Merge branch 'master' into mueller/ipc-updates
This commit is contained in:
commit
f3d42de399
@ -72,7 +72,11 @@ public:
|
||||
return tmp;
|
||||
}
|
||||
|
||||
T operator*() {
|
||||
T& operator*(){
|
||||
return *value;
|
||||
}
|
||||
|
||||
const T& operator*() const{
|
||||
return *value;
|
||||
}
|
||||
|
||||
|
@ -27,14 +27,27 @@ public:
|
||||
|
||||
/**
|
||||
* @brief Custom copy constructor which prevents setting the
|
||||
* underlying pointer wrong.
|
||||
* underlying pointer wrong. This function allocates memory!
|
||||
* @details This is a very heavy operation so try to avoid this!
|
||||
*
|
||||
*/
|
||||
DynamicFIFO(const DynamicFIFO& other): FIFOBase<T>(other),
|
||||
fifoVector(other.maxCapacity) {
|
||||
this->fifoVector = other.fifoVector;
|
||||
this->setContainer(fifoVector.data());
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* @brief Custom assignment operator
|
||||
* @details This is a very heavy operation so try to avoid this!
|
||||
* @param other DyamicFIFO to copy from
|
||||
*/
|
||||
DynamicFIFO& operator=(const DynamicFIFO& other){
|
||||
FIFOBase<T>::operator=(other);
|
||||
this->fifoVector = other.fifoVector;
|
||||
this->setContainer(fifoVector.data());
|
||||
return *this;
|
||||
}
|
||||
private:
|
||||
std::vector<T> fifoVector;
|
||||
};
|
||||
|
@ -25,9 +25,21 @@ public:
|
||||
* @param other
|
||||
*/
|
||||
FIFO(const FIFO& other): FIFOBase<T>(other) {
|
||||
this->fifoArray = other.fifoArray;
|
||||
this->setContainer(fifoArray.data());
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Custom assignment operator
|
||||
* @param other
|
||||
*/
|
||||
FIFO& operator=(const FIFO& other){
|
||||
FIFOBase<T>::operator=(other);
|
||||
this->fifoArray = other.fifoArray;
|
||||
this->setContainer(fifoArray.data());
|
||||
return *this;
|
||||
}
|
||||
|
||||
private:
|
||||
std::array<T, capacity> fifoArray;
|
||||
};
|
||||
|
@ -1,15 +1,20 @@
|
||||
#ifndef FIXEDMAP_H_
|
||||
#define FIXEDMAP_H_
|
||||
#ifndef FSFW_CONTAINER_FIXEDMAP_H_
|
||||
#define FSFW_CONTAINER_FIXEDMAP_H_
|
||||
|
||||
#include "ArrayList.h"
|
||||
#include "../returnvalues/HasReturnvaluesIF.h"
|
||||
#include <utility>
|
||||
#include <type_traits>
|
||||
|
||||
/**
|
||||
* \ingroup container
|
||||
* @warning Iterators return a non-const key_t in the pair.
|
||||
* @warning A User is not allowed to change the key, otherwise the map is corrupted.
|
||||
* @ingroup container
|
||||
*/
|
||||
template<typename key_t, typename T>
|
||||
class FixedMap: public SerializeIF {
|
||||
static_assert (std::is_trivially_copyable<T>::value or std::is_base_of<SerializeIF, T>::value,
|
||||
"Types used in FixedMap must either be trivial copy-able or a derived Class from SerializeIF to be serialize-able");
|
||||
public:
|
||||
static const uint8_t INTERFACE_ID = CLASS_ID::FIXED_MAP;
|
||||
static const ReturnValue_t KEY_ALREADY_EXISTS = MAKE_RETURN_CODE(0x01);
|
||||
@ -47,15 +52,6 @@ public:
|
||||
Iterator(std::pair<key_t, T> *pair) :
|
||||
ArrayList<std::pair<key_t, T>, uint32_t>::Iterator(pair) {
|
||||
}
|
||||
|
||||
T operator*() {
|
||||
return ArrayList<std::pair<key_t, T>, uint32_t>::Iterator::value->second;
|
||||
}
|
||||
|
||||
T *operator->() {
|
||||
return &ArrayList<std::pair<key_t, T>, uint32_t>::Iterator::value->second;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
Iterator begin() const {
|
||||
@ -70,7 +66,7 @@ public:
|
||||
return _size;
|
||||
}
|
||||
|
||||
ReturnValue_t insert(key_t key, T value, Iterator *storedValue = NULL) {
|
||||
ReturnValue_t insert(key_t key, T value, Iterator *storedValue = nullptr) {
|
||||
if (exists(key) == HasReturnvaluesIF::RETURN_OK) {
|
||||
return KEY_ALREADY_EXISTS;
|
||||
}
|
||||
@ -79,7 +75,7 @@ public:
|
||||
}
|
||||
theMap[_size].first = key;
|
||||
theMap[_size].second = value;
|
||||
if (storedValue != NULL) {
|
||||
if (storedValue != nullptr) {
|
||||
*storedValue = Iterator(&theMap[_size]);
|
||||
}
|
||||
++_size;
|
||||
@ -87,7 +83,7 @@ public:
|
||||
}
|
||||
|
||||
ReturnValue_t insert(std::pair<key_t, T> pair) {
|
||||
return insert(pair.fist, pair.second);
|
||||
return insert(pair.first, pair.second);
|
||||
}
|
||||
|
||||
ReturnValue_t exists(key_t key) const {
|
||||
@ -196,4 +192,4 @@ public:
|
||||
|
||||
};
|
||||
|
||||
#endif /* FIXEDMAP_H_ */
|
||||
#endif /* FSFW_CONTAINER_FIXEDMAP_H_ */
|
||||
|
@ -48,7 +48,7 @@ private:
|
||||
if (_size <= position) {
|
||||
return;
|
||||
}
|
||||
memmove(&theMap[position], &theMap[position + 1],
|
||||
memmove(static_cast<void*>(&theMap[position]), static_cast<void*>(&theMap[position + 1]),
|
||||
(_size - position - 1) * sizeof(std::pair<key_t,T>));
|
||||
--_size;
|
||||
}
|
||||
@ -68,15 +68,6 @@ public:
|
||||
Iterator(std::pair<key_t, T> *pair) :
|
||||
ArrayList<std::pair<key_t, T>, uint32_t>::Iterator(pair) {
|
||||
}
|
||||
|
||||
T operator*() {
|
||||
return ArrayList<std::pair<key_t, T>, uint32_t>::Iterator::value->second;
|
||||
}
|
||||
|
||||
T *operator->() {
|
||||
return &ArrayList<std::pair<key_t, T>, uint32_t>::Iterator::value->second;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
Iterator begin() const {
|
||||
@ -91,17 +82,17 @@ public:
|
||||
return _size;
|
||||
}
|
||||
|
||||
ReturnValue_t insert(key_t key, T value, Iterator *storedValue = NULL) {
|
||||
ReturnValue_t insert(key_t key, T value, Iterator *storedValue = nullptr) {
|
||||
if (_size == theMap.maxSize()) {
|
||||
return MAP_FULL;
|
||||
}
|
||||
uint32_t position = findNicePlace(key);
|
||||
memmove(&theMap[position + 1], &theMap[position],
|
||||
memmove(static_cast<void*>(&theMap[position + 1]),static_cast<void*>(&theMap[position]),
|
||||
(_size - position) * sizeof(std::pair<key_t,T>));
|
||||
theMap[position].first = key;
|
||||
theMap[position].second = value;
|
||||
++_size;
|
||||
if (storedValue != NULL) {
|
||||
if (storedValue != nullptr) {
|
||||
*storedValue = Iterator(&theMap[position]);
|
||||
}
|
||||
return HasReturnvaluesIF::RETURN_OK;
|
||||
@ -145,12 +136,6 @@ public:
|
||||
return HasReturnvaluesIF::RETURN_OK;
|
||||
}
|
||||
|
||||
//This is potentially unsafe
|
||||
// T *findValue(key_t key) const {
|
||||
// return &theMap[findFirstIndex(key)].second;
|
||||
// }
|
||||
|
||||
|
||||
Iterator find(key_t key) const {
|
||||
ReturnValue_t result = exists(key);
|
||||
if (result != HasReturnvaluesIF::RETURN_OK) {
|
||||
|
@ -1,41 +0,0 @@
|
||||
#ifndef ISDERIVEDFROM_H_
|
||||
#define ISDERIVEDFROM_H_
|
||||
|
||||
template<typename D, typename B>
|
||||
class IsDerivedFrom {
|
||||
class No {
|
||||
};
|
||||
class Yes {
|
||||
No no[3];
|
||||
};
|
||||
|
||||
static Yes Test(B*); // declared, but not defined
|
||||
static No Test(... ); // declared, but not defined
|
||||
|
||||
public:
|
||||
enum {
|
||||
Is = sizeof(Test(static_cast<D*>(0))) == sizeof(Yes)
|
||||
};
|
||||
};
|
||||
|
||||
template<typename, typename>
|
||||
struct is_same {
|
||||
static bool const value = false;
|
||||
};
|
||||
|
||||
template<typename A>
|
||||
struct is_same<A, A> {
|
||||
static bool const value = true;
|
||||
};
|
||||
|
||||
|
||||
template<bool C, typename T = void>
|
||||
struct enable_if {
|
||||
typedef T type;
|
||||
};
|
||||
|
||||
template<typename T>
|
||||
struct enable_if<false, T> { };
|
||||
|
||||
|
||||
#endif /* ISDERIVEDFROM_H_ */
|
@ -1,95 +1,124 @@
|
||||
#include "DleEncoder.h"
|
||||
#include "../globalfunctions/DleEncoder.h"
|
||||
|
||||
DleEncoder::DleEncoder() {
|
||||
DleEncoder::DleEncoder() {}
|
||||
|
||||
DleEncoder::~DleEncoder() {}
|
||||
|
||||
ReturnValue_t DleEncoder::encode(const uint8_t* sourceStream,
|
||||
size_t sourceLen, uint8_t* destStream, size_t maxDestLen,
|
||||
size_t* encodedLen, bool addStxEtx) {
|
||||
if (maxDestLen < 2) {
|
||||
return STREAM_TOO_SHORT;
|
||||
}
|
||||
size_t encodedIndex = 0, sourceIndex = 0;
|
||||
uint8_t nextByte;
|
||||
if (addStxEtx) {
|
||||
destStream[0] = STX_CHAR;
|
||||
++encodedIndex;
|
||||
}
|
||||
|
||||
DleEncoder::~DleEncoder() {
|
||||
while (encodedIndex < maxDestLen and sourceIndex < sourceLen)
|
||||
{
|
||||
nextByte = sourceStream[sourceIndex];
|
||||
// STX, ETX and CR characters in the stream need to be escaped with DLE
|
||||
if (nextByte == STX_CHAR or nextByte == ETX_CHAR or nextByte == CARRIAGE_RETURN) {
|
||||
if (encodedIndex + 1 >= maxDestLen) {
|
||||
return STREAM_TOO_SHORT;
|
||||
}
|
||||
else {
|
||||
destStream[encodedIndex] = DLE_CHAR;
|
||||
++encodedIndex;
|
||||
/* Escaped byte will be actual byte + 0x40. This prevents
|
||||
* STX, ETX, and carriage return characters from appearing
|
||||
* in the encoded data stream at all, so when polling an
|
||||
* encoded stream, the transmission can be stopped at ETX.
|
||||
* 0x40 was chosen at random with special requirements:
|
||||
* - Prevent going from one control char to another
|
||||
* - Prevent overflow for common characters */
|
||||
destStream[encodedIndex] = nextByte + 0x40;
|
||||
}
|
||||
}
|
||||
// DLE characters are simply escaped with DLE.
|
||||
else if (nextByte == DLE_CHAR) {
|
||||
if (encodedIndex + 1 >= maxDestLen) {
|
||||
return STREAM_TOO_SHORT;
|
||||
}
|
||||
else {
|
||||
destStream[encodedIndex] = DLE_CHAR;
|
||||
++encodedIndex;
|
||||
destStream[encodedIndex] = DLE_CHAR;
|
||||
}
|
||||
}
|
||||
else {
|
||||
destStream[encodedIndex] = nextByte;
|
||||
}
|
||||
++encodedIndex;
|
||||
++sourceIndex;
|
||||
}
|
||||
|
||||
if (sourceIndex == sourceLen and encodedIndex < maxDestLen) {
|
||||
if (addStxEtx) {
|
||||
destStream[encodedIndex] = ETX_CHAR;
|
||||
++encodedIndex;
|
||||
}
|
||||
*encodedLen = encodedIndex;
|
||||
return RETURN_OK;
|
||||
}
|
||||
else {
|
||||
return STREAM_TOO_SHORT;
|
||||
}
|
||||
}
|
||||
|
||||
ReturnValue_t DleEncoder::decode(const uint8_t *sourceStream,
|
||||
uint32_t sourceStreamLen, uint32_t *readLen, uint8_t *destStream,
|
||||
uint32_t maxDestStreamlen, uint32_t *decodedLen) {
|
||||
uint32_t encodedIndex = 0, decodedIndex = 0;
|
||||
size_t sourceStreamLen, size_t *readLen, uint8_t *destStream,
|
||||
size_t maxDestStreamlen, size_t *decodedLen) {
|
||||
size_t encodedIndex = 0, decodedIndex = 0;
|
||||
uint8_t nextByte;
|
||||
if (*sourceStream != STX) {
|
||||
return RETURN_FAILED;
|
||||
if (*sourceStream != STX_CHAR) {
|
||||
return DECODING_ERROR;
|
||||
}
|
||||
++encodedIndex;
|
||||
|
||||
while ((encodedIndex < sourceStreamLen) && (decodedIndex < maxDestStreamlen)
|
||||
&& (sourceStream[encodedIndex] != ETX)
|
||||
&& (sourceStream[encodedIndex] != STX)) {
|
||||
if (sourceStream[encodedIndex] == DLE) {
|
||||
&& (sourceStream[encodedIndex] != ETX_CHAR)
|
||||
&& (sourceStream[encodedIndex] != STX_CHAR)) {
|
||||
if (sourceStream[encodedIndex] == DLE_CHAR) {
|
||||
nextByte = sourceStream[encodedIndex + 1];
|
||||
if (nextByte == 0x10) {
|
||||
// The next byte is a DLE character that was escaped by another
|
||||
// DLE character, so we can write it to the destination stream.
|
||||
if (nextByte == DLE_CHAR) {
|
||||
destStream[decodedIndex] = nextByte;
|
||||
} else {
|
||||
if ((nextByte == 0x42) || (nextByte == 0x43)
|
||||
|| (nextByte == 0x4D)) {
|
||||
}
|
||||
else {
|
||||
/* The next byte is a STX, DTX or 0x0D character which
|
||||
* was escaped by a DLE character. The actual byte was
|
||||
* also encoded by adding + 0x40 to prevent having control chars,
|
||||
* in the stream at all, so we convert it back. */
|
||||
if (nextByte == 0x42 or nextByte == 0x43 or nextByte == 0x4D) {
|
||||
destStream[decodedIndex] = nextByte - 0x40;
|
||||
} else {
|
||||
return RETURN_FAILED;
|
||||
}
|
||||
else {
|
||||
return DECODING_ERROR;
|
||||
}
|
||||
}
|
||||
++encodedIndex;
|
||||
} else {
|
||||
}
|
||||
else {
|
||||
destStream[decodedIndex] = sourceStream[encodedIndex];
|
||||
}
|
||||
|
||||
++encodedIndex;
|
||||
++decodedIndex;
|
||||
}
|
||||
if (sourceStream[encodedIndex] != ETX) {
|
||||
return RETURN_FAILED;
|
||||
} else {
|
||||
|
||||
if (sourceStream[encodedIndex] != ETX_CHAR) {
|
||||
*readLen = ++encodedIndex;
|
||||
return DECODING_ERROR;
|
||||
}
|
||||
else {
|
||||
*readLen = ++encodedIndex;
|
||||
*decodedLen = decodedIndex;
|
||||
return RETURN_OK;
|
||||
}
|
||||
}
|
||||
|
||||
ReturnValue_t DleEncoder::encode(const uint8_t* sourceStream,
|
||||
uint32_t sourceLen, uint8_t* destStream, uint32_t maxDestLen,
|
||||
uint32_t* encodedLen, bool addStxEtx) {
|
||||
if (maxDestLen < 2) {
|
||||
return RETURN_FAILED;
|
||||
}
|
||||
uint32_t encodedIndex = 0, sourceIndex = 0;
|
||||
uint8_t nextByte;
|
||||
if (addStxEtx) {
|
||||
destStream[0] = STX;
|
||||
++encodedIndex;
|
||||
}
|
||||
while ((encodedIndex < maxDestLen) && (sourceIndex < sourceLen)) {
|
||||
nextByte = sourceStream[sourceIndex];
|
||||
if ((nextByte == STX) || (nextByte == ETX) || (nextByte == 0x0D)) {
|
||||
if (encodedIndex + 1 >= maxDestLen) {
|
||||
return RETURN_FAILED;
|
||||
} else {
|
||||
destStream[encodedIndex] = DLE;
|
||||
++encodedIndex;
|
||||
destStream[encodedIndex] = nextByte + 0x40;
|
||||
}
|
||||
} else if (nextByte == DLE) {
|
||||
if (encodedIndex + 1 >= maxDestLen) {
|
||||
return RETURN_FAILED;
|
||||
} else {
|
||||
destStream[encodedIndex] = DLE;
|
||||
++encodedIndex;
|
||||
destStream[encodedIndex] = DLE;
|
||||
}
|
||||
} else {
|
||||
destStream[encodedIndex] = nextByte;
|
||||
}
|
||||
++encodedIndex;
|
||||
++sourceIndex;
|
||||
}
|
||||
if ((sourceIndex == sourceLen) && (encodedIndex < maxDestLen)) {
|
||||
if (addStxEtx) {
|
||||
destStream[encodedIndex] = ETX;
|
||||
++encodedIndex;
|
||||
}
|
||||
*encodedLen = encodedIndex;
|
||||
return RETURN_OK;
|
||||
} else {
|
||||
return RETURN_FAILED;
|
||||
}
|
||||
}
|
||||
|
@ -1,25 +1,79 @@
|
||||
#ifndef DLEENCODER_H_
|
||||
#define DLEENCODER_H_
|
||||
#ifndef FRAMEWORK_GLOBALFUNCTIONS_DLEENCODER_H_
|
||||
#define FRAMEWORK_GLOBALFUNCTIONS_DLEENCODER_H_
|
||||
|
||||
#include "../returnvalues/HasReturnvaluesIF.h"
|
||||
#include <cstddef>
|
||||
|
||||
/**
|
||||
* @brief This DLE Encoder (Data Link Encoder) can be used to encode and
|
||||
* decode arbitrary data with ASCII control characters
|
||||
* @details
|
||||
* List of control codes:
|
||||
* https://en.wikipedia.org/wiki/C0_and_C1_control_codes
|
||||
*
|
||||
* This encoder can be used to achieve a basic transport layer when using
|
||||
* char based transmission systems.
