Merge branch 'master' into mueller/ipc-updates

This commit is contained in:
Steffen Gaisser 2020-09-15 15:47:14 +02:00
commit f3d42de399
44 changed files with 2237 additions and 347 deletions

View File

@ -72,7 +72,11 @@ public:
return tmp;
}
T operator*() {
T& operator*(){
return *value;
}
const T& operator*() const{
return *value;
}

View File

@ -27,14 +27,27 @@ public:
/**
* @brief Custom copy constructor which prevents setting the
* underlying pointer wrong.
* underlying pointer wrong. This function allocates memory!
* @details This is a very heavy operation so try to avoid this!
*
*/
DynamicFIFO(const DynamicFIFO& other): FIFOBase<T>(other),
fifoVector(other.maxCapacity) {
this->fifoVector = other.fifoVector;
this->setContainer(fifoVector.data());
}
/**
* @brief Custom assignment operator
* @details This is a very heavy operation so try to avoid this!
* @param other DyamicFIFO to copy from
*/
DynamicFIFO& operator=(const DynamicFIFO& other){
FIFOBase<T>::operator=(other);
this->fifoVector = other.fifoVector;
this->setContainer(fifoVector.data());
return *this;
}
private:
std::vector<T> fifoVector;
};

View File

@ -25,9 +25,21 @@ public:
* @param other
*/
FIFO(const FIFO& other): FIFOBase<T>(other) {
this->fifoArray = other.fifoArray;
this->setContainer(fifoArray.data());
}
/**
* @brief Custom assignment operator
* @param other
*/
FIFO& operator=(const FIFO& other){
FIFOBase<T>::operator=(other);
this->fifoArray = other.fifoArray;
this->setContainer(fifoArray.data());
return *this;
}
private:
std::array<T, capacity> fifoArray;
};

View File

@ -1,15 +1,20 @@
#ifndef FIXEDMAP_H_
#define FIXEDMAP_H_
#ifndef FSFW_CONTAINER_FIXEDMAP_H_
#define FSFW_CONTAINER_FIXEDMAP_H_
#include "ArrayList.h"
#include "../returnvalues/HasReturnvaluesIF.h"
#include <utility>
#include <type_traits>
/**
* \ingroup container
* @warning Iterators return a non-const key_t in the pair.
* @warning A User is not allowed to change the key, otherwise the map is corrupted.
* @ingroup container
*/
template<typename key_t, typename T>
class FixedMap: public SerializeIF {
static_assert (std::is_trivially_copyable<T>::value or std::is_base_of<SerializeIF, T>::value,
"Types used in FixedMap must either be trivial copy-able or a derived Class from SerializeIF to be serialize-able");
public:
static const uint8_t INTERFACE_ID = CLASS_ID::FIXED_MAP;
static const ReturnValue_t KEY_ALREADY_EXISTS = MAKE_RETURN_CODE(0x01);
@ -47,15 +52,6 @@ public:
Iterator(std::pair<key_t, T> *pair) :
ArrayList<std::pair<key_t, T>, uint32_t>::Iterator(pair) {
}
T operator*() {
return ArrayList<std::pair<key_t, T>, uint32_t>::Iterator::value->second;
}
T *operator->() {
return &ArrayList<std::pair<key_t, T>, uint32_t>::Iterator::value->second;
}
};
Iterator begin() const {
@ -70,7 +66,7 @@ public:
return _size;
}
ReturnValue_t insert(key_t key, T value, Iterator *storedValue = NULL) {
ReturnValue_t insert(key_t key, T value, Iterator *storedValue = nullptr) {
if (exists(key) == HasReturnvaluesIF::RETURN_OK) {
return KEY_ALREADY_EXISTS;
}
@ -79,7 +75,7 @@ public:
}
theMap[_size].first = key;
theMap[_size].second = value;
if (storedValue != NULL) {
if (storedValue != nullptr) {
*storedValue = Iterator(&theMap[_size]);
}
++_size;
@ -87,7 +83,7 @@ public:
}
ReturnValue_t insert(std::pair<key_t, T> pair) {
return insert(pair.fist, pair.second);
return insert(pair.first, pair.second);
}
ReturnValue_t exists(key_t key) const {
@ -196,4 +192,4 @@ public:
};
#endif /* FIXEDMAP_H_ */
#endif /* FSFW_CONTAINER_FIXEDMAP_H_ */

