor->doCheck(outputTemperature.value);
if (sensorMonitor.isOutOfLimits()) { if (sensorMonitor->isOutOfLimits()) {
uptimeOfOldTemperature.tv_sec = INVALID_UPTIME; uptimeOfOldTemperature.tv_sec = INVALID_UPTIME;
outputTemperature.setValid(PoolVariableIF::INVALID); outputTemperature.setValid(PoolVariableIF::INVALID);
outputTemperature = INVALID_TEMPERATURE; outputTemperature = INVALID_TEMPERATURE;
@ -155,10 +192,19 @@ public:
return outputTemperature.isValid(); return outputTemperature.isValid();
} }
static const uint16_t ADDRESS_A = 0;
static const uint16_t ADDRESS_B = 1;
static const uint16_t ADDRESS_C = 2;
static const uint16_t ADDRESS_GRADIENT = 3;
static const uint16_t DEFAULT_CONFIRMATION_COUNT = 1; //!< Changed due to issue with later temperature checking even tough the sensor monitor was confirming already (Was 10 before with comment = Correlates to a 10s confirmation time. Chosen rather large, should not be so bad for components and helps survive glitches.)
static const uint8_t DOMAIN_ID_SENSOR = 1;
virtual ReturnValue_t getParameter(uint8_t domainId, uint16_t parameterId, virtual ReturnValue_t getParameter(uint8_t domainId, uint16_t parameterId,
ParameterWrapper *parameterWrapper, ParameterWrapper *parameterWrapper,
const ParameterWrapper *newValues, uint16_t startAtIndex) { const ParameterWrapper *newValues, uint16_t startAtIndex) {
ReturnValue_t result = sensorMonitor.getParameter(domainId, parameterId, ReturnValue_t result = sensorMonitor->getParameter(domainId, parameterId,
parameterWrapper, newValues, startAtIndex); parameterWrapper, newValues, startAtIndex);
if (result != INVALID_DOMAIN_ID) { if (result != INVALID_DOMAIN_ID) {
return result; return result;
@ -186,7 +232,7 @@ public:
} }
virtual void resetOldState() { virtual void resetOldState() {
sensorMonitor.setToUnchecked(); sensorMonitor->setToUnchecked();
} }
}; };