|
||||
* The passed source strean is converted into a encoded stream by adding
|
||||
* a STX marker at the start of the stream and an ETX marker at the end of
|
||||
* the stream. Any STX, ETX, DLE and CR occurrences in the source stream are
|
||||
* escaped by a DLE character. The encoder also replaces escaped control chars
|
||||
* by another char, so STX, ETX and CR should not appear anywhere in the actual
|
||||
* encoded data stream.
|
||||
*
|
||||
* When using a strictly char based reception of packets encoded with DLE,
|
||||
* STX can be used to notify a reader that actual data will start to arrive
|
||||
* while ETX can be used to notify the reader that the data has ended.
|
||||
*/
|
||||
class DleEncoder: public HasReturnvaluesIF {
|
||||
private:
|
||||
DleEncoder();
|
||||
virtual ~DleEncoder();
|
||||
|
||||
public:
|
||||
static const uint8_t STX = 0x02;
|
||||
static const uint8_t ETX = 0x03;
|
||||
static const uint8_t DLE = 0x10;
|
||||
static constexpr uint8_t INTERFACE_ID = CLASS_ID::DLE_ENCODER;
|
||||
static constexpr ReturnValue_t STREAM_TOO_SHORT = MAKE_RETURN_CODE(0x01);
|
||||
static constexpr ReturnValue_t DECODING_ERROR = MAKE_RETURN_CODE(0x02);
|
||||
|
||||
static ReturnValue_t decode(const uint8_t *sourceStream,
|
||||
uint32_t sourceStreamLen, uint32_t *readLen, uint8_t *destStream,
|
||||
uint32_t maxDestStreamlen, uint32_t *decodedLen);
|
||||
//! Start Of Text character. First character is encoded stream
|
||||
static constexpr uint8_t STX_CHAR = 0x02;
|
||||
//! End Of Text character. Last character in encoded stream
|
||||
static constexpr uint8_t ETX_CHAR = 0x03;
|
||||
//! Data Link Escape character. Used to escape STX, ETX and DLE occurrences
|
||||
//! in the source stream.
|
||||
static constexpr uint8_t DLE_CHAR = 0x10;
|
||||
static constexpr uint8_t CARRIAGE_RETURN = 0x0D;
|
||||
|
||||
static ReturnValue_t encode(const uint8_t *sourceStream, uint32_t sourceLen,
|
||||
uint8_t *destStream, uint32_t maxDestLen, uint32_t *encodedLen,
|
||||
/**
|
||||
* Encodes the give data stream by preceding it with the STX marker
|
||||
* and ending it with an ETX marker. STX, ETX and DLE characters inside
|
||||
* the stream are escaped by DLE characters and also replaced by adding
|
||||
* 0x40 (which is reverted in the decoding process).
|
||||
* @param sourceStream
|
||||
* @param sourceLen
|
||||
* @param destStream
|
||||
* @param maxDestLen
|
||||
* @param encodedLen
|
||||
* @param addStxEtx
|
||||
* Adding STX and ETX can be omitted, if they are added manually.
|
||||
* @return
|
||||
*/
|
||||
static ReturnValue_t encode(const uint8_t *sourceStream, size_t sourceLen,
|
||||
uint8_t *destStream, size_t maxDestLen, size_t *encodedLen,
|
||||
bool addStxEtx = true);
|
||||
|
||||
/**
|
||||
* Converts an encoded stream back.
|
||||
* @param sourceStream
|
||||
* @param sourceStreamLen
|
||||
* @param readLen
|
||||
* @param destStream
|
||||
* @param maxDestStreamlen
|
||||
* @param decodedLen
|
||||
* @return
|
||||
*/
|
||||
static ReturnValue_t decode(const uint8_t *sourceStream,
|
||||
size_t sourceStreamLen, size_t *readLen, uint8_t *destStream,
|
||||
size_t maxDestStreamlen, size_t *decodedLen);
|
||||
};
|
||||
|
||||
#endif /* DLEENCODER_H_ */
|
||||
#endif /* FRAMEWORK_GLOBALFUNCTIONS_DLEENCODER_H_ */
|
||||
|
34
globalfunctions/PeriodicOperationDivider.cpp
Normal file
34
globalfunctions/PeriodicOperationDivider.cpp
Normal file
@ -0,0 +1,34 @@
|
||||
#include "PeriodicOperationDivider.h"
|
||||
|
||||
|
||||
PeriodicOperationDivider::PeriodicOperationDivider(uint32_t divider,
|
||||
bool resetAutomatically): resetAutomatically(resetAutomatically),
|
||||
counter(divider), divider(divider) {
|
||||
}
|
||||
|
||||
bool PeriodicOperationDivider::checkAndIncrement() {
|
||||
if(counter >= divider) {
|
||||
if(resetAutomatically) {
|
||||
counter = 0;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
counter ++;
|
||||
return false;
|
||||
}
|
||||
|
||||
void PeriodicOperationDivider::resetCounter() {
|
||||
counter = 0;
|
||||
}
|
||||
|
||||
void PeriodicOperationDivider::setDivider(uint32_t newDivider) {
|
||||
divider = newDivider;
|
||||
}
|
||||
|
||||
uint32_t PeriodicOperationDivider::getCounter() const {
|
||||
return counter;
|
||||
}
|
||||
|
||||
uint32_t PeriodicOperationDivider::getDivider() const {
|
||||
return divider;
|
||||
}
|
55
globalfunctions/PeriodicOperationDivider.h
Normal file
55
globalfunctions/PeriodicOperationDivider.h
Normal file
@ -0,0 +1,55 @@
|
||||
#ifndef FSFW_GLOBALFUNCTIONS_PERIODICOPERATIONDIVIDER_H_
|
||||
#define FSFW_GLOBALFUNCTIONS_PERIODICOPERATIONDIVIDER_H_
|
||||
|
||||
#include <cstdint>
|
||||
|
||||
/**
|
||||
* @brief Lightweight helper class to facilitate periodic operation with
|
||||
* decreased frequencies.
|
||||
* @details
|
||||
* This class is useful to perform operations which have to be performed
|
||||
* with a reduced frequency, like debugging printouts in high periodic tasks
|
||||
* or low priority operations.
|
||||
*/
|
||||
class PeriodicOperationDivider {
|
||||
public:
|
||||
/**
|
||||
* Initialize with the desired divider and specify whether the internal
|
||||
* counter will be reset automatically.
|
||||
* @param divider
|
||||
* @param resetAutomatically
|
||||
*/
|
||||
PeriodicOperationDivider(uint32_t divider, bool resetAutomatically = true);
|
||||
|
||||
/**
|
||||
* Check whether operation is necessary.
|
||||
* If an operation is necessary and the class has been
|
||||
* configured to be reset automatically, the counter will be reset.
|
||||
* If not, the counter will be incremented.
|
||||
* @return
|
||||
* -@c true if the counter is larger or equal to the divider
|
||||
* -@c false otherwise
|
||||
*/
|
||||
bool checkAndIncrement();
|
||||
|
||||
/**
|
||||
* Can be used to reset the counter to 0 manually.
|
||||
*/
|
||||
void resetCounter();
|
||||
uint32_t getCounter() const;
|
||||
|
||||
/**
|
||||
* Can be used to set a new divider value.
|
||||
* @param newDivider
|
||||
*/
|
||||
void setDivider(uint32_t newDivider);
|
||||
uint32_t getDivider() const;
|
||||
private:
|
||||
bool resetAutomatically = true;
|
||||
uint32_t counter = 0;
|
||||
uint32_t divider = 0;
|
||||
};
|
||||
|
||||
|
||||
|
||||
#endif /* FSFW_GLOBALFUNCTIONS_PERIODICOPERATIONDIVIDER_H_ */
|
@ -1,9 +1,8 @@
|
||||
#include "HealthHelper.h"
|
||||
#include "../ipc/MessageQueueSenderIF.h"
|
||||
#include "../serviceinterface/ServiceInterfaceStream.h"
|
||||
|
||||
HealthHelper::HealthHelper(HasHealthIF* owner, object_id_t objectId) :
|
||||
healthTable(NULL), eventSender(NULL), objectId(objectId), parentQueue(
|
||||
0), owner(owner) {
|
||||
objectId(objectId), owner(owner) {
|
||||
}
|
||||
|
||||
HealthHelper::~HealthHelper() {
|
||||
@ -40,9 +39,19 @@ void HealthHelper::setParentQueue(MessageQueueId_t parentQueue) {
|
||||
ReturnValue_t HealthHelper::initialize() {
|
||||
healthTable = objectManager->get<HealthTableIF>(objects::HEALTH_TABLE);
|
||||
eventSender = objectManager->get<EventReportingProxyIF>(objectId);
|
||||
if ((healthTable == NULL) || eventSender == NULL) {
|
||||
return HasReturnvaluesIF::RETURN_FAILED;
|
||||
|
||||
if (healthTable == nullptr) {
|
||||
sif::error << "HealthHelper::initialize: Health table object needs"
|
||||
"to be created in factory." << std::endl;
|
||||
return ObjectManagerIF::CHILD_INIT_FAILED;
|
||||
}
|
||||
|
||||
if(eventSender == nullptr) {
|
||||
sif::error << "HealthHelper::initialize: Owner has to implement "
|
||||
"ReportingProxyIF." << std::endl;
|
||||
return ObjectManagerIF::CHILD_INIT_FAILED;
|
||||
}
|
||||
|
||||
ReturnValue_t result = healthTable->registerObject(objectId,
|
||||
HasHealthIF::HEALTHY);
|
||||
if (result != HasReturnvaluesIF::RETURN_OK) {
|
||||
@ -62,22 +71,22 @@ void HealthHelper::setHealth(HasHealthIF::HealthState health) {
|
||||
|
||||
void HealthHelper::informParent(HasHealthIF::HealthState health,
|
||||
HasHealthIF::HealthState oldHealth) {
|
||||
if (parentQueue == 0) {
|
||||
if (parentQueue == MessageQueueIF::NO_QUEUE) {
|
||||
return;
|
||||
}
|
||||
CommandMessage message;
|
||||
HealthMessage::setHealthMessage(&message, HealthMessage::HEALTH_INFO,
|
||||
CommandMessage information;
|
||||
HealthMessage::setHealthMessage(&information, HealthMessage::HEALTH_INFO,
|
||||
health, oldHealth);
|
||||
if (MessageQueueSenderIF::sendMessage(parentQueue, &message,
|
||||
if (MessageQueueSenderIF::sendMessage(parentQueue, &information,
|
||||
owner->getCommandQueue()) != HasReturnvaluesIF::RETURN_OK) {
|
||||
sif::debug << "HealthHelper::informParent: sending health reply failed."
|
||||
<< std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
void HealthHelper::handleSetHealthCommand(CommandMessage* message) {
|
||||
ReturnValue_t result = owner->setHealth(HealthMessage::getHealth(message));
|
||||
if (message->getSender() == 0) {
|
||||
void HealthHelper::handleSetHealthCommand(CommandMessage* command) {
|
||||
ReturnValue_t result = owner->setHealth(HealthMessage::getHealth(command));
|
||||
if (command->getSender() == MessageQueueIF::NO_QUEUE) {
|
||||
return;
|
||||
}
|
||||
CommandMessage reply;
|
||||
@ -85,12 +94,12 @@ void HealthHelper::handleSetHealthCommand(CommandMessage* message) {
|
||||
HealthMessage::setHealthMessage(&reply,
|
||||
HealthMessage::REPLY_HEALTH_SET);
|
||||
} else {
|
||||
reply.setReplyRejected(result, message->getCommand());
|
||||
reply.setReplyRejected(result, command->getCommand());
|
||||
}
|
||||
if (MessageQueueSenderIF::sendMessage(message->getSender(), &reply,
|
||||
if (MessageQueueSenderIF::sendMessage(command->getSender(), &reply,
|
||||
owner->getCommandQueue()) != HasReturnvaluesIF::RETURN_OK) {
|
||||
sif::debug
|
||||
<< "HealthHelper::handleHealthCommand: sending health reply failed."
|
||||
<< std::endl;
|
||||
sif::debug << "HealthHelper::handleHealthCommand: sending health "
|
||||
"reply failed." << std::endl;
|
||||
|
||||
}
|
||||
}
|
||||
|
@ -1,11 +1,13 @@
|
||||
#ifndef HEALTHHELPER_H_
|
||||
#define HEALTHHELPER_H_
|
||||
#ifndef FSFW_HEALTH_HEALTHHELPER_H_
|
||||
#define FSFW_HEALTH_HEALTHHELPER_H_
|
||||
|
||||
#include "../events/EventManagerIF.h"
|
||||
#include "../events/EventReportingProxyIF.h"
|
||||
#include "HasHealthIF.h"
|
||||
#include "HealthMessage.h"
|
||||
#include "HealthTableIF.h"
|
||||
|
||||
#include "../events/EventManagerIF.h"
|
||||
#include "../events/EventReportingProxyIF.h"
|
||||
#include "../ipc/MessageQueueIF.h"
|
||||
#include "../objectmanager/ObjectManagerIF.h"
|
||||
#include "../returnvalues/HasReturnvaluesIF.h"
|
||||
|
||||
@ -27,8 +29,8 @@ public:
|
||||
/**
|
||||
* ctor
|
||||
*
|
||||
* @param owner
|
||||
* @param objectId the object Id to use when communication with the HealthTable
|
||||
* @param useAsFrom id to use as from id when sending replies, can be set to 0
|
||||
*/
|
||||
HealthHelper(HasHealthIF* owner, object_id_t objectId);
|
||||
|
||||
@ -39,12 +41,12 @@ public:
|
||||
*
|
||||
* only valid after initialize() has been called
|
||||
*/
|
||||
HealthTableIF *healthTable;
|
||||
HealthTableIF *healthTable = nullptr;
|
||||
|
||||
/**
|
||||
* Proxy to forward events.
|
||||
*/
|
||||
EventReportingProxyIF* eventSender;
|
||||
EventReportingProxyIF* eventSender = nullptr;
|
||||
|
||||
/**
|
||||
* Try to handle the message.
|
||||
@ -100,7 +102,7 @@ private:
|
||||
/**
|
||||
* The Queue of the parent
|
||||
*/
|
||||
MessageQueueId_t parentQueue;
|
||||
MessageQueueId_t parentQueue = MessageQueueIF::NO_QUEUE;
|
||||
|
||||
/**
|
||||
* The one using the healthHelper.
|
||||
@ -117,4 +119,4 @@ private:
|
||||
void handleSetHealthCommand(CommandMessage *message);
|
||||
};
|
||||
|
||||
#endif /* HEALTHHELPER_H_ */
|
||||
#endif /* FSFW_HEALTH_HEALTHHELPER_H_ */
|
||||
|
@ -64,6 +64,11 @@ ReturnValue_t PeriodicTask::sleepFor(uint32_t ms) {
|
||||
void PeriodicTask::taskFunctionality() {
|
||||
TickType_t xLastWakeTime;
|
||||
const TickType_t xPeriod = pdMS_TO_TICKS(this->period * 1000.);
|
||||
|
||||
for (auto const &object: objectList) {
|
||||
object->initializeAfterTaskCreation();
|
||||
}
|
||||
|
||||
/* The xLastWakeTime variable needs to be initialized with the current tick
|
||||
count. Note that this is the only time the variable is written to
|
||||
explicitly. After this assignment, xLastWakeTime is updated automatically
|
||||
|
@ -1,11 +1,10 @@
|
||||
#ifndef FRAMEWORK_OSAL_FREERTOS_PERIODICTASK_H_
|
||||
#define FRAMEWORK_OSAL_FREERTOS_PERIODICTASK_H_
|
||||
#ifndef FSFW_OSAL_FREERTOS_PERIODICTASK_H_
|
||||
#define FSFW_OSAL_FREERTOS_PERIODICTASK_H_
|
||||
|
||||
#include "FreeRTOSTaskIF.h"
|
||||
#include "../../objectmanager/ObjectManagerIF.h"
|
||||
#include "../../tasks/PeriodicTaskIF.h"
|
||||
#include "../../tasks/Typedef.h"
|
||||
#include "FreeRTOSTaskIF.h"
|
||||
|
||||
|
||||
#include <freertos/FreeRTOS.h>
|
||||
#include <freertos/task.h>
|
||||
@ -24,7 +23,6 @@ public:
|
||||
/**
|
||||
* Keep in Mind that you need to call before this vTaskStartScheduler()!
|
||||
* A lot of task parameters are set in "FreeRTOSConfig.h".
|
||||
* TODO: why does this need to be called before vTaskStartScheduler?
|
||||
* @details
|
||||
* The class is initialized without allocated objects.
|
||||
* These need to be added with #addComponent.