View File

@ -48,7 +48,7 @@ private:
if (_size <= position) {
return;
}
memmove(&theMap[position], &theMap[position + 1],
memmove(static_cast<void*>(&theMap[position]), static_cast<void*>(&theMap[position + 1]),
(_size - position - 1) * sizeof(std::pair<key_t,T>));
--_size;
}
@ -68,15 +68,6 @@ public:
Iterator(std::pair<key_t, T> *pair) :
ArrayList<std::pair<key_t, T>, uint32_t>::Iterator(pair) {
}
T operator*() {
return ArrayList<std::pair<key_t, T>, uint32_t>::Iterator::value->second;
}
T *operator->() {
return &ArrayList<std::pair<key_t, T>, uint32_t>::Iterator::value->second;
}
};
Iterator begin() const {
@ -91,17 +82,17 @@ public:
return _size;
}
ReturnValue_t insert(key_t key, T value, Iterator *storedValue = NULL) {
ReturnValue_t insert(key_t key, T value, Iterator *storedValue = nullptr) {
if (_size == theMap.maxSize()) {
return MAP_FULL;
}
uint32_t position = findNicePlace(key);
memmove(&theMap[position + 1], &theMap[position],
memmove(static_cast<void*>(&theMap[position + 1]),static_cast<void*>(&theMap[position]),
(_size - position) * sizeof(std::pair<key_t,T>));
theMap[position].first = key;
theMap[position].second = value;
++_size;
if (storedValue != NULL) {
if (storedValue != nullptr) {
*storedValue = Iterator(&theMap[position]);
}
return HasReturnvaluesIF::RETURN_OK;
@ -145,12 +136,6 @@ public:
return HasReturnvaluesIF::RETURN_OK;
}
//This is potentially unsafe
// T *findValue(key_t key) const {
// return &theMap[findFirstIndex(key)].second;
// }
Iterator find(key_t key) const {
ReturnValue_t result = exists(key);
if (result != HasReturnvaluesIF::RETURN_OK) {

View File

@ -1,41 +0,0 @@
#ifndef ISDERIVEDFROM_H_
#define ISDERIVEDFROM_H_
template<typename D, typename B>
class IsDerivedFrom {
class No {
};
class Yes {
No no[3];
};
static Yes Test(B*); // declared, but not defined
static No Test(... ); // declared, but not defined
public:
enum {
Is = sizeof(Test(static_cast<D*>(0))) == sizeof(Yes)
};
};
template<typename, typename>
struct is_same {
static bool const value = false;
};
template<typename A>
struct is_same<A, A> {
static bool const value = true;
};
template<bool C, typename T = void>
struct enable_if {
typedef T type;
};
template<typename T>
struct enable_if<false, T> { };
#endif /* ISDERIVEDFROM_H_ */