|
||||
@ -125,4 +123,4 @@ protected:
|
||||
void handleMissedDeadline();
|
||||
};
|
||||
|
||||
#endif /* PERIODICTASK_H_ */
|
||||
#endif /* FSFW_OSAL_FREERTOS_PERIODICTASK_H_ */
|
||||
|
227
osal/host/Clock.cpp
Normal file
227
osal/host/Clock.cpp
Normal file
@ -0,0 +1,227 @@
|
||||
#include "../../serviceinterface/ServiceInterfaceStream.h"
|
||||
#include "../../timemanager/Clock.h"
|
||||
|
||||
#include <chrono>
|
||||
#if defined(WIN32)
|
||||
#include <windows.h>
|
||||
#elif defined(LINUX)
|
||||
#include <fstream>
|
||||
#endif
|
||||
|
||||
uint16_t Clock::leapSeconds = 0;
|
||||
MutexIF* Clock::timeMutex = NULL;
|
||||
|
||||
using SystemClock = std::chrono::system_clock;
|
||||
|
||||
uint32_t Clock::getTicksPerSecond(void){
|
||||
sif::warning << "Clock::getTicksPerSecond: not implemented yet" << std::endl;
|
||||
return 0;
|
||||
//return CLOCKS_PER_SEC;
|
||||
//uint32_t ticks = sysconf(_SC_CLK_TCK);
|
||||
//return ticks;
|
||||
}
|
||||
|
||||
ReturnValue_t Clock::setClock(const TimeOfDay_t* time) {
|
||||
// do some magic with chrono
|
||||
sif::warning << "Clock::setClock: not implemented yet" << std::endl;
|
||||
return HasReturnvaluesIF::RETURN_OK;
|
||||
}
|
||||
|
||||
ReturnValue_t Clock::setClock(const timeval* time) {
|
||||
// do some magic with chrono
|
||||
#if defined(WIN32)
|
||||
return HasReturnvaluesIF::RETURN_OK;
|
||||
#elif defined(LINUX)
|
||||
return HasReturnvaluesIF::RETURN_OK;
|
||||
#else
|
||||
|
||||
#endif
|
||||
sif::warning << "Clock::getUptime: Not implemented for found OS" << std::endl;
|
||||
return HasReturnvaluesIF::RETURN_FAILED;
|
||||
}
|
||||
|
||||
ReturnValue_t Clock::getClock_timeval(timeval* time) {
|
||||
#if defined(WIN32)
|
||||
auto now = std::chrono::system_clock::now();
|
||||
auto secondsChrono = std::chrono::time_point_cast<std::chrono::seconds>(now);
|
||||
auto epoch = now.time_since_epoch();
|
||||
time->tv_sec = std::chrono::duration_cast<std::chrono::seconds>(epoch).count();
|
||||
auto fraction = now - secondsChrono;
|
||||
time->tv_usec = std::chrono::duration_cast<std::chrono::microseconds>(
|
||||
fraction).count();
|
||||
return HasReturnvaluesIF::RETURN_OK;
|
||||
#elif defined(LINUX)
|
||||
timespec timeUnix;
|
||||
int status = clock_gettime(CLOCK_REALTIME,&timeUnix);
|
||||
if(status!=0){
|
||||
return HasReturnvaluesIF::RETURN_FAILED;
|
||||
}
|
||||
time->tv_sec = timeUnix.tv_sec;
|
||||
time->tv_usec = timeUnix.tv_nsec / 1000.0;
|
||||
return HasReturnvaluesIF::RETURN_OK;
|
||||
#else
|
||||
sif::warning << "Clock::getUptime: Not implemented for found OS" << std::endl;
|
||||
return HasReturnvaluesIF::RETURN_FAILED;
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
ReturnValue_t Clock::getClock_usecs(uint64_t* time) {
|
||||
// do some magic with chrono
|
||||
sif::warning << "Clock::gerClock_usecs: not implemented yet" << std::endl;
|
||||
return HasReturnvaluesIF::RETURN_OK;
|
||||
}
|
||||
|
||||
timeval Clock::getUptime() {
|
||||
timeval timeval;
|
||||
#if defined(WIN32)
|
||||
auto uptime = std::chrono::milliseconds(GetTickCount64());
|
||||
auto secondsChrono = std::chrono::duration_cast<std::chrono::seconds>(uptime);
|
||||
timeval.tv_sec = secondsChrono.count();
|
||||
auto fraction = uptime - secondsChrono;
|
||||
timeval.tv_usec = std::chrono::duration_cast<std::chrono::microseconds>(
|
||||
fraction).count();
|
||||
#elif defined(LINUX)
|
||||
double uptimeSeconds;
|
||||
if (std::ifstream("/proc/uptime", std::ios::in) >> uptimeSeconds)
|
||||
{
|
||||
// value is rounded down automatically
|
||||
timeval.tv_sec = uptimeSeconds;
|
||||
timeval.tv_usec = uptimeSeconds *(double) 1e6 - (timeval.tv_sec *1e6);
|
||||
}
|
||||
#else
|
||||
sif::warning << "Clock::getUptime: Not implemented for found OS" << std::endl;
|
||||
#endif
|
||||
return timeval;
|
||||
}
|
||||
|
||||
ReturnValue_t Clock::getUptime(timeval* uptime) {
|
||||
*uptime = getUptime();
|
||||
return HasReturnvaluesIF::RETURN_OK;
|
||||
}
|
||||
|
||||
ReturnValue_t Clock::getUptime(uint32_t* uptimeMs) {
|
||||
timeval uptime = getUptime();
|
||||
*uptimeMs = uptime.tv_sec * 1000 + uptime.tv_usec / 1000;
|
||||
return HasReturnvaluesIF::RETURN_OK;
|
||||
}
|
||||
|
||||
|
||||
ReturnValue_t Clock::getDateAndTime(TimeOfDay_t* time) {
|
||||
// do some magic with chrono (C++20!)
|
||||
// Right now, the library doesn't have the new features yet.
|
||||
// so we work around that for now.
|
||||
auto now = SystemClock::now();
|
||||
auto seconds = std::chrono::time_point_cast<std::chrono::seconds>(now);
|
||||
auto fraction = now - seconds;
|
||||
time_t tt = SystemClock::to_time_t(now);
|
||||
struct tm* timeInfo;
|
||||
timeInfo = gmtime(&tt);
|
||||
time->year = timeInfo->tm_year + 1900;
|
||||
time->month = timeInfo->tm_mon+1;
|
||||
time->day = timeInfo->tm_mday;
|
||||
time->hour = timeInfo->tm_hour;
|
||||
time->minute = timeInfo->tm_min;
|
||||
time->second = timeInfo->tm_sec;
|
||||
auto usecond = std::chrono::duration_cast<std::chrono::microseconds>(fraction);
|
||||
time->usecond = usecond.count();
|
||||
|
||||
//sif::warning << "Clock::getDateAndTime: not implemented yet" << std::endl;
|
||||
return HasReturnvaluesIF::RETURN_OK;
|
||||
}
|
||||
|
||||
ReturnValue_t Clock::convertTimeOfDayToTimeval(const TimeOfDay_t* from,
|
||||
timeval* to) {
|
||||
struct tm time_tm;
|
||||
|
||||
time_tm.tm_year = from->year - 1900;
|
||||
time_tm.tm_mon = from->month - 1;
|
||||
time_tm.tm_mday = from->day;
|
||||
|
||||
time_tm.tm_hour = from->hour;
|
||||
time_tm.tm_min = from->minute;
|
||||
time_tm.tm_sec = from->second;
|
||||
|
||||
time_t seconds = mktime(&time_tm);
|
||||
|
||||
to->tv_sec = seconds;
|
||||
to->tv_usec = from->usecond;
|
||||
//Fails in 2038..
|
||||
return HasReturnvaluesIF::RETURN_OK;
|
||||
sif::warning << "Clock::convertTimeBla: not implemented yet" << std::endl;
|
||||
return HasReturnvaluesIF::RETURN_OK;
|
||||
}
|
||||
|
||||
ReturnValue_t Clock::convertTimevalToJD2000(timeval time, double* JD2000) {
|
||||
*JD2000 = (time.tv_sec - 946728000. + time.tv_usec / 1000000.) / 24.
|
||||
/ 3600.;
|
||||
return HasReturnvaluesIF::RETURN_OK;
|
||||
}
|
||||
|
||||
ReturnValue_t Clock::convertUTCToTT(timeval utc, timeval* tt) {
|
||||
//SHOULDDO: works not for dates in the past (might have less leap seconds)
|
||||
if (timeMutex == NULL) {
|
||||
return HasReturnvaluesIF::RETURN_FAILED;
|
||||
}
|
||||
|
||||
uint16_t leapSeconds;
|
||||
ReturnValue_t result = getLeapSeconds(&leapSeconds);
|
||||
if (result != HasReturnvaluesIF::RETURN_OK) {
|
||||
return result;
|
||||
}
|
||||
timeval leapSeconds_timeval = { 0, 0 };
|
||||
leapSeconds_timeval.tv_sec = leapSeconds;
|
||||
|
||||
//initial offset between UTC and TAI
|
||||
timeval UTCtoTAI1972 = { 10, 0 };
|
||||
|
||||
timeval TAItoTT = { 32, 184000 };
|
||||
|
||||
*tt = utc + leapSeconds_timeval + UTCtoTAI1972 + TAItoTT;
|
||||
|
||||
return HasReturnvaluesIF::RETURN_OK;
|
||||
}
|
||||
|
||||
ReturnValue_t Clock::setLeapSeconds(const uint16_t leapSeconds_) {
|
||||
if(checkOrCreateClockMutex()!=HasReturnvaluesIF::RETURN_OK){
|
||||
return HasReturnvaluesIF::RETURN_FAILED;
|
||||
}
|
||||
ReturnValue_t result = timeMutex->lockMutex(MutexIF::BLOCKING);
|
||||
if (result != HasReturnvaluesIF::RETURN_OK) {
|
||||
return result;
|
||||
}
|
||||
|
||||
leapSeconds = leapSeconds_;
|
||||
|
||||
result = timeMutex->unlockMutex();
|
||||
return result;
|
||||
}
|
||||
|
||||
ReturnValue_t Clock::getLeapSeconds(uint16_t* leapSeconds_) {
|
||||
if(timeMutex == nullptr){
|
||||
return HasReturnvaluesIF::RETURN_FAILED;
|
||||
}
|
||||
ReturnValue_t result = timeMutex->lockMutex(MutexIF::BLOCKING);
|
||||
if (result != HasReturnvaluesIF::RETURN_OK) {
|
||||
return result;
|
||||
}
|
||||
|
||||
*leapSeconds_ = leapSeconds;
|
||||
|
||||
result = timeMutex->unlockMutex();
|
||||
return result;
|
||||
}
|
||||
|
||||
ReturnValue_t Clock::checkOrCreateClockMutex(){
|
||||
if(timeMutex == nullptr){
|
||||
MutexFactory* mutexFactory = MutexFactory::instance();
|
||||
if (mutexFactory == nullptr) {
|
||||
return HasReturnvaluesIF::RETURN_FAILED;
|
||||
}
|
||||
timeMutex = mutexFactory->createMutex();
|
||||
if (timeMutex == nullptr) {
|
||||
return HasReturnvaluesIF::RETURN_FAILED;
|
||||
}
|
||||
}
|
||||
return HasReturnvaluesIF::RETURN_OK;
|
||||
}
|
197
osal/host/FixedTimeslotTask.cpp
Normal file
197
osal/host/FixedTimeslotTask.cpp
Normal file
@ -0,0 +1,197 @@
|
||||
#include "../../osal/host/FixedTimeslotTask.h"
|
||||
|
||||
#include "../../ipc/MutexFactory.h"
|
||||
#include "../../osal/host/Mutex.h"
|
||||
#include "../../osal/host/FixedTimeslotTask.h"
|
||||
|
||||
#include "../../serviceinterface/ServiceInterfaceStream.h"
|
||||
#include "../../tasks/ExecutableObjectIF.h"
|
||||
|
||||
#include <thread>
|
||||
#include <chrono>
|
||||
|
||||
#if defined(WIN32)
|
||||
#include <windows.h>
|
||||
#elif defined(LINUX)
|
||||
#include <pthread.h>
|
||||
#endif
|
||||
|
||||
FixedTimeslotTask::FixedTimeslotTask(const char *name, TaskPriority setPriority,
|
||||
TaskStackSize setStack, TaskPeriod setPeriod,
|
||||
void (*setDeadlineMissedFunc)()) :
|
||||
started(false), pollingSeqTable(setPeriod*1000), taskName(name),
|
||||
period(setPeriod), deadlineMissedFunc(setDeadlineMissedFunc) {
|
||||
// It is propably possible to set task priorities by using the native
|
||||
// task handles for Windows / Linux
|
||||
mainThread = std::thread(&FixedTimeslotTask::taskEntryPoint, this, this);
|
||||
#if defined(WIN32)
|
||||
/* List of possible priority classes:
|
||||
* https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/
|
||||
* nf-processthreadsapi-setpriorityclass
|
||||
* And respective thread priority numbers:
|
||||
* https://docs.microsoft.com/en-us/windows/
|
||||
* win32/procthread/scheduling-priorities */
|
||||
int result = SetPriorityClass(
|
||||
reinterpret_cast<HANDLE>(mainThread.native_handle()),
|
||||
ABOVE_NORMAL_PRIORITY_CLASS);
|
||||
if(result != 0) {
|
||||
sif::error << "FixedTimeslotTask: Windows SetPriorityClass failed with code "
|
||||
<< GetLastError() << std::endl;
|
||||
}
|
||||
result = SetThreadPriority(
|
||||
reinterpret_cast<HANDLE>(mainThread.native_handle()),
|
||||
THREAD_PRIORITY_NORMAL);
|
||||
if(result != 0) {
|
||||
sif::error << "FixedTimeslotTask: Windows SetPriorityClass failed with code "
|
||||
<< GetLastError() << std::endl;
|
||||
}
|
||||
#elif defined(LINUX)
|
||||
// we can just copy and paste the code from linux here.
|
||||
#endif
|
||||
}
|
||||
|
||||
FixedTimeslotTask::~FixedTimeslotTask(void) {
|
||||
//Do not delete objects, we were responsible for ptrs only.
|
||||
terminateThread = true;
|
||||
if(mainThread.joinable()) {
|
||||
mainThread.join();
|
||||
}
|
||||
delete this;
|
||||
}
|
||||
|
||||
void FixedTimeslotTask::taskEntryPoint(void* argument) {
|
||||
FixedTimeslotTask *originalTask(reinterpret_cast<FixedTimeslotTask*>(argument));
|
||||
|
||||
if (not originalTask->started) {
|
||||
// we have to suspend/block here until the task is started.
|
||||
// if semaphores are implemented, use them here.
|
||||
std::unique_lock<std::mutex> lock(initMutex);
|
||||
initCondition.wait(lock);
|
||||
}
|
||||
|
||||
this->taskFunctionality();
|
||||
sif::debug << "FixedTimeslotTask::taskEntryPoint: "
|
||||
"Returned from taskFunctionality." << std::endl;
|
||||
}
|
||||
|
||||
ReturnValue_t FixedTimeslotTask::startTask() {
|
||||
started = true;
|
||||
|
||||
// Notify task to start.
|
||||
std::lock_guard<std::mutex> lock(initMutex);
|
||||
initCondition.notify_one();
|
||||
|
||||
return HasReturnvaluesIF::RETURN_OK;
|
||||
}
|
||||
|
||||
ReturnValue_t FixedTimeslotTask::sleepFor(uint32_t ms) {
|
||||
std::this_thread::sleep_for(std::chrono::milliseconds(ms));
|
||||
return HasReturnvaluesIF::RETURN_OK;
|
||||
}
|
||||
|
||||
void FixedTimeslotTask::taskFunctionality() {
|
||||
pollingSeqTable.intializeSequenceAfterTaskCreation();
|
||||
|
||||
// A local iterator for the Polling Sequence Table is created to
|
||||
// find the start time for the first entry.
|
||||
auto slotListIter = pollingSeqTable.current;
|
||||
|
||||
// Get start time for first entry.
|
||||
chron_ms interval(slotListIter->pollingTimeMs);
|
||||
auto currentStartTime {
|
||||
std::chrono::duration_cast<chron_ms>(
|
||||
std::chrono::system_clock::now().time_since_epoch())
|
||||
};
|
||||
if(interval.count() > 0) {
|
||||
delayForInterval(¤tStartTime, interval);
|
||||
}
|
||||
|
||||
/* Enter the loop that defines the task behavior. */
|
||||
for (;;) {
|
||||
if(terminateThread.load()) {
|
||||
break;
|
||||
}
|
||||
//The component for this slot is executed and the next one is chosen.
|
||||
this->pollingSeqTable.executeAndAdvance();
|
||||
if (not pollingSeqTable.slotFollowsImmediately()) {
|
||||
// we need to wait before executing the current slot
|
||||
//this gives us the time to wait:
|
||||
interval = chron_ms(this->pollingSeqTable.getIntervalToPreviousSlotMs());
|
||||
delayForInterval(¤tStartTime, interval);
|
||||
//TODO deadline missed check
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
ReturnValue_t FixedTimeslotTask::addSlot(object_id_t componentId,
|
||||
uint32_t slotTimeMs, int8_t executionStep) {
|
||||
ExecutableObjectIF* executableObject = objectManager->
|
||||
get<ExecutableObjectIF>(componentId);
|
||||
if (executableObject != nullptr) {
|
||||
pollingSeqTable.addSlot(componentId, slotTimeMs, executionStep,
|
||||
executableObject, this);
|
||||
return HasReturnvaluesIF::RETURN_OK;
|
||||
}
|
||||
|
||||
sif::error << "Component " << std::hex << componentId <<
|
||||
" not found, not adding it to pst" << std::endl;
|
||||
return HasReturnvaluesIF::RETURN_FAILED;
|
||||
}
|
||||
|
||||
ReturnValue_t FixedTimeslotTask::checkSequence() const {
|
||||
return pollingSeqTable.checkSequence();
|
||||
}
|
||||
|
||||
uint32_t FixedTimeslotTask::getPeriodMs() const {
|
||||
return period * 1000;
|
||||
}
|
||||
|
||||
bool FixedTimeslotTask::delayForInterval(chron_ms * previousWakeTimeMs,
|
||||
const chron_ms interval) {
|
||||
bool shouldDelay = false;
|
||||
//Get current wakeup time
|
||||
auto currentStartTime =
|
||||
std::chrono::duration_cast<chron_ms>(
|
||||
std::chrono::system_clock::now().time_since_epoch());
|
||||
/* Generate the tick time at which the task wants to wake. */
|
||||
auto nextTimeToWake_ms = (*previousWakeTimeMs) + interval;
|
||||
|
||||
if (currentStartTime < *previousWakeTimeMs) {
|
||||
/* The tick count has overflowed since this function was
|
||||
lasted called. In this case the only time we should ever
|
||||
actually delay is if the wake time has also overflowed,
|
||||
and the wake time is greater than the tick time. When this
|
||||
is the case it is as if neither time had overflowed. */
|
||||
if ((nextTimeToWake_ms < *previousWakeTimeMs)
|
||||
&& (nextTimeToWake_ms > currentStartTime)) {
|
||||
shouldDelay = true;
|
||||
}
|
||||
} else {
|
||||
/* The tick time has not overflowed. In this case we will
|
||||
delay if either the wake time has overflowed, and/or the
|
||||
tick time is less than the wake time. */
|
||||
if ((nextTimeToWake_ms < *previousWakeTimeMs)
|
||||
|| (nextTimeToWake_ms > currentStartTime)) {
|
||||
shouldDelay = true;
|
||||
}
|
||||
}
|
||||
|
||||
/* Update the wake time ready for the next call. */
|
||||
|
||||
(*previousWakeTimeMs) = nextTimeToWake_ms;
|
||||
|
||||
if (shouldDelay) {
|
||||
auto sleepTime = std::chrono::duration_cast<chron_ms>(
|
||||
nextTimeToWake_ms - currentStartTime);
|
||||
std::this_thread::sleep_for(sleepTime);
|
||||
return true;
|
||||
}
|
||||
//We are shifting the time in case the deadline was missed like rtems
|
||||
(*previousWakeTimeMs) = currentStartTime;
|
||||
return false;
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
130
osal/host/FixedTimeslotTask.h
Normal file
130
osal/host/FixedTimeslotTask.h
Normal file
@ -0,0 +1,130 @@
|
||||
#ifndef FRAMEWORK_OSAL_HOST_FIXEDTIMESLOTTASK_H_
|
||||
#define FRAMEWORK_OSAL_HOST_FIXEDTIMESLOTTASK_H_
|
||||
|
||||
#include "../../objectmanager/ObjectManagerIF.h"
|
||||
#include "../../tasks/FixedSlotSequence.h"
|
||||
#include "../../tasks/FixedTimeslotTaskIF.h"
|
||||
#include "../../tasks/Typedef.h"
|
||||
|
||||
#include <vector>
|
||||
#include <thread>
|
||||
#include <condition_variable>
|
||||
#include <atomic>
|
||||
|
||||
class ExecutableObjectIF;
|
||||
|
||||
/**
|
||||
* @brief This class represents a task for periodic activities with multiple
|
||||
* steps and strict timeslot requirements for these steps.
|
||||
* @details
|
||||
* @ingroup task_handling
|
||||
*/
|
||||
class FixedTimeslotTask: public FixedTimeslotTaskIF {
|
||||
public:
|
||||
/**
|
||||
* @brief Standard constructor of the class.
|
||||
* @details
|
||||
* The class is initialized without allocated objects. These need to be
|
||||
* added with #addComponent.
|
||||
* @param priority
|
||||
* @param stack_size
|
||||
* @param setPeriod
|
||||
* @param setDeadlineMissedFunc
|
||||
* The function pointer to the deadline missed function that shall be
|
||||
* assigned.
|
||||
*/
|
||||
FixedTimeslotTask(const char *name, TaskPriority setPriority,
|
||||
TaskStackSize setStack, TaskPeriod setPeriod,
|
||||
void (*setDeadlineMissedFunc)());
|
||||
/**
|
||||
* @brief Currently, the executed object's lifetime is not coupled with
|
||||
* the task object's lifetime, so the destructor is empty.
|
||||
*/
|
||||
virtual ~FixedTimeslotTask(void);
|
||||
|
||||
/**
|
||||
* @brief The method to start the task.
|
||||
* @details The method starts the task with the respective system call.
|
||||
* Entry point is the taskEntryPoint method described below.
|
||||
* The address of the task object is passed as an argument
|
||||
* to the system call.
|
||||
*/
|
||||
ReturnValue_t startTask(void);
|
||||
|
||||
/**
|
||||
* Add timeslot to the polling sequence table.
|
||||
* @param componentId
|
||||
* @param slotTimeMs
|
||||
* @param executionStep
|
||||
* @return
|
||||
*/
|
||||
ReturnValue_t addSlot(object_id_t componentId,
|
||||
uint32_t slotTimeMs, int8_t executionStep);
|
||||
|
||||
ReturnValue_t checkSequence() const override;
|
||||
|
||||
uint32_t getPeriodMs() const;
|
||||
|
||||
ReturnValue_t sleepFor(uint32_t ms);
|
||||
|
||||
protected:
|
||||
using chron_ms = std::chrono::milliseconds;
|
||||
|
||||
bool started;
|
||||
//!< Typedef for the List of objects.
|
||||
typedef std::vector<ExecutableObjectIF*> ObjectList;
|
||||
std::thread mainThread;
|
||||
std::atomic<bool> terminateThread = false;
|
||||
|
||||
//! Polling sequence table which contains the object to execute
|
||||
//! and information like the timeslots and the passed execution step.
|
||||
FixedSlotSequence pollingSeqTable;
|
||||
|
||||
std::condition_variable initCondition;
|
||||
std::mutex initMutex;
|
||||
std::string taskName;
|
||||
/**
|
||||
* @brief The period of the task.
|
||||
* @details
|
||||
* The period determines the frequency of the task's execution.
|
||||
* It is expressed in clock ticks.
|
||||
*/
|
||||
TaskPeriod period;
|
||||
|
||||
/**
|
||||
* @brief The pointer to the deadline-missed function.
|
||||
* @details
|
||||
* This pointer stores the function that is executed if the task's deadline
|
||||
* is missed. So, each may react individually on a timing failure.
|
||||
* The pointer may be NULL, then nothing happens on missing the deadline.
|
||||
* The deadline is equal to the next execution of the periodic task.
|
||||
*/
|
||||
void (*deadlineMissedFunc)(void);
|
||||
/**
|
||||
* @brief This is the function executed in the new task's context.
|
||||
* @details
|
||||
* It converts the argument back to the thread object type and copies the
|
||||
* class instance to the task context.
|
||||
* The taskFunctionality method is called afterwards.
|
||||
* @param A pointer to the task object itself is passed as argument.
|
||||
*/
|
||||
|
||||
void taskEntryPoint(void* argument);
|
||||
/**
|
||||
* @brief The function containing the actual functionality of the task.
|
||||
* @details
|
||||
* The method sets and starts the task's period, then enters a loop that is
|
||||
* repeated as long as the isRunning attribute is true. Within the loop,
|
||||
* all performOperation methods of the added objects are called. Afterwards
|
||||
* the checkAndRestartPeriod system call blocks the task until the next
|
||||
* period. On missing the deadline, the deadlineMissedFunction is executed.
|
||||
*/
|
||||
void taskFunctionality(void);
|
||||
|
||||
bool delayForInterval(chron_ms * previousWakeTimeMs,
|
||||
const chron_ms interval);
|
||||
};
|
||||
|
||||
|
||||
|
||||
#endif /* FRAMEWORK_OSAL_HOST_FIXEDTIMESLOTTASK_H_ */
|
159
osal/host/MessageQueue.cpp
Normal file
159
osal/host/MessageQueue.cpp
Normal file
@ -0,0 +1,159 @@
|
||||
#include "MessageQueue.h"
|
||||
#include "QueueMapManager.h"
|
||||
|
||||
#include "../../serviceinterface/ServiceInterfaceStream.h"
|
||||
#include "../../ipc/MutexFactory.h"
|
||||
#include "../../ipc/MutexHelper.h"
|
||||
|
||||
MessageQueue::MessageQueue(size_t messageDepth, size_t maxMessageSize):
|
||||
messageSize(maxMessageSize), messageDepth(messageDepth) {
|
||||
queueLock = MutexFactory::instance()->createMutex();
|
||||
auto result = QueueMapManager::instance()->addMessageQueue(this, &mqId);
|
||||
if(result != HasReturnvaluesIF::RETURN_OK) {
|
||||
sif::error << "MessageQueue::MessageQueue:"
|
||||
<< " Could not be created" << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
MessageQueue::~MessageQueue() {
|
||||
MutexFactory::instance()->deleteMutex(queueLock);
|
||||
}
|
||||
|
||||
ReturnValue_t MessageQueue::sendMessage(MessageQueueId_t sendTo,
|
||||
MessageQueueMessageIF* message, bool ignoreFault) {
|
||||
return sendMessageFrom(sendTo, message, this->getId(), ignoreFault);
|
||||
}
|
||||
|
||||
ReturnValue_t MessageQueue::sendToDefault(MessageQueueMessageIF* message) {
|
||||
return sendToDefaultFrom(message, this->getId());
|
||||
}
|
||||
|
||||
ReturnValue_t MessageQueue::sendToDefaultFrom(MessageQueueMessageIF* message,
|
||||
MessageQueueId_t sentFrom, bool ignoreFault) {
|
||||
return sendMessageFrom(defaultDestination,message,sentFrom,ignoreFault);
|
||||
}
|
||||
|
||||
ReturnValue_t MessageQueue::reply(MessageQueueMessageIF* message) {
|
||||
if (this->lastPartner != 0) {
|
||||
return sendMessageFrom(this->lastPartner, message, this->getId());
|
||||
} else {
|
||||
return MessageQueueIF::NO_REPLY_PARTNER;
|
||||
}
|
||||
}
|
||||
|
||||
ReturnValue_t MessageQueue::sendMessageFrom(MessageQueueId_t sendTo,
|
||||
MessageQueueMessageIF* message, MessageQueueId_t sentFrom,
|
||||
bool ignoreFault) {
|
||||
return sendMessageFromMessageQueue(sendTo, message, sentFrom,
|
||||
ignoreFault);
|
||||
}
|
||||
|
||||
ReturnValue_t MessageQueue::receiveMessage(MessageQueueMessageIF* message,
|
||||
MessageQueueId_t* receivedFrom) {
|
||||
ReturnValue_t status = this->receiveMessage(message);
|
||||
if(status == HasReturnvaluesIF::RETURN_OK) {
|
||||
*receivedFrom = this->lastPartner;
|
||||
}
|
||||
return status;
|
||||
}
|
||||
|
||||
ReturnValue_t MessageQueue::receiveMessage(MessageQueueMessageIF* message) {
|
||||
if(messageQueue.empty()) {
|
||||
return MessageQueueIF::EMPTY;
|
||||
}
|
||||
// not sure this will work..
|
||||
//*message = std::move(messageQueue.front());
|
||||
MutexHelper mutexLock(queueLock, MutexIF::TimeoutType::WAITING, 20);
|
||||
MessageQueueMessage* currentMessage = &messageQueue.front();
|
||||
std::copy(currentMessage->getBuffer(),
|
||||
currentMessage->getBuffer() + messageSize, message->getBuffer());
|
||||
messageQueue.pop();
|
||||
// The last partner is the first uint32_t field in the message
|
||||
this->lastPartner = message->getSender();
|
||||
return HasReturnvaluesIF::RETURN_OK;
|
||||
}
|
||||
|
||||
MessageQueueId_t MessageQueue::getLastPartner() const {
|
||||
return lastPartner;
|
||||
}
|
||||
|
||||
ReturnValue_t MessageQueue::flush(uint32_t* count) {
|
||||
*count = messageQueue.size();
|
||||
// Clears the queue.
|
||||
messageQueue = std::queue<MessageQueueMessage>();
|
||||
return HasReturnvaluesIF::RETURN_OK;
|
||||
}
|
||||
|
||||
MessageQueueId_t MessageQueue::getId() const {
|
||||
return mqId;
|
||||
}
|
||||
|
||||
void MessageQueue::setDefaultDestination(MessageQueueId_t defaultDestination) {
|
||||
defaultDestinationSet = true;
|
||||
this->defaultDestination = defaultDestination;
|
||||
}
|
||||
|
||||
MessageQueueId_t MessageQueue::getDefaultDestination() const {
|
||||
return defaultDestination;
|
||||
}
|
||||
|
||||
bool MessageQueue::isDefaultDestinationSet() const {
|
||||
return defaultDestinationSet;
|
||||
}
|
||||
|
||||
|
||||
// static core function to send messages.
|
||||
ReturnValue_t MessageQueue::sendMessageFromMessageQueue(MessageQueueId_t sendTo,
|
||||
MessageQueueMessageIF* message, MessageQueueId_t sentFrom,
|
||||
bool ignoreFault) {
|
||||
if(message->getMessageSize() > message->getMaximumMessageSize()) {
|
||||
// Actually, this should never happen or an error will be emitted
|
||||
// in MessageQueueMessage.
|
||||
// But I will still return a failure here.
|
||||
return HasReturnvaluesIF::RETURN_FAILED;
|
||||
}
|
||||
MessageQueue* targetQueue = dynamic_cast<MessageQueue*>(
|
||||
QueueMapManager::instance()->getMessageQueue(sendTo));
|
||||
if(targetQueue == nullptr) {
|
||||
if(not ignoreFault) {
|
||||
InternalErrorReporterIF* internalErrorReporter =
|
||||
objectManager->get<InternalErrorReporterIF>(
|
||||
objects::INTERNAL_ERROR_REPORTER);
|
||||
if (internalErrorReporter != nullptr) {
|
||||
internalErrorReporter->queueMessageNotSent();
|
||||
}
|
||||
}
|
||||
// TODO: Better returnvalue
|
||||
return HasReturnvaluesIF::RETURN_FAILED;
|
||||
}
|
||||
|
||||
if(targetQueue->messageQueue.size() < targetQueue->messageDepth) {
|
||||
MutexHelper mutexLock(targetQueue->queueLock,
|
||||
MutexIF::TimeoutType::WAITING, 20);
|
||||
// not ideal, works for now though.
|
||||
MessageQueueMessage* mqmMessage =
|
||||
dynamic_cast<MessageQueueMessage*>(message);
|
||||
if(message != nullptr) {
|
||||
targetQueue->messageQueue.push(*mqmMessage);
|
||||
}
|
||||
else {
|
||||
sif::error << "MessageQueue::sendMessageFromMessageQueue: Message"
|
||||
"is not MessageQueueMessage!" << std::endl;
|
||||
}
|
||||
|
||||
}
|
||||
else {
|
||||
return MessageQueueIF::FULL;
|
||||
}
|
||||
message->setSender(sentFrom);
|
||||
return HasReturnvaluesIF::RETURN_OK;
|
||||
}
|
||||
|
||||
ReturnValue_t MessageQueue::lockQueue(MutexIF::TimeoutType timeoutType,
|
||||
dur_millis_t lockTimeout) {
|
||||
return queueLock->lockMutex(timeoutType, lockTimeout);
|
||||
}
|
||||
|
||||
ReturnValue_t MessageQueue::unlockQueue() {
|
||||
return queueLock->unlockMutex();
|
||||
}
|
231
osal/host/MessageQueue.h
Normal file
231
osal/host/MessageQueue.h
Normal file
@ -0,0 +1,231 @@
|
||||
#ifndef FRAMEWORK_OSAL_HOST_MESSAGEQUEUE_H_
|
||||
#define FRAMEWORK_OSAL_HOST_MESSAGEQUEUE_H_
|
||||
|
||||
#include "../../internalError/InternalErrorReporterIF.h"
|
||||
#include "../../ipc/MessageQueueIF.h"
|
||||
#include "../../ipc/MessageQueueMessage.h"
|
||||
#include "../../ipc/MutexIF.h"
|
||||
#include "../../timemanager/Clock.h"
|
||||
|
||||
#include <queue>
|
||||
#include <memory>
|
||||
|
||||
/**
|
||||
* @brief This class manages sending and receiving of
|
||||
* message queue messages.
|
||||
* @details
|
||||
* Message queues are used to pass asynchronous messages between processes.
|
||||
* They work like post boxes, where all incoming messages are stored in FIFO
|
||||
* order. This class creates a new receiving queue and provides methods to fetch
|
||||
* received messages. Being a child of MessageQueueSender, this class also
|
||||
* provides methods to send a message to a user-defined or a default destination.
|
||||
* In addition it also provides a reply method to answer to the queue it
|
||||
* received its last message from.
|
||||
*
|
||||
* The MessageQueue should be used as "post box" for a single owning object.
|
||||
* So all message queue communication is "n-to-one".
|
||||
* For creating the queue, as well as sending and receiving messages, the class
|
||||
* makes use of the operating system calls provided.
|
||||
*
|
||||
* Please keep in mind that FreeRTOS offers different calls for message queue
|
||||
* operations if called from an ISR.
|
||||
* For now, the system context needs to be switched manually.
|
||||
* @ingroup osal
|
||||
* @ingroup message_queue
|
||||
*/
|
||||
class MessageQueue : public MessageQueueIF {
|
||||
friend class MessageQueueSenderIF;
|
||||
public:
|
||||
/**
|
||||
* @brief The constructor initializes and configures the message queue.
|
||||
* @details
|
||||
* By making use of the according operating system call, a message queue is
|
||||
* created and initialized. The message depth - the maximum number of
|
||||
* messages to be buffered - may be set with the help of a parameter,
|
||||
* whereas the message size is automatically set to the maximum message
|
||||
* queue message size. The operating system sets the message queue id, or
|
||||
* in case of failure, it is set to zero.
|
||||
* @param message_depth
|
||||
* The number of messages to be buffered before passing an error to the
|
||||
* sender. Default is three.
|
||||
* @param max_message_size
|
||||
* With this parameter, the maximum message size can be adjusted.
|
||||
* This should be left default.
|
||||
*/
|
||||
MessageQueue(size_t messageDepth = 3,
|
||||
size_t maxMessageSize = MessageQueueMessage::MAX_MESSAGE_SIZE);
|
||||
|
||||
/** Copying message queues forbidden */
|
||||
MessageQueue(const MessageQueue&) = delete;
|
||||
MessageQueue& operator=(const MessageQueue&) = delete;
|
||||
|
||||
/**
|
||||
* @brief The destructor deletes the formerly created message queue.
|
||||
* @details This is accomplished by using the delete call provided
|
||||
* by the operating system.
|
||||
*/
|
||||
virtual ~MessageQueue();
|
||||
|
||||
/**
|
||||
* @brief This operation sends a message to the given destination.
|
||||
* @details It directly uses the sendMessage call of the MessageQueueSender
|
||||
* parent, but passes its queue id as "sentFrom" parameter.
|
||||
* @param sendTo This parameter specifies the message queue id of the
|
||||
* destination message queue.
|
||||
* @param message A pointer to a previously created message, which is sent.
|
||||
* @param ignoreFault If set to true, the internal software fault counter
|
||||
* is not incremented if queue is full.
|
||||
*/
|
||||
ReturnValue_t sendMessage(MessageQueueId_t sendTo,
|
||||
MessageQueueMessageIF* message, bool ignoreFault = false) override;
|
||||
/**
|
||||
* @brief This operation sends a message to the default destination.
|
||||
* @details As in the sendMessage method, this function uses the
|
||||
* sendToDefault call of the MessageQueueSender parent class and adds its
|
||||
* queue id as "sentFrom" information.
|
||||
* @param message A pointer to a previously created message, which is sent.
|
||||
*/
|
||||
ReturnValue_t sendToDefault(MessageQueueMessageIF* message) override;
|
||||
/**
|
||||
* @brief This operation sends a message to the last communication partner.
|
||||
* @details This operation simplifies answering an incoming message by using
|
||||
* the stored lastPartner information as destination. If there was no
|
||||
* message received yet (i.e. lastPartner is zero), an error code is returned.
|
||||
* @param message A pointer to a previously created message, which is sent.
|
||||
*/
|
||||
ReturnValue_t reply(MessageQueueMessageIF* message) override;
|
||||
|
||||
/**
|
||||
* @brief With the sendMessage call, a queue message is sent to a
|
||||
* receiving queue.
|
||||
* @details
|
||||
* This method takes the message provided, adds the sentFrom information and
|
||||
* passes it on to the destination provided with an operating system call.
|
||||
* The OS's return value is returned.
|
||||
* @param sendTo This parameter specifies the message queue id to send
|
||||
* the message to.
|
||||
* @param message This is a pointer to a previously created message,
|
||||
* which is sent.
|
||||
* @param sentFrom The sentFrom information can be set to inject the
|
||||
* sender's queue id into the message. This variable is set to zero by
|
||||
* default.
|
||||
* @param ignoreFault If set to true, the internal software fault counter
|
||||
* is not incremented if queue is full.
|
||||
*/
|
||||
virtual ReturnValue_t sendMessageFrom( MessageQueueId_t sendTo,
|
||||
MessageQueueMessageIF* message, MessageQueueId_t sentFrom = NO_QUEUE,
|
||||
bool ignoreFault = false) override;
|
||||
|
||||
/**
|
||||
* @brief The sendToDefault method sends a queue message to the default
|
||||
* destination.
|
||||
* @details
|
||||
* In all other aspects, it works identical to the sendMessage method.
|
||||
* @param message This is a pointer to a previously created message,
|
||||
* which is sent.
|
||||
* @param sentFrom The sentFrom information can be set to inject the
|
||||
* sender's queue id into the message. This variable is set to zero by
|
||||
* default.
|
||||
*/
|
||||
virtual ReturnValue_t sendToDefaultFrom( MessageQueueMessageIF* message,
|
||||
MessageQueueId_t sentFrom = NO_QUEUE,
|
||||
bool ignoreFault = false) override;
|
||||
|
||||
/**
|
||||
* @brief This function reads available messages from the message queue
|
||||
* and returns the sender.