View File

@ -1,95 +1,124 @@
#include "DleEncoder.h"
#include "../globalfunctions/DleEncoder.h"
DleEncoder::DleEncoder() {
DleEncoder::DleEncoder() {}
DleEncoder::~DleEncoder() {}
ReturnValue_t DleEncoder::encode(const uint8_t* sourceStream,
size_t sourceLen, uint8_t* destStream, size_t maxDestLen,
size_t* encodedLen, bool addStxEtx) {
if (maxDestLen < 2) {
return STREAM_TOO_SHORT;
}
size_t encodedIndex = 0, sourceIndex = 0;
uint8_t nextByte;
if (addStxEtx) {
destStream[0] = STX_CHAR;
++encodedIndex;
}
DleEncoder::~DleEncoder() {
while (encodedIndex < maxDestLen and sourceIndex < sourceLen)
{
nextByte = sourceStream[sourceIndex];
// STX, ETX and CR characters in the stream need to be escaped with DLE
if (nextByte == STX_CHAR or nextByte == ETX_CHAR or nextByte == CARRIAGE_RETURN) {
if (encodedIndex + 1 >= maxDestLen) {
return STREAM_TOO_SHORT;
}
else {
destStream[encodedIndex] = DLE_CHAR;
++encodedIndex;
/* Escaped byte will be actual byte + 0x40. This prevents
* STX, ETX, and carriage return characters from appearing
* in the encoded data stream at all, so when polling an
* encoded stream, the transmission can be stopped at ETX.
* 0x40 was chosen at random with special requirements:
* - Prevent going from one control char to another
* - Prevent overflow for common characters */
destStream[encodedIndex] = nextByte + 0x40;
}
}
// DLE characters are simply escaped with DLE.
else if (nextByte == DLE_CHAR) {
if (encodedIndex + 1 >= maxDestLen) {
return STREAM_TOO_SHORT;
}
else {
destStream[encodedIndex] = DLE_CHAR;
++encodedIndex;
destStream[encodedIndex] = DLE_CHAR;
}
}
else {
destStream[encodedIndex] = nextByte;
}
++encodedIndex;
++sourceIndex;
}
if (sourceIndex == sourceLen and encodedIndex < maxDestLen) {
if (addStxEtx) {
destStream[encodedIndex] = ETX_CHAR;
++encodedIndex;
}
*encodedLen = encodedIndex;
return RETURN_OK;
}
else {
return STREAM_TOO_SHORT;
}
}
ReturnValue_t DleEncoder::decode(const uint8_t *sourceStream,
uint32_t sourceStreamLen, uint32_t *readLen, uint8_t *destStream,
uint32_t maxDestStreamlen, uint32_t *decodedLen) {
uint32_t encodedIndex = 0, decodedIndex = 0;
size_t sourceStreamLen, size_t *readLen, uint8_t *destStream,
size_t maxDestStreamlen, size_t *decodedLen) {
size_t encodedIndex = 0, decodedIndex = 0;
uint8_t nextByte;
if (*sourceStream != STX) {
return RETURN_FAILED;
if (*sourceStream != STX_CHAR) {
return DECODING_ERROR;
}
++encodedIndex;
while ((encodedIndex < sourceStreamLen) && (decodedIndex < maxDestStreamlen)
&& (sourceStream[encodedIndex] != ETX)
&& (sourceStream[encodedIndex] != STX)) {
if (sourceStream[encodedIndex] == DLE) {
&& (sourceStream[encodedIndex] != ETX_CHAR)
&& (sourceStream[encodedIndex] != STX_CHAR)) {
if (sourceStream[encodedIndex] == DLE_CHAR) {
nextByte = sourceStream[encodedIndex + 1];
if (nextByte == 0x10) {
// The next byte is a DLE character that was escaped by another
// DLE character, so we can write it to the destination stream.
if (nextByte == DLE_CHAR) {
destStream[decodedIndex] = nextByte;
} else {
if ((nextByte == 0x42) || (nextByte == 0x43)
|| (nextByte == 0x4D)) {
}
else {
/* The next byte is a STX, DTX or 0x0D character which
* was escaped by a DLE character. The actual byte was
* also encoded by adding + 0x40 to prevent having control chars,
* in the stream at all, so we convert it back. */
if (nextByte == 0x42 or nextByte == 0x43 or nextByte == 0x4D) {
destStream[decodedIndex] = nextByte - 0x40;
} else {
return RETURN_FAILED;
}
else {
return DECODING_ERROR;
}
}
++encodedIndex;
} else {
}
else {
destStream[decodedIndex] = sourceStream[encodedIndex];
}
++encodedIndex;
++decodedIndex;
}
if (sourceStream[encodedIndex] != ETX) {
return RETURN_FAILED;
} else {
if (sourceStream[encodedIndex] != ETX_CHAR) {
*readLen = ++encodedIndex;
return DECODING_ERROR;
}
else {
*readLen = ++encodedIndex;
*decodedLen = decodedIndex;
return RETURN_OK;
}
}
ReturnValue_t DleEncoder::encode(const uint8_t* sourceStream,
uint32_t sourceLen, uint8_t* destStream, uint32_t maxDestLen,
uint32_t* encodedLen, bool addStxEtx) {
if (maxDestLen < 2) {
return RETURN_FAILED;
}
uint32_t encodedIndex = 0, sourceIndex = 0;
uint8_t nextByte;
if (addStxEtx) {
destStream[0] = STX;
++encodedIndex;
}
while ((encodedIndex < maxDestLen) && (sourceIndex < sourceLen)) {
nextByte = sourceStream[sourceIndex];
if ((nextByte == STX) || (nextByte == ETX) || (nextByte == 0x0D)) {
if (encodedIndex + 1 >= maxDestLen) {
return RETURN_FAILED;
} else {
destStream[encodedIndex] = DLE;
++encodedIndex;
destStream[encodedIndex] = nextByte + 0x40;
}
} else if (nextByte == DLE) {
if (encodedIndex + 1 >= maxDestLen) {
return RETURN_FAILED;
} else {
destStream[encodedIndex] = DLE;
++encodedIndex;
destStream[encodedIndex] = DLE;
}
} else {
destStream[encodedIndex] = nextByte;
}
++encodedIndex;
++sourceIndex;
}
if ((sourceIndex == sourceLen) && (encodedIndex < maxDestLen)) {
if (addStxEtx) {
destStream[encodedIndex] = ETX;
++encodedIndex;
}
*encodedLen = encodedIndex;
return RETURN_OK;
} else {
return RETURN_FAILED;
}
}