|
||||
* @details
|
||||
* It works identically to the other receiveMessage call, but in addition
|
||||
* returns the sender's queue id.
|
||||
* @param message A pointer to a message in which the received data is stored.
|
||||
* @param receivedFrom A pointer to a queue id in which the sender's id is stored.
|
||||
*/
|
||||
ReturnValue_t receiveMessage(MessageQueueMessageIF* message,
|
||||
MessageQueueId_t *receivedFrom) override;
|
||||
|
||||
/**
|
||||
* @brief This function reads available messages from the message queue.
|
||||
* @details
|
||||
* If data is available it is stored in the passed message pointer.
|
||||
* The message's original content is overwritten and the sendFrom
|
||||
* information is stored in the lastPartner attribute. Else, the lastPartner
|
||||
* information remains untouched, the message's content is cleared and the
|
||||
* function returns immediately.
|
||||
* @param message A pointer to a message in which the received data is stored.
|
||||
*/
|
||||
ReturnValue_t receiveMessage(MessageQueueMessageIF* message) override;
|
||||
/**
|
||||
* Deletes all pending messages in the queue.
|
||||
* @param count The number of flushed messages.
|
||||
* @return RETURN_OK on success.
|
||||
*/
|
||||
ReturnValue_t flush(uint32_t* count) override;
|
||||
/**
|
||||
* @brief This method returns the message queue id of the last
|
||||
* communication partner.
|
||||
*/
|
||||
MessageQueueId_t getLastPartner() const override;
|
||||
/**
|
||||
* @brief This method returns the message queue id of this class's
|
||||
* message queue.
|
||||
*/
|
||||
MessageQueueId_t getId() const override;
|
||||
|
||||
/**
|
||||
* @brief This method is a simple setter for the default destination.
|
||||
*/
|
||||
void setDefaultDestination(MessageQueueId_t defaultDestination) override;
|
||||
/**
|
||||
* @brief This method is a simple getter for the default destination.
|
||||
*/
|
||||
MessageQueueId_t getDefaultDestination() const override;
|
||||
|
||||
bool isDefaultDestinationSet() const override;
|
||||
|
||||
ReturnValue_t lockQueue(MutexIF::TimeoutType timeoutType,
|
||||
dur_millis_t lockTimeout);
|
||||
ReturnValue_t unlockQueue();
|
||||
protected:
|
||||
/**
|
||||
* @brief Implementation to be called from any send Call within
|
||||
* MessageQueue and MessageQueueSenderIF.
|
||||
* @details
|
||||
* This method takes the message provided, adds the sentFrom information and
|
||||
* passes it on to the destination provided with an operating system call.
|
||||
* The OS's return value is returned.
|
||||
* @param sendTo
|
||||
* This parameter specifies the message queue id to send the message to.
|
||||
* @param message
|
||||
* This is a pointer to a previously created message, which is sent.
|
||||
* @param sentFrom
|
||||
* The sentFrom information can be set to inject the sender's queue id into
|
||||
* the message. This variable is set to zero by default.
|
||||
* @param ignoreFault
|
||||
* If set to true, the internal software fault counter is not incremented
|
||||
* if queue is full.
|
||||
* @param context Specify whether call is made from task or from an ISR.
|
||||
*/
|
||||
static ReturnValue_t sendMessageFromMessageQueue(MessageQueueId_t sendTo,
|
||||
MessageQueueMessageIF* message, MessageQueueId_t sentFrom = NO_QUEUE,
|
||||
bool ignoreFault=false);
|
||||
|
||||
//static ReturnValue_t handleSendResult(BaseType_t result, bool ignoreFault);
|
||||
|
||||
private:
|
||||
std::queue<MessageQueueMessage> messageQueue;
|
||||
/**
|
||||
* @brief The class stores the queue id it got assigned.
|
||||
* If initialization fails, the queue id is set to zero.
|
||||
*/
|
||||
MessageQueueId_t mqId = 0;
|
||||
size_t messageSize = 0;
|
||||
size_t messageDepth = 0;
|
||||
|
||||
MutexIF* queueLock;
|
||||
|
||||
bool defaultDestinationSet = false;
|
||||
MessageQueueId_t defaultDestination = 0;
|
||||
MessageQueueId_t lastPartner = 0;
|
||||
};
|
||||
|
||||
#endif /* FRAMEWORK_OSAL_HOST_MESSAGEQUEUE_H_ */
|
39
osal/host/Mutex.cpp
Normal file
39
osal/host/Mutex.cpp
Normal file
@ -0,0 +1,39 @@
|
||||
#include "Mutex.h"
|
||||
#include "../../serviceinterface/ServiceInterfaceStream.h"
|
||||
|
||||
Mutex::Mutex() {}
|
||||
|
||||
ReturnValue_t Mutex::lockMutex(TimeoutType timeoutType, uint32_t timeoutMs) {
|
||||
if(timeoutMs == MutexIF::BLOCKING) {
|
||||
mutex.lock();
|
||||
locked = true;
|
||||
return HasReturnvaluesIF::RETURN_OK;
|
||||
}
|
||||
else if(timeoutMs == MutexIF::POLLING) {
|
||||
if(mutex.try_lock()) {
|
||||
locked = true;
|
||||
return HasReturnvaluesIF::RETURN_OK;
|
||||
}
|
||||
}
|
||||
else if(timeoutMs > MutexIF::POLLING){
|
||||
auto chronoMs = std::chrono::milliseconds(timeoutMs);
|
||||
if(mutex.try_lock_for(chronoMs)) {
|
||||
locked = true;
|
||||
return HasReturnvaluesIF::RETURN_OK;
|
||||
}
|
||||
}
|
||||
return MutexIF::MUTEX_TIMEOUT;
|
||||
}
|
||||
|
||||
ReturnValue_t Mutex::unlockMutex() {
|
||||
if(not locked) {
|
||||
return MutexIF::CURR_THREAD_DOES_NOT_OWN_MUTEX;
|
||||
}
|
||||
mutex.unlock();
|
||||
locked = false;
|
||||
return HasReturnvaluesIF::RETURN_OK;
|
||||
}
|
||||
|
||||
std::timed_mutex* Mutex::getMutexHandle() {
|
||||
return &mutex;
|
||||
}
|
29
osal/host/Mutex.h
Normal file
29
osal/host/Mutex.h
Normal file
@ -0,0 +1,29 @@
|
||||
#ifndef FSFW_OSAL_HOSTED_MUTEX_H_
|
||||
#define FSFW_OSAL_HOSTED_MUTEX_H_
|
||||
|
||||
#include "../../ipc/MutexIF.h"
|
||||
|
||||
#include <mutex>
|
||||
|
||||
/**
|
||||
* @brief OS component to implement MUTual EXclusion
|
||||
*
|
||||
* @details
|
||||
* Mutexes are binary semaphores which include a priority inheritance mechanism.
|
||||
* Documentation: https://www.freertos.org/Real-time-embedded-RTOS-mutexes.html
|
||||
* @ingroup osal
|
||||
*/
|
||||
class Mutex : public MutexIF {
|
||||
public:
|
||||
Mutex();
|
||||
ReturnValue_t lockMutex(TimeoutType timeoutType =
|
||||
TimeoutType::BLOCKING, uint32_t timeoutMs = 0) override;
|
||||
ReturnValue_t unlockMutex() override;
|
||||
|
||||
std::timed_mutex* getMutexHandle();
|
||||
private:
|
||||
bool locked = false;
|
||||
std::timed_mutex mutex;
|
||||
};
|
||||
|
||||
#endif /* FSFW_OSAL_HOSTED_MUTEX_H_ */
|
28
osal/host/MutexFactory.cpp
Normal file
28
osal/host/MutexFactory.cpp
Normal file
@ -0,0 +1,28 @@
|
||||
#include "../../ipc/MutexFactory.h"
|
||||
#include "../../osal/host/Mutex.h"
|
||||
|
||||
//TODO: Different variant than the lazy loading in QueueFactory.
|
||||
//What's better and why? -> one is on heap the other on bss/data
|
||||
//MutexFactory* MutexFactory::factoryInstance = new MutexFactory();
|
||||
MutexFactory* MutexFactory::factoryInstance = nullptr;
|
||||
|
||||
MutexFactory::MutexFactory() {
|
||||
}
|
||||
|
||||
MutexFactory::~MutexFactory() {
|
||||
}
|
||||
|
||||
MutexFactory* MutexFactory::instance() {
|
||||
if (factoryInstance == nullptr){
|
||||
factoryInstance = new MutexFactory();
|
||||
}
|
||||
return MutexFactory::factoryInstance;
|
||||
}
|
||||
|
||||
MutexIF* MutexFactory::createMutex() {
|
||||
return new Mutex();
|
||||
}
|
||||
|
||||
void MutexFactory::deleteMutex(MutexIF* mutex) {
|
||||
delete mutex;
|
||||
}
|
176
osal/host/PeriodicTask.cpp
Normal file
176
osal/host/PeriodicTask.cpp
Normal file
@ -0,0 +1,176 @@
|
||||
#include "Mutex.h"
|
||||
#include "PeriodicTask.h"
|
||||
|
||||
#include "../../ipc/MutexFactory.h"
|
||||
#include "../../serviceinterface/ServiceInterfaceStream.h"
|
||||
#include "../../tasks/ExecutableObjectIF.h"
|
||||
|
||||
#include <thread>
|
||||
#include <chrono>
|
||||
|
||||
#if defined(WIN32)
|
||||
#include <windows.h>
|
||||
#elif defined(LINUX)
|
||||
#include <pthread.h>
|
||||
#endif
|
||||
|
||||
PeriodicTask::PeriodicTask(const char *name, TaskPriority setPriority,
|
||||
TaskStackSize setStack, TaskPeriod setPeriod,
|
||||
void (*setDeadlineMissedFunc)()) :
|
||||
started(false), taskName(name), period(setPeriod),
|
||||
deadlineMissedFunc(setDeadlineMissedFunc) {
|
||||
// It is propably possible to set task priorities by using the native
|
||||
// task handles for Windows / Linux
|
||||
mainThread = std::thread(&PeriodicTask::taskEntryPoint, this, this);
|
||||
#if defined(WIN32)
|
||||
/* List of possible priority classes:
|
||||
* https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/
|
||||
* nf-processthreadsapi-setpriorityclass
|
||||
* And respective thread priority numbers:
|
||||
* https://docs.microsoft.com/en-us/windows/
|
||||
* win32/procthread/scheduling-priorities */
|
||||
int result = SetPriorityClass(
|
||||
reinterpret_cast<HANDLE>(mainThread.native_handle()),
|
||||
ABOVE_NORMAL_PRIORITY_CLASS);
|
||||
if(result != 0) {
|
||||
sif::error << "PeriodicTask: Windows SetPriorityClass failed with code "
|
||||
<< GetLastError() << std::endl;
|
||||
}
|
||||
result = SetThreadPriority(
|
||||
reinterpret_cast<HANDLE>(mainThread.native_handle()),
|
||||
THREAD_PRIORITY_NORMAL);
|
||||
if(result != 0) {
|
||||
sif::error << "PeriodicTask: Windows SetPriorityClass failed with code "
|
||||
<< GetLastError() << std::endl;
|
||||
}
|
||||
#elif defined(LINUX)
|
||||
// we can just copy and paste the code from linux here.
|
||||
#endif
|
||||
}
|
||||
|
||||
PeriodicTask::~PeriodicTask(void) {
|
||||
//Do not delete objects, we were responsible for ptrs only.
|
||||
terminateThread = true;
|
||||
if(mainThread.joinable()) {
|
||||
mainThread.join();
|
||||
}
|
||||
delete this;
|
||||
}
|
||||
|
||||
void PeriodicTask::taskEntryPoint(void* argument) {
|
||||
PeriodicTask *originalTask(reinterpret_cast<PeriodicTask*>(argument));
|
||||
|
||||
|
||||
if (not originalTask->started) {
|
||||
// we have to suspend/block here until the task is started.
|
||||
// if semaphores are implemented, use them here.
|
||||
std::unique_lock<std::mutex> lock(initMutex);
|
||||
initCondition.wait(lock);
|
||||
}
|
||||
|
||||
this->taskFunctionality();
|
||||
sif::debug << "PeriodicTask::taskEntryPoint: "
|
||||
"Returned from taskFunctionality." << std::endl;
|
||||
}
|
||||
|
||||
ReturnValue_t PeriodicTask::startTask() {
|
||||
started = true;
|
||||
|
||||
// Notify task to start.
|
||||
std::lock_guard<std::mutex> lock(initMutex);
|
||||
initCondition.notify_one();
|
||||
|
||||
return HasReturnvaluesIF::RETURN_OK;
|
||||
}
|
||||
|
||||
ReturnValue_t PeriodicTask::sleepFor(uint32_t ms) {
|
||||
std::this_thread::sleep_for(std::chrono::milliseconds(ms));
|
||||
return HasReturnvaluesIF::RETURN_OK;
|
||||
}
|
||||
|
||||
void PeriodicTask::taskFunctionality() {
|
||||
std::chrono::milliseconds periodChrono(static_cast<uint32_t>(period*1000));
|
||||
auto currentStartTime {
|
||||
std::chrono::duration_cast<std::chrono::milliseconds>(
|
||||
std::chrono::system_clock::now().time_since_epoch())
|
||||
};
|
||||
auto nextStartTime{ currentStartTime };
|
||||
|
||||
/* Enter the loop that defines the task behavior. */
|
||||
for (;;) {
|
||||
if(terminateThread.load()) {
|
||||
break;
|
||||
}
|
||||
for (ObjectList::iterator it = objectList.begin();
|
||||
it != objectList.end(); ++it) {
|
||||
(*it)->performOperation();
|
||||
}
|
||||
if(not delayForInterval(¤tStartTime, periodChrono)) {
|
||||
sif::warning << "PeriodicTask: " << taskName <<
|
||||
" missed deadline!\n" << std::flush;
|
||||
if(deadlineMissedFunc != nullptr) {
|
||||
this->deadlineMissedFunc();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
ReturnValue_t PeriodicTask::addComponent(object_id_t object) {
|
||||
ExecutableObjectIF* newObject = objectManager->get<ExecutableObjectIF>(
|
||||
object);
|
||||
if (newObject == nullptr) {
|
||||
return HasReturnvaluesIF::RETURN_FAILED;
|
||||
}
|
||||
objectList.push_back(newObject);
|
||||
return HasReturnvaluesIF::RETURN_OK;
|
||||
}
|
||||
|
||||
uint32_t PeriodicTask::getPeriodMs() const {
|
||||
return period * 1000;
|
||||
}
|
||||
|
||||
bool PeriodicTask::delayForInterval(chron_ms* previousWakeTimeMs,
|
||||
const chron_ms interval) {
|
||||
bool shouldDelay = false;
|
||||
//Get current wakeup time
|
||||
auto currentStartTime =
|
||||
std::chrono::duration_cast<std::chrono::milliseconds>(
|
||||
std::chrono::system_clock::now().time_since_epoch());
|
||||
/* Generate the tick time at which the task wants to wake. */
|
||||
auto nextTimeToWake_ms = (*previousWakeTimeMs) + interval;
|
||||
|
||||
if (currentStartTime < *previousWakeTimeMs) {
|
||||
/* The tick count has overflowed since this function was
|
||||
lasted called. In this case the only time we should ever
|
||||
actually delay is if the wake time has also overflowed,
|
||||
and the wake time is greater than the tick time. When this
|
||||
is the case it is as if neither time had overflowed. */
|
||||
if ((nextTimeToWake_ms < *previousWakeTimeMs)
|
||||
&& (nextTimeToWake_ms > currentStartTime)) {
|
||||
shouldDelay = true;
|
||||
}
|
||||
} else {
|
||||
/* The tick time has not overflowed. In this case we will
|
||||
delay if either the wake time has overflowed, and/or the
|
||||
tick time is less than the wake time. */
|
||||
if ((nextTimeToWake_ms < *previousWakeTimeMs)
|
||||
|| (nextTimeToWake_ms > currentStartTime)) {
|
||||
shouldDelay = true;
|
||||
}
|
||||
}
|
||||
|
||||
/* Update the wake time ready for the next call. */
|
||||
|
||||
(*previousWakeTimeMs) = nextTimeToWake_ms;
|
||||
|
||||
if (shouldDelay) {
|
||||
auto sleepTime = std::chrono::duration_cast<std::chrono::milliseconds>(
|
||||
nextTimeToWake_ms - currentStartTime);
|
||||
std::this_thread::sleep_for(sleepTime);
|
||||
return true;
|
||||
}
|
||||
//We are shifting the time in case the deadline was missed like rtems
|
||||
(*previousWakeTimeMs) = currentStartTime;
|
||||
return false;
|
||||
|
||||
}
|
123
osal/host/PeriodicTask.h
Normal file
123
osal/host/PeriodicTask.h
Normal file
@ -0,0 +1,123 @@
|
||||
#ifndef FRAMEWORK_OSAL_HOST_PERIODICTASK_H_
|
||||
#define FRAMEWORK_OSAL_HOST_PERIODICTASK_H_
|
||||
|
||||
#include "../../objectmanager/ObjectManagerIF.h"
|
||||
#include "../../tasks/PeriodicTaskIF.h"
|
||||
#include "../../tasks/Typedef.h"
|
||||
|
||||
#include <vector>
|
||||
#include <thread>
|
||||
#include <condition_variable>
|
||||
#include <atomic>
|
||||
|
||||
class ExecutableObjectIF;
|
||||
|
||||
/**
|
||||
* @brief This class represents a specialized task for
|
||||
* periodic activities of multiple objects.
|
||||
* @details
|
||||
*
|
||||
* @ingroup task_handling
|
||||
*/
|
||||
class PeriodicTask: public PeriodicTaskIF {
|
||||
public:
|
||||
/**
|
||||
* @brief Standard constructor of the class.
|
||||
* @details
|
||||
* The class is initialized without allocated objects. These need to be
|
||||
* added with #addComponent.
|
||||
* @param priority
|
||||
* @param stack_size
|
||||
* @param setPeriod
|
||||
* @param setDeadlineMissedFunc
|
||||
* The function pointer to the deadline missed function that shall be
|
||||
* assigned.
|
||||
*/
|
||||
PeriodicTask(const char *name, TaskPriority setPriority, TaskStackSize setStack,
|
||||
TaskPeriod setPeriod,void (*setDeadlineMissedFunc)());
|
||||
/**
|
||||
* @brief Currently, the executed object's lifetime is not coupled with
|
||||
* the task object's lifetime, so the destructor is empty.
|
||||
*/
|
||||
virtual ~PeriodicTask(void);
|
||||
|
||||
/**
|
||||
* @brief The method to start the task.
|
||||
* @details The method starts the task with the respective system call.
|
||||
* Entry point is the taskEntryPoint method described below.
|
||||
* The address of the task object is passed as an argument
|
||||
* to the system call.
|
||||
*/
|
||||
ReturnValue_t startTask(void);
|
||||
/**
|
||||
* Adds an object to the list of objects to be executed.