View File

@ -1,25 +1,79 @@
#ifndef DLEENCODER_H_
#define DLEENCODER_H_
#ifndef FRAMEWORK_GLOBALFUNCTIONS_DLEENCODER_H_
#define FRAMEWORK_GLOBALFUNCTIONS_DLEENCODER_H_
#include "../returnvalues/HasReturnvaluesIF.h"
#include <cstddef>
/**
* @brief This DLE Encoder (Data Link Encoder) can be used to encode and
* decode arbitrary data with ASCII control characters
* @details
* List of control codes:
* https://en.wikipedia.org/wiki/C0_and_C1_control_codes
*
* This encoder can be used to achieve a basic transport layer when using
* char based transmission systems.
* The passed source strean is converted into a encoded stream by adding
* a STX marker at the start of the stream and an ETX marker at the end of
* the stream. Any STX, ETX, DLE and CR occurrences in the source stream are
* escaped by a DLE character. The encoder also replaces escaped control chars
* by another char, so STX, ETX and CR should not appear anywhere in the actual
* encoded data stream.
*
* When using a strictly char based reception of packets encoded with DLE,
* STX can be used to notify a reader that actual data will start to arrive
* while ETX can be used to notify the reader that the data has ended.
*/
class DleEncoder: public HasReturnvaluesIF {
private:
DleEncoder();
virtual ~DleEncoder();
public:
static const uint8_t STX = 0x02;
static const uint8_t ETX = 0x03;
static const uint8_t DLE = 0x10;
static constexpr uint8_t INTERFACE_ID = CLASS_ID::DLE_ENCODER;
static constexpr ReturnValue_t STREAM_TOO_SHORT = MAKE_RETURN_CODE(0x01);
static constexpr ReturnValue_t DECODING_ERROR = MAKE_RETURN_CODE(0x02);
static ReturnValue_t decode(const uint8_t *sourceStream,
uint32_t sourceStreamLen, uint32_t *readLen, uint8_t *destStream,
uint32_t maxDestStreamlen, uint32_t *decodedLen);
//! Start Of Text character. First character is encoded stream
static constexpr uint8_t STX_CHAR = 0x02;
//! End Of Text character. Last character in encoded stream
static constexpr uint8_t ETX_CHAR = 0x03;
//! Data Link Escape character. Used to escape STX, ETX and DLE occurrences
//! in the source stream.
static constexpr uint8_t DLE_CHAR = 0x10;
static constexpr uint8_t CARRIAGE_RETURN = 0x0D;
static ReturnValue_t encode(const uint8_t *sourceStream, uint32_t sourceLen,
uint8_t *destStream, uint32_t maxDestLen, uint32_t *encodedLen,
/**
* Encodes the give data stream by preceding it with the STX marker
* and ending it with an ETX marker. STX, ETX and DLE characters inside
* the stream are escaped by DLE characters and also replaced by adding
* 0x40 (which is reverted in the decoding process).
* @param sourceStream
* @param sourceLen
* @param destStream
* @param maxDestLen
* @param encodedLen
* @param addStxEtx
* Adding STX and ETX can be omitted, if they are added manually.
* @return
*/
static ReturnValue_t encode(const uint8_t *sourceStream, size_t sourceLen,
uint8_t *destStream, size_t maxDestLen, size_t *encodedLen,
bool addStxEtx = true);
/**
* Converts an encoded stream back.
* @param sourceStream
* @param sourceStreamLen
* @param readLen
* @param destStream
* @param maxDestStreamlen
* @param decodedLen
* @return
*/
static ReturnValue_t decode(const uint8_t *sourceStream,
size_t sourceStreamLen, size_t *readLen, uint8_t *destStream,
size_t maxDestStreamlen, size_t *decodedLen);
};
#endif /* DLEENCODER_H_ */
#endif /* FRAMEWORK_GLOBALFUNCTIONS_DLEENCODER_H_ */