|
||||
* The objects are executed in the order added.
|
||||
* @param object Id of the object to add.
|
||||
* @return
|
||||
* -@c RETURN_OK on success
|
||||
* -@c RETURN_FAILED if the object could not be added.
|
||||
*/
|
||||
ReturnValue_t addComponent(object_id_t object);
|
||||
|
||||
uint32_t getPeriodMs() const;
|
||||
|
||||
ReturnValue_t sleepFor(uint32_t ms);
|
||||
|
||||
protected:
|
||||
using chron_ms = std::chrono::milliseconds;
|
||||
bool started;
|
||||
//!< Typedef for the List of objects.
|
||||
typedef std::vector<ExecutableObjectIF*> ObjectList;
|
||||
std::thread mainThread;
|
||||
std::atomic<bool> terminateThread = false;
|
||||
|
||||
/**
|
||||
* @brief This attribute holds a list of objects to be executed.
|
||||
*/
|
||||
ObjectList objectList;
|
||||
|
||||
std::condition_variable initCondition;
|
||||
std::mutex initMutex;
|
||||
std::string taskName;
|
||||
/**
|
||||
* @brief The period of the task.
|
||||
* @details
|
||||
* The period determines the frequency of the task's execution.
|
||||
* It is expressed in clock ticks.
|
||||
*/
|
||||
TaskPeriod period;
|
||||
/**
|
||||
* @brief The pointer to the deadline-missed function.
|
||||
* @details
|
||||
* This pointer stores the function that is executed if the task's deadline
|
||||
* is missed. So, each may react individually on a timing failure.
|
||||
* The pointer may be NULL, then nothing happens on missing the deadline.
|
||||
* The deadline is equal to the next execution of the periodic task.
|
||||
*/
|
||||
void (*deadlineMissedFunc)(void);
|
||||
/**
|
||||
* @brief This is the function executed in the new task's context.
|
||||
* @details
|
||||
* It converts the argument back to the thread object type and copies the
|
||||
* class instance to the task context.
|
||||
* The taskFunctionality method is called afterwards.
|
||||
* @param A pointer to the task object itself is passed as argument.
|
||||
*/
|
||||
|
||||
void taskEntryPoint(void* argument);
|
||||
/**
|
||||
* @brief The function containing the actual functionality of the task.
|
||||
* @details
|
||||
* The method sets and starts the task's period, then enters a loop that is
|
||||
* repeated as long as the isRunning attribute is true. Within the loop,
|
||||
* all performOperation methods of the added objects are called. Afterwards
|
||||
* the checkAndRestartPeriod system call blocks the task until the next
|
||||
* period. On missing the deadline, the deadlineMissedFunction is executed.
|
||||
*/
|
||||
void taskFunctionality(void);
|
||||
|
||||
bool delayForInterval(chron_ms * previousWakeTimeMs,
|
||||
const chron_ms interval);
|
||||
};
|
||||
|
||||
#endif /* PERIODICTASK_H_ */
|
41
osal/host/QueueFactory.cpp
Normal file
41
osal/host/QueueFactory.cpp
Normal file
@ -0,0 +1,41 @@
|
||||
#include "../../ipc/QueueFactory.h"
|
||||
#include "../../osal/host/MessageQueue.h"
|
||||
#include "../../serviceinterface/ServiceInterfaceStream.h"
|
||||
#include <cstring>
|
||||
|
||||
QueueFactory* QueueFactory::factoryInstance = nullptr;
|
||||
|
||||
|
||||
ReturnValue_t MessageQueueSenderIF::sendMessage(MessageQueueId_t sendTo,
|
||||
MessageQueueMessageIF* message, MessageQueueId_t sentFrom,
|
||||
bool ignoreFault) {
|
||||
return MessageQueue::sendMessageFromMessageQueue(sendTo,message,
|
||||
sentFrom,ignoreFault);
|
||||
return HasReturnvaluesIF::RETURN_OK;
|
||||
}
|
||||
|
||||
QueueFactory* QueueFactory::instance() {
|
||||
if (factoryInstance == nullptr) {
|
||||
factoryInstance = new QueueFactory;
|
||||
}
|
||||
return factoryInstance;
|
||||
}
|
||||
|
||||
QueueFactory::QueueFactory() {
|
||||
}
|
||||
|
||||
QueueFactory::~QueueFactory() {
|
||||
}
|
||||
|
||||
MessageQueueIF* QueueFactory::createMessageQueue(uint32_t messageDepth,
|
||||
size_t maxMessageSize) {
|
||||
// A thread-safe queue can be implemented by using a combination
|
||||
// of std::queue and std::mutex. This uses dynamic memory allocation
|
||||
// which could be alleviated by using a custom allocator, external library
|
||||
// (etl::queue) or simply using std::queue, we're on a host machine anyway.
|
||||
return new MessageQueue(messageDepth, maxMessageSize);
|
||||
}
|
||||
|
||||
void QueueFactory::deleteMessageQueue(MessageQueueIF* queue) {
|
||||
delete queue;
|
||||
}
|
52
osal/host/QueueMapManager.cpp
Normal file
52
osal/host/QueueMapManager.cpp
Normal file
@ -0,0 +1,52 @@
|
||||
#include "QueueMapManager.h"
|
||||
|
||||
#include "../../ipc/MutexFactory.h"
|
||||
#include "../../ipc/MutexHelper.h"
|
||||
|
||||
QueueMapManager* QueueMapManager::mqManagerInstance = nullptr;
|
||||
|
||||
QueueMapManager::QueueMapManager() {
|
||||
mapLock = MutexFactory::instance()->createMutex();
|
||||
}
|
||||
|
||||
QueueMapManager* QueueMapManager::instance() {
|
||||
if (mqManagerInstance == nullptr){
|
||||
mqManagerInstance = new QueueMapManager();
|
||||
}
|
||||
return QueueMapManager::mqManagerInstance;
|
||||
}
|
||||
|
||||
ReturnValue_t QueueMapManager::addMessageQueue(
|
||||
MessageQueueIF* queueToInsert, MessageQueueId_t* id) {
|
||||
// Not thread-safe, but it is assumed all message queues are created
|
||||
// at software initialization now. If this is to be made thread-safe in
|
||||
// the future, it propably would be sufficient to lock the increment
|
||||
// operation here
|
||||
uint32_t currentId = queueCounter++;
|
||||
auto returnPair = queueMap.emplace(currentId, queueToInsert);
|
||||
if(not returnPair.second) {
|
||||
// this should never happen for the atomic variable.
|
||||
sif::error << "QueueMapManager: This ID is already inside the map!"
|
||||
<< std::endl;
|
||||
return HasReturnvaluesIF::RETURN_FAILED;
|
||||
}
|
||||
if (id != nullptr) {
|
||||
*id = currentId;
|
||||
}
|
||||
return HasReturnvaluesIF::RETURN_OK;
|
||||
}
|
||||
|
||||
MessageQueueIF* QueueMapManager::getMessageQueue(
|
||||
MessageQueueId_t messageQueueId) const {
|
||||
MutexHelper(mapLock, MutexIF::TimeoutType::WAITING, 50);
|
||||
auto queueIter = queueMap.find(messageQueueId);
|
||||
if(queueIter != queueMap.end()) {
|
||||
return queueIter->second;
|
||||
}
|
||||
else {
|
||||
sif::warning << "QueueMapManager::getQueueHandle: The ID" <<
|
||||
messageQueueId << " does not exists in the map" << std::endl;
|
||||
return nullptr;
|
||||
}
|
||||
}
|
||||
|
47
osal/host/QueueMapManager.h
Normal file
47
osal/host/QueueMapManager.h
Normal file
@ -0,0 +1,47 @@
|
||||
#ifndef FSFW_OSAL_HOST_QUEUEMAPMANAGER_H_
|
||||
#define FSFW_OSAL_HOST_QUEUEMAPMANAGER_H_
|
||||
|
||||
#include "../../ipc/MessageQueueSenderIF.h"
|
||||
#include "../../osal/host/MessageQueue.h"
|
||||
#include <unordered_map>
|
||||
#include <atomic>
|
||||
|
||||
using QueueMap = std::unordered_map<MessageQueueId_t, MessageQueueIF*>;
|
||||
|
||||
|
||||
/**
|
||||
* An internal map to map message queue IDs to message queues.
|
||||
* This propably should be a singleton..
|
||||
*/
|
||||
class QueueMapManager {
|
||||
public:
|
||||
//! Returns the single instance of SemaphoreFactory.
|
||||
static QueueMapManager* instance();
|
||||
|
||||
/**
|
||||
* Insert a message queue into the map and returns a message queue ID
|
||||
* @param queue The message queue to insert.
|
||||
* @param id The passed value will be set unless a nullptr is passed
|
||||
* @return
|
||||
*/
|
||||
ReturnValue_t addMessageQueue(MessageQueueIF* queue, MessageQueueId_t*
|
||||
id = nullptr);
|
||||
/**
|
||||
* Get the message queue handle by providing a message queue ID.
|
||||
* @param messageQueueId
|
||||
* @return
|
||||
*/
|
||||
MessageQueueIF* getMessageQueue(MessageQueueId_t messageQueueId) const;
|
||||
|
||||
private:
|
||||
//! External instantiation is forbidden.
|
||||
QueueMapManager();
|
||||
uint32_t queueCounter = 1;
|
||||
MutexIF* mapLock;
|
||||
QueueMap queueMap;
|
||||
static QueueMapManager* mqManagerInstance;
|
||||
};
|
||||
|
||||
|
||||
|
||||
#endif /* FSFW_OSAL_HOST_QUEUEMAPMANAGER_H_ */
|
39
osal/host/SemaphoreFactory.cpp
Normal file
39
osal/host/SemaphoreFactory.cpp
Normal file
@ -0,0 +1,39 @@
|
||||
#include "../../tasks/SemaphoreFactory.h"
|
||||
#include "../../osal/linux/BinarySemaphore.h"
|
||||
#include "../../osal/linux/CountingSemaphore.h"
|
||||
#include "../../serviceinterface/ServiceInterfaceStream.h"
|
||||
|
||||
SemaphoreFactory* SemaphoreFactory::factoryInstance = nullptr;
|
||||
|
||||
SemaphoreFactory::SemaphoreFactory() {
|
||||
}
|
||||
|
||||
SemaphoreFactory::~SemaphoreFactory() {
|
||||
delete factoryInstance;
|
||||
}
|
||||
|
||||
SemaphoreFactory* SemaphoreFactory::instance() {
|
||||
if (factoryInstance == nullptr){
|
||||
factoryInstance = new SemaphoreFactory();
|
||||
}
|
||||
return SemaphoreFactory::factoryInstance;
|
||||
}
|
||||
|
||||
SemaphoreIF* SemaphoreFactory::createBinarySemaphore(uint32_t arguments) {
|
||||
// Just gonna wait for full C++20 for now.
|
||||
sif::error << "SemaphoreFactory: Binary Semaphore not implemented yet."
|
||||
" Returning nullptr!\n" << std::flush;
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
SemaphoreIF* SemaphoreFactory::createCountingSemaphore(const uint8_t maxCount,
|
||||
uint8_t initCount, uint32_t arguments) {
|
||||
// Just gonna wait for full C++20 for now.
|
||||
sif::error << "SemaphoreFactory: Counting Semaphore not implemented yet."
|
||||
" Returning nullptr!\n" << std::flush;
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
void SemaphoreFactory::deleteSemaphore(SemaphoreIF* semaphore) {
|
||||
delete semaphore;
|
||||
}
|
51
osal/host/TaskFactory.cpp
Normal file
51
osal/host/TaskFactory.cpp
Normal file
@ -0,0 +1,51 @@
|
||||
#include "../../osal/host/FixedTimeslotTask.h"
|
||||
#include "../../osal/host/PeriodicTask.h"
|
||||
#include "../../tasks/TaskFactory.h"
|
||||
#include "../../returnvalues/HasReturnvaluesIF.h"
|
||||
#include "../../tasks/PeriodicTaskIF.h"
|
||||
|
||||
#include <chrono>
|
||||
|
||||
TaskFactory* TaskFactory::factoryInstance = new TaskFactory();
|
||||
|
||||
// Will propably not be used for hosted implementation
|
||||
const size_t PeriodicTaskIF::MINIMUM_STACK_SIZE = 0;
|
||||
|
||||
TaskFactory::TaskFactory() {
|
||||
}
|
||||
|
||||
TaskFactory::~TaskFactory() {
|
||||
}
|
||||
|
||||
TaskFactory* TaskFactory::instance() {
|
||||
return TaskFactory::factoryInstance;
|
||||
}
|
||||
|
||||
PeriodicTaskIF* TaskFactory::createPeriodicTask(TaskName name_,
|
||||
TaskPriority taskPriority_,TaskStackSize stackSize_,
|
||||
TaskPeriod periodInSeconds_,
|
||||
TaskDeadlineMissedFunction deadLineMissedFunction_) {
|
||||
return new PeriodicTask(name_, taskPriority_, stackSize_, periodInSeconds_,
|
||||
deadLineMissedFunction_);
|
||||
}
|
||||
|
||||
FixedTimeslotTaskIF* TaskFactory::createFixedTimeslotTask(TaskName name_,
|
||||
TaskPriority taskPriority_,TaskStackSize stackSize_,
|
||||
TaskPeriod periodInSeconds_,
|
||||
TaskDeadlineMissedFunction deadLineMissedFunction_) {
|
||||
return new FixedTimeslotTask(name_, taskPriority_, stackSize_,
|
||||
periodInSeconds_, deadLineMissedFunction_);
|
||||
}
|
||||
|
||||
ReturnValue_t TaskFactory::deleteTask(PeriodicTaskIF* task) {
|
||||
// This might block for some time!
|
||||
delete task;
|
||||
return HasReturnvaluesIF::RETURN_FAILED;
|
||||
}
|
||||
|
||||
ReturnValue_t TaskFactory::delayTask(uint32_t delayMs){
|
||||
std::this_thread::sleep_for(std::chrono::milliseconds(delayMs));
|
||||
return HasReturnvaluesIF::RETURN_OK;
|
||||
}
|
||||
|
||||
|
@ -25,6 +25,8 @@ ReturnValue_t PeriodicPosixTask::addComponent(object_id_t object) {
|
||||
ExecutableObjectIF* newObject = objectManager->get<ExecutableObjectIF>(
|
||||
object);
|
||||
if (newObject == nullptr) {
|
||||
sif::error << "PeriodicTask::addComponent: Invalid object. Make sure"
|
||||
<< " it implements ExecutableObjectIF!" << std::endl;
|
||||
return HasReturnvaluesIF::RETURN_FAILED;
|
||||
}
|
||||
objectList.push_back(newObject);
|
||||
@ -46,27 +48,33 @@ ReturnValue_t PeriodicPosixTask::startTask(void){
|
||||
}
|
||||
|
||||
void PeriodicPosixTask::taskFunctionality(void) {
|
||||
if(!started){
|
||||
if(not started) {
|
||||
suspend();
|
||||
}
|
||||
|
||||
for (auto const &object: objectList) {
|
||||
object->initializeAfterTaskCreation();
|
||||
}
|
||||
|
||||
uint64_t lastWakeTime = getCurrentMonotonicTimeMs();
|
||||
//The task's "infinite" inner loop is entered.
|
||||
while (1) {
|
||||
for (ObjectList::iterator it = objectList.begin();
|
||||
it != objectList.end(); ++it) {
|
||||
(*it)->performOperation();
|
||||
for (auto const &object: objectList) {
|
||||
object->performOperation();
|
||||
}
|
||||
if(!PosixThread::delayUntil(&lastWakeTime,periodMs)){
|
||||
|
||||
if(not PosixThread::delayUntil(&lastWakeTime, periodMs)){
|
||||
char name[20] = {0};
|
||||
int status = pthread_getname_np(pthread_self(), name, sizeof(name));
|
||||
if(status == 0) {
|
||||
sif::error << "PeriodicPosixTask " << name << ": Deadline "
|
||||
"missed." << std::endl;
|
||||
}else{
|
||||
}
|
||||
else {
|
||||
sif::error << "PeriodicPosixTask X: Deadline missed. " <<
|
||||
status << std::endl;
|
||||
}
|
||||
if (this->deadlineMissedFunc != NULL) {
|
||||
if (this->deadlineMissedFunc != nullptr) {
|
||||
this->deadlineMissedFunc();
|
||||
}
|
||||
}
|
||||
|
@ -32,7 +32,7 @@ public:
|
||||
* The address of the task object is passed as an argument
|
||||
* to the system call.
|
||||
*/
|
||||
ReturnValue_t startTask(void);
|
||||
ReturnValue_t startTask() override;
|
||||
/**
|
||||
* Adds an object to the list of objects to be executed.
|
||||
* The objects are executed in the order added.
|
||||
|
@ -64,6 +64,7 @@ enum {
|
||||
LOCAL_POOL_OWNER_IF, //LPIF 58
|
||||
POOL_VARIABLE_IF, //PVA 59
|
||||
HOUSEKEEPING_MANAGER, //HKM 60
|
||||
DLE_ENCODER, //DLEE 61
|
||||
FW_CLASS_ID_COUNT //is actually count + 1 !
|
||||
|
||||
};
|
||||
|
@ -1,5 +1,5 @@
|
||||
#ifndef ENDIANSWAPPER_H_
|
||||
#define ENDIANSWAPPER_H_
|
||||
#ifndef FSFW_SERIALIZE_ENDIANCONVERTER_H_
|
||||
#define FSFW_SERIALIZE_ENDIANCONVERTER_H_
|
||||
|
||||
#include "../osal/Endiness.h"
|
||||
#include <cstring>
|
||||
@ -35,9 +35,7 @@
|
||||
*/
|
||||
class EndianConverter {
|
||||
private:
|
||||
EndianConverter() {
|
||||
}
|
||||
;
|
||||
EndianConverter() {};
|
||||
public:
|
||||
/**
|
||||
* Convert a typed variable between big endian and machine endian.
|
||||
@ -123,4 +121,4 @@ public:
|
||||
}
|
||||
};
|
||||
|
||||
#endif /* ENDIANSWAPPER_H_ */
|
||||
#endif /* FSFW_SERIALIZE_ENDIANCONVERTER_H_ */
|
||||
|
@ -1,13 +1,14 @@
|
||||
#ifndef FRAMEWORK_SERIALIZE_SERIALARRAYLISTADAPTER_H_
|
||||
#define FRAMEWORK_SERIALIZE_SERIALARRAYLISTADAPTER_H_
|
||||
#ifndef FSFW_SERIALIZE_SERIALARRAYLISTADAPTER_H_
|
||||
#define FSFW_SERIALIZE_SERIALARRAYLISTADAPTER_H_
|
||||
|
||||
#include "../container/ArrayList.h"
|
||||
#include "SerializeIF.h"
|
||||
#include "../container/ArrayList.h"
|
||||
#include <utility>
|
||||
|
||||
/**
|
||||
* @ingroup serialize
|
||||
* Also serializes length field !
|
||||
* @author baetz
|
||||
* @ingroup serialize
|
||||
*/
|
||||
template<typename T, typename count_t = uint8_t>
|
||||
class SerialArrayListAdapter : public SerializeIF {
|
||||
@ -27,8 +28,8 @@ public:
|
||||
buffer, size, maxSize, streamEndianness);
|
||||
count_t i = 0;
|
||||
while ((result == HasReturnvaluesIF::RETURN_OK) && (i < list->size)) {
|
||||
result = SerializeAdapter::serialize(&list->entries[i], buffer,
|
||||
size, maxSize, streamEndianness);
|
||||
result = SerializeAdapter::serialize(&list->entries[i], buffer, size,
|
||||
maxSize, streamEndianness);
|
||||
++i;
|
||||
}
|
||||
return result;
|
||||
@ -66,6 +67,7 @@ public:
|
||||
if (tempSize > list->maxSize()) {
|
||||
return SerializeIF::TOO_MANY_ELEMENTS;
|
||||
}
|
||||
|
||||
list->size = tempSize;
|
||||
count_t i = 0;
|
||||
while ((result == HasReturnvaluesIF::RETURN_OK) && (i < list->size)) {
|
||||
@ -76,10 +78,9 @@ public:
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
private:
|
||||
ArrayList<T, count_t> *adaptee;
|
||||
};
|
||||
|
||||
|
||||
|
||||
#endif /* FRAMEWORK_SERIALIZE_SERIALARRAYLISTADAPTER_H_ */
|
||||
#endif /* FSFW_SERIALIZE_SERIALARRAYLISTADAPTER_H_ */
|
||||
|
@ -1,31 +1,57 @@
|
||||
#ifndef SERIALFIXEDARRAYLISTADAPTER_H_
|
||||
#define SERIALFIXEDARRAYLISTADAPTER_H_
|
||||
#ifndef FSFW_SERIALIZE_SERIALFIXEDARRAYLISTADAPTER_H_
|
||||
#define FSFW_SERIALIZE_SERIALFIXEDARRAYLISTADAPTER_H_
|
||||
|
||||
#include "../container/FixedArrayList.h"
|
||||
#include "SerialArrayListAdapter.h"
|
||||
#include "../container/FixedArrayList.h"
|
||||
|
||||
/**
|
||||
* \ingroup serialize
|
||||
* @brief This adapter provides an interface for SerializeIF to serialize and
|
||||
* deserialize buffers with a header containing the buffer length.
|
||||
* @details
|
||||
* Can be used by SerialLinkedListAdapter by declaring
|
||||
* as a linked element with SerializeElement<SerialFixedArrayListAdapter<...>>.
|
||||
* The sequence of objects is defined in the constructor by
|
||||
* using the setStart and setNext functions.
|
||||
*
|
||||
* @tparam BUFFER_TYPE: Specifies the data type of the buffer
|
||||
* @tparam MAX_SIZE: Specifies the maximum allowed number of elements
|
||||
* (not bytes!)
|
||||
* @tparam count_t: specifies the type/size of the length field which defaults
|
||||
* to one byte.
|
||||
* @ingroup serialize
|
||||
*/
|
||||
template<typename T, uint32_t MAX_SIZE, typename count_t = uint8_t>
|
||||
class SerialFixedArrayListAdapter : public FixedArrayList<T, MAX_SIZE, count_t>, public SerializeIF {
|
||||
template<typename BUFFER_TYPE, uint32_t MAX_SIZE, typename count_t = uint8_t>
|
||||
class SerialFixedArrayListAdapter :
|
||||
public FixedArrayList<BUFFER_TYPE, MAX_SIZE, count_t>,
|
||||
public SerializeIF {
|
||||
public:
|
||||
/**
|
||||
* Constructor arguments are forwarded to FixedArrayList constructor.
|
||||
* Refer to the fixed array list constructors for different options.
|
||||
* @param args
|
||||
*/
|
||||
template<typename... Args>
|
||||
SerialFixedArrayListAdapter(Args... args) : FixedArrayList<T, MAX_SIZE, count_t>(std::forward<Args>(args)...) {
|
||||
}
|
||||
SerialFixedArrayListAdapter(Args... args) :
|
||||
FixedArrayList<BUFFER_TYPE, MAX_SIZE, count_t>(
|
||||
std::forward<Args>(args)...){}
|
||||
|
||||
ReturnValue_t serialize(uint8_t** buffer, size_t* size,
|
||||
size_t maxSize, Endianness streamEndianness) const {
|
||||
return SerialArrayListAdapter<T, count_t>::serialize(this, buffer, size, maxSize, streamEndianness);
|
||||
return SerialArrayListAdapter<BUFFER_TYPE, count_t>::serialize(this,
|
||||
buffer, size, maxSize, streamEndianness);
|
||||
}
|
||||
|
||||
size_t getSerializedSize() const {
|
||||
return SerialArrayListAdapter<T, count_t>::getSerializedSize(this);
|
||||
return SerialArrayListAdapter<BUFFER_TYPE, count_t>::
|
||||
getSerializedSize(this);
|
||||
}
|
||||
|
||||
ReturnValue_t deSerialize(const uint8_t** buffer, size_t* size,
|
||||
Endianness streamEndianness) {
|
||||
return SerialArrayListAdapter<T, count_t>::deSerialize(this, buffer, size, streamEndianness);
|
||||
return SerialArrayListAdapter<BUFFER_TYPE, count_t>::deSerialize(this,
|
||||
buffer, size, streamEndianness);
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
|
||||
|
||||
#endif /* SERIALFIXEDARRAYLISTADAPTER_H_ */
|
||||
#endif /* FSFW_SERIALIZE_SERIALFIXEDARRAYLISTADAPTER_H_ */
|
||||
|
@ -1,32 +1,52 @@
|
||||
/**
|
||||
* @file SerialLinkedListAdapter.h
|
||||
* @brief This file defines the SerialLinkedListAdapter class.
|
||||
* @date 22.07.2014
|
||||
* @author baetz
|
||||
*/
|
||||
#ifndef SERIALLINKEDLISTADAPTER_H_
|
||||
#define SERIALLINKEDLISTADAPTER_H_
|
||||
#ifndef FSFW_SERIALIZE_SERIALLINKEDLISTADAPTER_H_
|
||||
#define FSFW_SERIALIZE_SERIALLINKEDLISTADAPTER_H_
|
||||
|
||||
#include "../container/SinglyLinkedList.h"
|
||||
#include "SerializeAdapter.h"
|
||||
#include "SerializeElement.h"
|
||||
#include "SerializeIF.h"
|
||||
//This is where we need the SerializeAdapter!
|
||||
|
||||
/**
|
||||
* \ingroup serialize
|
||||
* @brief Implement the conversion of object data to data streams
|
||||
* or vice-versa, using linked lists.
|
||||
* @details
|
||||
* An alternative to the AutoSerializeAdapter functions
|
||||
* - All object members with a datatype are declared as
|
||||
* SerializeElement<element_type> members inside the class
|
||||
* implementing this adapter.
|
||||
* - The element type can also be a SerialBufferAdapter to
|
||||
* de-/serialize buffers.
|
||||
* - The element type can also be a SerialFixedArrayListAdapter to
|
||||
* de-/serialize buffers with a size header, which is scanned automatically.
|
||||
*
|
||||
* The sequence of objects is defined in the constructor by using
|
||||
* the setStart and setNext functions.
|
||||
*
|
||||
* 1. The serialization process is done by instantiating the class and
|
||||
* calling serialize after all SerializeElement entries have been set by
|
||||
* using the constructor or setter functions. An additional size variable
|
||||
* can be supplied which is calculated/incremented automatically.
|
||||
* 2. The deserialization process is done by instantiating the class and
|
||||
* supplying a buffer with the data which is converted into an object.
|
||||
* The size of data to serialize can be supplied and is
|
||||
* decremented in the function. Range checking is done internally.
|
||||
* @author baetz
|
||||
* @ingroup serialize
|
||||
*/
|
||||
template<typename T, typename count_t = uint8_t>
|
||||
class SerialLinkedListAdapter: public SinglyLinkedList<T>, public SerializeIF {
|
||||
public:
|
||||
|
||||
SerialLinkedListAdapter(typename LinkedElement<T>::Iterator start,
|
||||
bool printCount = false) :
|
||||
SinglyLinkedList<T>(start), printCount(printCount) {
|
||||
}
|
||||
|
||||
SerialLinkedListAdapter(LinkedElement<T>* first, bool printCount = false) :
|
||||
SinglyLinkedList<T>(first), printCount(printCount) {
|
||||
|
||||
}
|
||||
|
||||
SerialLinkedListAdapter(bool printCount = false) :
|
||||
SinglyLinkedList<T>(), printCount(printCount) {
|
||||
}
|
||||
@ -49,13 +69,14 @@ public:
|
||||
uint8_t** buffer, size_t* size, size_t maxSize,
|
||||
Endianness streamEndianness) {
|
||||
ReturnValue_t result = HasReturnvaluesIF::RETURN_OK;
|
||||
while ((result == HasReturnvaluesIF::RETURN_OK) && (element != NULL)) {
|
||||
while ((result == HasReturnvaluesIF::RETURN_OK) and (element != nullptr)) {
|
||||
result = element->value->serialize(buffer, size, maxSize,
|
||||
streamEndianness);
|
||||
element = element->getNext();
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
virtual size_t getSerializedSize() const override {
|
||||
if (printCount) {
|
||||
return SerialLinkedListAdapter<T>::getSerializedSize()
|
||||
@ -64,32 +85,44 @@ public:
|
||||
return getSerializedSize(SinglyLinkedList<T>::start);
|
||||
}
|
||||
}
|
||||
|
||||
static size_t getSerializedSize(const LinkedElement<T> *element) {
|
||||
size_t size = 0;
|
||||
while (element != NULL) {
|
||||
while (element != nullptr) {
|
||||
size += element->value->getSerializedSize();
|
||||
element = element->getNext();
|
||||
}
|
||||
return size;
|
||||
}
|
||||
|
||||
|
||||
virtual ReturnValue_t deSerialize(const uint8_t** buffer, size_t* size,
|
||||
Endianness streamEndianness) override {
|
||||
return deSerialize(SinglyLinkedList<T>::start, buffer, size, streamEndianness);
|
||||
return deSerialize(SinglyLinkedList<T>::start, buffer, size,
|
||||
streamEndianness);
|
||||
}
|
||||
|
||||
static ReturnValue_t deSerialize(LinkedElement<T>* element,
|
||||
const uint8_t** buffer, size_t* size, Endianness streamEndianness) {
|
||||
ReturnValue_t result = HasReturnvaluesIF::RETURN_OK;
|
||||
while ((result == HasReturnvaluesIF::RETURN_OK) && (element != NULL)) {
|
||||
while ((result == HasReturnvaluesIF::RETURN_OK) and (element != nullptr)) {
|
||||
result = element->value->deSerialize(buffer, size, streamEndianness);
|
||||
element = element->getNext();
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
bool printCount;
|
||||
/**
|
||||
* Copying is forbidden by deleting the copy constructor and the copy
|
||||
* assignment operator because of the pointers to the linked list members.
|
||||
* Unless the child class implements an own copy constructor or
|
||||
* copy assignment operator, these operation will throw a compiler error.
|
||||
* @param
|
||||
*/
|
||||
SerialLinkedListAdapter(const SerialLinkedListAdapter &) = delete;
|
||||
SerialLinkedListAdapter& operator=(const SerialLinkedListAdapter&) = delete;
|
||||
|
||||
bool printCount;
|
||||
};
|
||||
|
||||
#endif /* SERIALLINKEDLISTADAPTER_H_ */
|
||||
#endif /* FSFW_SERIALIZE_SERIALLINKEDLISTADAPTER_H_ */
|
||||
|
@ -1,48 +1,114 @@
|
||||
#ifndef SERIALIZEADAPTER_H_
|
||||
#define SERIALIZEADAPTER_H_
|
||||
#ifndef _FSFW_SERIALIZE_SERIALIZEADAPTER_H_
|
||||
#define _FSFW_SERIALIZE_SERIALIZEADAPTER_H_
|
||||
|
||||
#include "../container/IsDerivedFrom.h"
|
||||
#include "../returnvalues/HasReturnvaluesIF.h"
|
||||
#include "EndianConverter.h"
|
||||
#include "SerializeIF.h"
|
||||
#include <string.h>
|
||||
#include <cstddef>
|
||||
#include <type_traits>
|
||||
|
||||
/**
|
||||
* \ingroup serialize
|
||||
* @brief These adapters provides an interface to use the SerializeIF functions
|
||||
* with arbitrary template objects to facilitate and simplify the
|
||||
* serialization of classes with different multiple different data types
|
||||
* into buffers and vice-versa.
|
||||
* @details
|
||||
* The correct serialization or deserialization function is chosen at
|
||||
* compile time with template type deduction.
|
||||
*
|
||||
* @ingroup serialize
|
||||
*/
|
||||
|
||||
class SerializeAdapter {
|
||||
public:
|
||||
/***
|
||||
* This function can be used to serialize a trivial copy-able type or a
|
||||
* child of SerializeIF.
|
||||
* The right template to be called is determined in the function itself.
|
||||
* For objects of non trivial copy-able type this function is almost never
|
||||
* called by the user directly. Instead helpers for specific types like
|
||||
* SerialArrayListAdapter or SerialLinkedListAdapter is the right choice here.
|
||||
*
|
||||
* @param[in] object Object to serialize, the used type is deduced from this pointer
|
||||
* @param[in/out] buffer Buffer to serialize into. Will be moved by the function.
|
||||
* @param[in/out] size Size of current written buffer. Will be incremented by the function.
|
||||
* @param[in] maxSize Max size of Buffer
|
||||
* @param[in] streamEndianness Endianness of serialized element as in according to SerializeIF::Endianness
|
||||
* @return
|
||||
* - @c BUFFER_TOO_SHORT The given buffer in is too short
|
||||
* - @c RETURN_FAILED Generic Error
|
||||
* - @c RETURN_OK Successful serialization
|
||||
*/
|
||||
template<typename T>
|
||||
static ReturnValue_t serialize(const T *object, uint8_t **buffer,
|
||||
size_t *size, size_t maxSize, SerializeIF::Endianness streamEndianness) {
|
||||
InternalSerializeAdapter<T, IsDerivedFrom<T, SerializeIF>::Is> adapter;
|
||||
size_t *size, size_t maxSize,
|
||||
SerializeIF::Endianness streamEndianness) {
|
||||
InternalSerializeAdapter<T, std::is_base_of<SerializeIF, T>::value> adapter;
|
||||
return adapter.serialize(object, buffer, size, maxSize,
|
||||
streamEndianness);
|
||||
}
|
||||
/**
|
||||
* Function to return the serialized size of the object in the pointer.
|
||||
* May be a trivially copy-able object or a Child of SerializeIF
|
||||
*
|
||||
* @param object Pointer to Object
|
||||
* @return Serialized size of object
|
||||
*/
|
||||
template<typename T>
|
||||
static uint32_t getSerializedSize(const T *object) {
|
||||
InternalSerializeAdapter<T, IsDerivedFrom<T, SerializeIF>::Is> adapter;
|
||||
static size_t getSerializedSize(const T *object){
|
||||
InternalSerializeAdapter<T, std::is_base_of<SerializeIF, T>::value> adapter;
|
||||
return adapter.getSerializedSize(object);
|
||||
}
|
||||
/**
|
||||
* @brief
|
||||
* Deserializes a object from a given buffer of given size.
|
||||
* Object Must be trivially copy-able or a child of SerializeIF.
|
||||
*
|
||||
* @details
|
||||
* Buffer will be moved to the current read location. Size will be decreased by the function.
|
||||
*
|
||||
* @param[in/out] buffer Buffer to deSerialize from. Will be moved by the function.
|
||||
* @param[in/out] size Remaining size of the buffer to read from. Will be decreased by function.
|
||||
* @param[in] streamEndianness Endianness as in according to SerializeIF::Endianness
|
||||
* @return
|
||||
* - @c STREAM_TOO_SHORT The input stream is too short to deSerialize the object
|
||||
* - @c TOO_MANY_ELEMENTS The buffer has more inputs than expected
|
||||
* - @c RETURN_FAILED Generic Error
|
||||
* - @c RETURN_OK Successful deserialization
|
||||
*/
|
||||
template<typename T>
|
||||
static ReturnValue_t deSerialize(T *object, const uint8_t **buffer,
|
||||
size_t *size, SerializeIF::Endianness streamEndianness) {
|
||||
InternalSerializeAdapter<T, IsDerivedFrom<T, SerializeIF>::Is> adapter;
|
||||
InternalSerializeAdapter<T, std::is_base_of<SerializeIF, T>::value> adapter;
|
||||
return adapter.deSerialize(object, buffer, size, streamEndianness);
|
||||
}
|
||||
private:
|
||||
template<typename T, int>
|
||||
class InternalSerializeAdapter {
|
||||
/**
|
||||
* Internal template to deduce the right function calls at compile time
|
||||
*/
|
||||
template<typename T, bool> class InternalSerializeAdapter;
|
||||
|
||||
/**
|
||||
* Template to be used if T is not a child of SerializeIF
|
||||
*
|
||||
* @tparam T T must be trivially_copyable
|
||||
*/
|
||||
template<typename T>
|
||||
class InternalSerializeAdapter<T, false> {
|
||||
static_assert (std::is_trivially_copyable<T>::value,
|
||||
"If a type needs to be serialized it must be a child of "
|
||||
"SerializeIF or trivially copy-able");
|
||||
public:
|
||||
static ReturnValue_t serialize(const T *object, uint8_t **buffer,
|
||||
size_t *size, size_t max_size, SerializeIF::Endianness streamEndianness) {
|
||||
size_t *size, size_t max_size,
|
||||
SerializeIF::Endianness streamEndianness) {
|
||||
size_t ignoredSize = 0;
|
||||
if (size == NULL) {
|
||||
if (size == nullptr) {
|
||||
size = &ignoredSize;
|
||||
}
|
||||
//TODO check integer overflow of *size
|
||||
if (sizeof(T) + *size <= max_size) {
|
||||
// Check remaining size is large enough and check integer
|
||||
// overflow of *size
|
||||
size_t newSize = sizeof(T) + *size;
|
||||
if ((newSize <= max_size) and (newSize > *size)) {
|
||||
T tmp;
|
||||
switch (streamEndianness) {
|
||||
case SerializeIF::Endianness::BIG:
|
||||
@ -56,7 +122,7 @@ private:
|
||||
tmp = *object;
|
||||
break;
|
||||
}
|
||||
memcpy(*buffer, &tmp, sizeof(T));
|
||||
std::memcpy(*buffer, &tmp, sizeof(T));
|
||||
*size += sizeof(T);
|
||||
(*buffer) += sizeof(T);
|
||||
return HasReturnvaluesIF::RETURN_OK;
|
||||
@ -70,7 +136,7 @@ private:
|
||||
T tmp;
|
||||
if (*size >= sizeof(T)) {
|
||||
*size -= sizeof(T);
|
||||
memcpy(&tmp, *buffer, sizeof(T));
|
||||
std::memcpy(&tmp, *buffer, sizeof(T));
|
||||
switch (streamEndianness) {
|
||||
case SerializeIF::Endianness::BIG:
|
||||
*object = EndianConverter::convertBigEndian<T>(tmp);
|
||||
@ -94,22 +160,26 @@ private:
|
||||
uint32_t getSerializedSize(const T *object) {
|
||||
return sizeof(T);
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
/**
|
||||
* Template for objects that inherit from SerializeIF
|
||||
*
|
||||
* @tparam T A child of SerializeIF
|
||||
*/
|
||||
template<typename T>
|
||||
class InternalSerializeAdapter<T, 1> {
|
||||
class InternalSerializeAdapter<T, true> {
|
||||
public:
|
||||
ReturnValue_t serialize(const T *object, uint8_t **buffer,
|
||||
size_t *size, size_t max_size,
|
||||
ReturnValue_t serialize(const T *object, uint8_t **buffer, size_t *size,
|
||||
size_t max_size,
|
||||
SerializeIF::Endianness streamEndianness) const {
|
||||
size_t ignoredSize = 0;
|
||||
if (size == NULL) {
|
||||
if (size == nullptr) {
|
||||
size = &ignoredSize;
|
||||
}
|
||||
return object->serialize(buffer, size, max_size, streamEndianness);
|
||||
}
|
||||
uint32_t getSerializedSize(const T *object) const {
|
||||
size_t getSerializedSize(const T *object) const {
|
||||
return object->getSerializedSize();
|
||||
}
|
||||
|
||||
@ -120,4 +190,4 @@ private:
|
||||
};
|
||||
};
|
||||
|
||||
#endif /* SERIALIZEADAPTER_H_ */
|
||||
#endif /* _FSFW_SERIALIZE_SERIALIZEADAPTER_H_ */
|
||||
|
@ -1,12 +1,20 @@
|
||||
#ifndef SERIALIZEELEMENT_H_
|
||||
#define SERIALIZEELEMENT_H_
|
||||
#ifndef FSFW_SERIALIZE_SERIALIZEELEMENT_H_
|
||||
#define FSFW_SERIALIZE_SERIALIZEELEMENT_H_
|
||||
|
||||
#include "../container/SinglyLinkedList.h"
|
||||
#include "SerializeAdapter.h"
|
||||
#include "../container/SinglyLinkedList.h"
|
||||
#include <utility>
|
||||
|
||||
/**
|
||||
* \ingroup serialize
|
||||
* @brief This class is used to mark datatypes for serialization with the
|
||||
* SerialLinkedListAdapter
|
||||
* @details
|
||||
* Used by declaring any arbitrary datatype with SerializeElement<T> myVariable,
|
||||
* inside a SerialLinkedListAdapter implementation and setting the sequence
|
||||
* of objects with setNext() and setStart().
|
||||
* Serialization and Deserialization is then performed automatically in
|
||||
* specified sequence order.
|
||||
* @ingroup serialize
|
||||
*/
|
||||
template<typename T>
|
||||
class SerializeElement: public SerializeIF, public LinkedElement<SerializeIF> {
|
||||
@ -19,7 +27,7 @@ public:
|
||||
SerializeElement() :
|
||||
LinkedElement<SerializeIF>(this) {
|
||||
}
|
||||
T entry;
|
||||
|
||||
ReturnValue_t serialize(uint8_t **buffer, size_t *size, size_t maxSize,
|
||||
Endianness streamEndianness) const override {
|
||||
return SerializeAdapter::serialize(&entry, buffer, size, maxSize,
|
||||
@ -35,6 +43,7 @@ public:
|
||||
return SerializeAdapter::deSerialize(&entry, buffer, size,
|
||||
streamEndianness);
|
||||
}
|
||||
|
||||
operator T() {
|
||||
return entry;
|
||||
}
|
||||
@ -43,9 +52,12 @@ public:
|
||||
entry = newValue;
|
||||
return *this;
|
||||
}
|
||||
|
||||
T* operator->() {
|
||||
return &entry;
|
||||
}
|
||||
|
||||
T entry;
|
||||
};
|
||||
|
||||
#endif /* SERIALIZEELEMENT_H_ */
|
||||
#endif /* FSFW_SERIALIZE_SERIALIZEELEMENT_H_ */
|
||||
|
@ -2,7 +2,7 @@
|
||||
#define FSFW_SERIALIZE_SERIALIZEIF_H_
|
||||
|
||||
#include "../returnvalues/HasReturnvaluesIF.h"
|
||||
#include <stddef.h>
|
||||
#include <cstddef>
|
||||
|
||||
/**
|
||||
* @defgroup serialize Serialization
|
||||
@ -10,7 +10,10 @@
|
||||
*/
|
||||
|
||||
/**
|
||||
* Translation of objects into data streams and from data streams.
|
||||
* @brief Translation of objects into data streams and from data streams.
|
||||
* @details
|
||||
* Also provides options to convert from/to data with different endianness.
|
||||
* variables.
|
||||
* @ingroup serialize
|
||||
*/
|
||||
class SerializeIF {
|
||||
@ -43,7 +46,7 @@ public:
|
||||
* @param[in] maxSize The size of the buffer that is allowed to be used for serialize.
|
||||
* @param[in] streamEndianness Endianness of the serialized data according to SerializeIF::Endianness
|
||||
* @return
|
||||
* - @¢ BUFFER_TOO_SHORT The given buffer in is too short
|
||||
* - @c BUFFER_TOO_SHORT The given buffer in is too short
|
||||
* - @c RETURN_FAILED Generic error
|
||||
* - @c RETURN_OK Successful serialization
|
||||
*/
|
||||
|
@ -550,7 +550,7 @@ Mode_t Subsystem::getFallbackSequence(Mode_t sequence) {
|
||||
for (FixedMap<Mode_t, SequenceInfo>::Iterator iter = modeSequences.begin();
|
||||
iter != modeSequences.end(); ++iter) {
|
||||
if (iter.value->first == sequence) {
|
||||
return iter->fallbackSequence;
|
||||
return iter->second.fallbackSequence;
|
||||
}
|
||||
}
|
||||
return -1;
|
||||
@ -559,7 +559,7 @@ Mode_t Subsystem::getFallbackSequence(Mode_t sequence) {
|
||||
bool Subsystem::isFallbackSequence(Mode_t SequenceId) {
|
||||
for (FixedMap<Mode_t, SequenceInfo>::Iterator iter = modeSequences.begin();
|
||||
iter != modeSequences.end(); iter++) {
|
||||
if (iter->fallbackSequence == SequenceId) {
|
||||
if (iter->second.fallbackSequence == SequenceId) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
@ -1,7 +1,8 @@
|
||||
#include "CCSDSTime.h"
|
||||
#include <stdio.h>
|
||||
#include <inttypes.h>
|
||||
#include <math.h>
|
||||
#include "../timemanager/CCSDSTime.h"
|
||||
#include <cstdio>
|
||||
#include <cinttypes>
|
||||
#include <cmath>
|
||||
|
||||
|
||||
CCSDSTime::CCSDSTime() {
|
||||
}
|
||||
|
@ -5,7 +5,7 @@
|
||||
|
||||
#include "Clock.h"
|
||||
#include "../returnvalues/HasReturnvaluesIF.h"
|
||||
#include <stdint.h>
|
||||
#include <cstdint>
|
||||
|
||||
bool operator<(const timeval& lhs, const timeval& rhs);
|
||||
bool operator<=(const timeval& lhs, const timeval& rhs);
|
||||
|
@ -122,8 +122,8 @@ void CommandingServiceBase::handleCommandMessage(CommandMessage* reply) {
|
||||
|
||||
|
||||
// Implemented by child class, specifies what to do with reply.
|
||||
ReturnValue_t result = handleReply(reply, iter->command, &iter->state,
|
||||
&nextCommand, iter->objectId, &isStep);
|
||||
ReturnValue_t result = handleReply(reply, iter->second.command, &iter->second.state,
|
||||
&nextCommand, iter->second.objectId, &isStep);
|
||||
|
||||
/* If the child implementation does not implement special handling for
|
||||
* rejected replies (RETURN_FAILED or INVALID_REPLY is returned), a
|
||||
@ -132,7 +132,7 @@ void CommandingServiceBase::handleCommandMessage(CommandMessage* reply) {
|
||||
if((reply->getCommand() == CommandMessage::REPLY_REJECTED) and
|
||||
(result == RETURN_FAILED or result == INVALID_REPLY)) {
|
||||
result = reply->getReplyRejectedReason();
|
||||
failureParameter1 = iter->command;
|
||||
failureParameter1 = iter->second.command;
|
||||
}
|
||||
|
||||
switch (result) {
|
||||
@ -149,14 +149,14 @@ void CommandingServiceBase::handleCommandMessage(CommandMessage* reply) {
|
||||
default:
|
||||
if (isStep) {
|
||||
verificationReporter.sendFailureReport(
|
||||
TC_VERIFY::PROGRESS_FAILURE, iter->tcInfo.ackFlags,
|
||||
iter->tcInfo.tcPacketId, iter->tcInfo.tcSequenceControl,
|
||||
result, ++iter->step, failureParameter1,
|
||||
TC_VERIFY::PROGRESS_FAILURE, iter->second.tcInfo.ackFlags,
|
||||
iter->second.tcInfo.tcPacketId, iter->second.tcInfo.tcSequenceControl,
|
||||
result, ++iter->second.step, failureParameter1,
|
||||
failureParameter2);
|
||||
} else {
|
||||
verificationReporter.sendFailureReport(
|
||||
TC_VERIFY::COMPLETION_FAILURE, iter->tcInfo.ackFlags,
|
||||
iter->tcInfo.tcPacketId, iter->tcInfo.tcSequenceControl,
|
||||
TC_VERIFY::COMPLETION_FAILURE, iter->second.tcInfo.ackFlags,
|
||||
iter->second.tcInfo.tcPacketId, iter->second.tcInfo.tcSequenceControl,
|
||||
result, 0, failureParameter1, failureParameter2);
|
||||
}
|
||||
failureParameter1 = 0;
|
||||
@ -170,7 +170,7 @@ void CommandingServiceBase::handleCommandMessage(CommandMessage* reply) {
|
||||
void CommandingServiceBase::handleReplyHandlerResult(ReturnValue_t result,
|
||||
CommandMapIter iter, CommandMessage* nextCommand,
|
||||
CommandMessage* reply, bool& isStep) {
|
||||
iter->command = nextCommand->getCommand();
|
||||
iter->second.command = nextCommand->getCommand();
|
||||
|
||||
// In case a new command is to be sent immediately, this is performed here.
|
||||
// If no new command is sent, only analyse reply result by initializing
|
||||
@ -185,14 +185,14 @@ void CommandingServiceBase::handleReplyHandlerResult(ReturnValue_t result,
|
||||
if (isStep and result != NO_STEP_MESSAGE) {
|
||||
verificationReporter.sendSuccessReport(
|
||||
TC_VERIFY::PROGRESS_SUCCESS,
|
||||
iter->tcInfo.ackFlags, iter->tcInfo.tcPacketId,
|
||||
iter->tcInfo.tcSequenceControl, ++iter->step);
|
||||
iter->second.tcInfo.ackFlags, iter->second.tcInfo.tcPacketId,
|
||||
iter->second.tcInfo.tcSequenceControl, ++iter->second.step);
|
||||
}
|
||||
else {
|
||||
verificationReporter.sendSuccessReport(
|
||||
TC_VERIFY::COMPLETION_SUCCESS,
|
||||
iter->tcInfo.ackFlags, iter->tcInfo.tcPacketId,
|
||||
iter->tcInfo.tcSequenceControl, 0);
|
||||
iter->second.tcInfo.ackFlags, iter->second.tcInfo.tcPacketId,
|
||||
iter->second.tcInfo.tcSequenceControl, 0);
|
||||
checkAndExecuteFifo(iter);
|
||||
}
|
||||
}
|
||||
@ -200,16 +200,16 @@ void CommandingServiceBase::handleReplyHandlerResult(ReturnValue_t result,
|
||||
if (isStep) {
|
||||
nextCommand->clearCommandMessage();
|
||||
verificationReporter.sendFailureReport(
|
||||
TC_VERIFY::PROGRESS_FAILURE, iter->tcInfo.ackFlags,
|
||||
iter->tcInfo.tcPacketId,
|
||||
iter->tcInfo.tcSequenceControl, sendResult,
|
||||
++iter->step, failureParameter1, failureParameter2);
|
||||
TC_VERIFY::PROGRESS_FAILURE, iter->second.tcInfo.ackFlags,
|
||||
iter->second.tcInfo.tcPacketId,
|
||||
iter->second.tcInfo.tcSequenceControl, sendResult,
|
||||
++iter->second.step, failureParameter1, failureParameter2);
|
||||
} else {
|
||||
nextCommand->clearCommandMessage();
|
||||
verificationReporter.sendFailureReport(
|
||||
TC_VERIFY::COMPLETION_FAILURE,
|
||||
iter->tcInfo.ackFlags, iter->tcInfo.tcPacketId,
|
||||
iter->tcInfo.tcSequenceControl, sendResult, 0,
|
||||
iter->second.tcInfo.ackFlags, iter->second.tcInfo.tcPacketId,
|
||||
iter->second.tcInfo.tcSequenceControl, sendResult, 0,
|
||||
failureParameter1, failureParameter2);
|
||||
}
|
||||
failureParameter1 = 0;
|
||||
@ -248,7 +248,7 @@ void CommandingServiceBase::handleRequestQueue() {
|
||||
iter = commandMap.find(queue);
|
||||
|
||||
if (iter != commandMap.end()) {
|
||||
result = iter->fifo.insert(address);
|
||||
result = iter->second.fifo.insert(address);
|
||||
if (result != RETURN_OK) {
|
||||
rejectPacket(TC_VERIFY::START_FAILURE, &packet, OBJECT_BUSY);
|
||||
}
|
||||
@ -316,11 +316,11 @@ void CommandingServiceBase::startExecution(TcPacketStored *storedPacket,
|
||||
CommandMapIter iter) {
|
||||
ReturnValue_t result = RETURN_OK;
|
||||
CommandMessage command;
|
||||
iter->subservice = storedPacket->getSubService();
|
||||
result = prepareCommand(&command, iter->subservice,
|
||||
iter->second.subservice = storedPacket->getSubService();
|
||||
result = prepareCommand(&command, iter->second.subservice,
|
||||
storedPacket->getApplicationData(),
|
||||
storedPacket->getApplicationDataSize(), &iter->state,
|
||||
iter->objectId);
|
||||
storedPacket->getApplicationDataSize(), &iter->second.state,
|
||||
iter->second.objectId);
|
||||
|
||||
ReturnValue_t sendResult = RETURN_OK;
|
||||
switch (result) {
|
||||
@ -330,13 +330,13 @@ void CommandingServiceBase::startExecution(TcPacketStored *storedPacket,
|
||||
&command);
|
||||
}
|
||||
if (sendResult == RETURN_OK) {
|
||||
Clock::getUptime(&iter->uptimeOfStart);
|
||||
iter->step = 0;
|
||||
iter->subservice = storedPacket->getSubService();
|
||||
iter->command = command.getCommand();
|
||||
iter->tcInfo.ackFlags = storedPacket->getAcknowledgeFlags();
|
||||
iter->tcInfo.tcPacketId = storedPacket->getPacketId();
|
||||
iter->tcInfo.tcSequenceControl =
|
||||
Clock::getUptime(&iter->second.uptimeOfStart);
|
||||
iter->second.step = 0;
|
||||
iter->second.subservice = storedPacket->getSubService();
|
||||
iter->second.command = command.getCommand();
|
||||
iter->second.tcInfo.ackFlags = storedPacket->getAcknowledgeFlags();
|
||||
iter->second.tcInfo.tcPacketId = storedPacket->getPacketId();
|
||||
iter->second.tcInfo.tcSequenceControl =
|
||||
storedPacket->getPacketSequenceControl();
|
||||
acceptPacket(TC_VERIFY::START_SUCCESS, storedPacket);
|
||||
} else {
|
||||
@ -386,7 +386,7 @@ void CommandingServiceBase::acceptPacket(uint8_t reportId,
|
||||
|
||||
void CommandingServiceBase::checkAndExecuteFifo(CommandMapIter iter) {
|
||||
store_address_t address;
|
||||
if (iter->fifo.retrieve(&address) != RETURN_OK) {
|
||||
if (iter->second.fifo.retrieve(&address) != RETURN_OK) {
|
||||
commandMap.erase(&iter);
|
||||
} else {
|
||||
TcPacketStored newPacket(address);
|
||||
@ -412,10 +412,10 @@ void CommandingServiceBase::checkTimeout() {
|
||||
Clock::getUptime(&uptime);
|
||||
CommandMapIter iter;
|
||||
for (iter = commandMap.begin(); iter != commandMap.end(); ++iter) {
|
||||
if ((iter->uptimeOfStart + (timeoutSeconds * 1000)) < uptime) {
|
||||
if ((iter->second.uptimeOfStart + (timeoutSeconds * 1000)) < uptime) {
|
||||
verificationReporter.sendFailureReport(
|
||||
TC_VERIFY::COMPLETION_FAILURE, iter->tcInfo.ackFlags,
|
||||
iter->tcInfo.tcPacketId, iter->tcInfo.tcSequenceControl,
|
||||
TC_VERIFY::COMPLETION_FAILURE, iter->second.tcInfo.ackFlags,
|
||||
iter->second.tcInfo.tcPacketId, iter->second.tcInfo.tcSequenceControl,
|
||||
TIMEOUT);
|
||||
checkAndExecuteFifo(iter);
|
||||
}
|
||||
|
@ -211,8 +211,7 @@ protected:
|
||||
|
||||
virtual void doPeriodicOperation();
|
||||
|
||||
|
||||
struct CommandInfo {
|
||||
struct CommandInfo: public SerializeIF{
|
||||
struct tcInfo {
|
||||
uint8_t ackFlags;
|
||||
uint16_t tcPacketId;
|
||||
@ -225,6 +224,20 @@ protected:
|
||||
Command_t command;
|
||||
object_id_t objectId;
|
||||
FIFO<store_address_t, 3> fifo;
|
||||
|
||||
virtual ReturnValue_t serialize(uint8_t **buffer, size_t *size,
|
||||
size_t maxSize, Endianness streamEndianness) const override{
|
||||
return HasReturnvaluesIF::RETURN_FAILED;
|
||||
};
|
||||
|
||||
virtual size_t getSerializedSize() const override {
|
||||
return 0;
|
||||
};
|
||||
|
||||
virtual ReturnValue_t deSerialize(const uint8_t **buffer, size_t *size,
|
||||
Endianness streamEndianness) override{
|
||||
return HasReturnvaluesIF::RETURN_FAILED;
|
||||
};
|
||||
};
|
||||
|
||||
using CommandMapIter = FixedMap<MessageQueueId_t,
|
||||
|
Loading…
Reference in New Issue
Block a user