View File

@ -0,0 +1,34 @@
#include "PeriodicOperationDivider.h"
PeriodicOperationDivider::PeriodicOperationDivider(uint32_t divider,
bool resetAutomatically): resetAutomatically(resetAutomatically),
counter(divider), divider(divider) {
}
bool PeriodicOperationDivider::checkAndIncrement() {
if(counter >= divider) {
if(resetAutomatically) {
counter = 0;
}
return true;
}
counter ++;
return false;
}
void PeriodicOperationDivider::resetCounter() {
counter = 0;
}
void PeriodicOperationDivider::setDivider(uint32_t newDivider) {
divider = newDivider;
}
uint32_t PeriodicOperationDivider::getCounter() const {
return counter;
}
uint32_t PeriodicOperationDivider::getDivider() const {
return divider;
}

View File

@ -0,0 +1,55 @@
#ifndef FSFW_GLOBALFUNCTIONS_PERIODICOPERATIONDIVIDER_H_
#define FSFW_GLOBALFUNCTIONS_PERIODICOPERATIONDIVIDER_H_
#include <cstdint>
/**
* @brief Lightweight helper class to facilitate periodic operation with
* decreased frequencies.
* @details
* This class is useful to perform operations which have to be performed
* with a reduced frequency, like debugging printouts in high periodic tasks
* or low priority operations.
*/
class PeriodicOperationDivider {
public:
/**
* Initialize with the desired divider and specify whether the internal
* counter will be reset automatically.
* @param divider
* @param resetAutomatically
*/
PeriodicOperationDivider(uint32_t divider, bool resetAutomatically = true);
/**
* Check whether operation is necessary.
* If an operation is necessary and the class has been
* configured to be reset automatically, the counter will be reset.
* If not, the counter will be incremented.
* @return
* -@c true if the counter is larger or equal to the divider
* -@c false otherwise
*/
bool checkAndIncrement();
/**
* Can be used to reset the counter to 0 manually.
*/
void resetCounter();
uint32_t getCounter() const;
/**
* Can be used to set a new divider value.
* @param newDivider
*/
void setDivider(uint32_t newDivider);
uint32_t getDivider() const;
private:
bool resetAutomatically = true;
uint32_t counter = 0;
uint32_t divider = 0;
};
#endif /* FSFW_GLOBALFUNCTIONS_PERIODICOPERATIONDIVIDER_H_ */

View File

@ -1,9 +1,8 @@
#include "HealthHelper.h"
#include "../ipc/MessageQueueSenderIF.h"
#include "../serviceinterface/ServiceInterfaceStream.h"
HealthHelper::HealthHelper(HasHealthIF* owner, object_id_t objectId) :
healthTable(NULL), eventSender(NULL), objectId(objectId), parentQueue(
0), owner(owner) {
objectId(objectId), owner(owner) {
}
HealthHelper::~HealthHelper() {
@ -40,9 +39,19 @@ void HealthHelper::setParentQueue(MessageQueueId_t parentQueue) {
ReturnValue_t HealthHelper::initialize() {
healthTable = objectManager->get<HealthTableIF>(objects::HEALTH_TABLE);
eventSender = objectManager->get<EventReportingProxyIF>(objectId);
if ((healthTable == NULL) || eventSender == NULL) {
return HasReturnvaluesIF::RETURN_FAILED;
if (healthTable == nullptr) {
sif::error << "HealthHelper::initialize: Health table object needs"
"to be created in factory." << std::endl;
return ObjectManagerIF::CHILD_INIT_FAILED;
}
if(eventSender == nullptr) {
sif::error << "HealthHelper::initialize: Owner has to implement "
"ReportingProxyIF." << std::endl;
return ObjectManagerIF::CHILD_INIT_FAILED;
}
ReturnValue_t result = healthTable->registerObject(objectId,
HasHealthIF::HEALTHY);
if (result != HasReturnvaluesIF::RETURN_OK) {
@ -62,22 +71,22 @@ void HealthHelper::setHealth(HasHealthIF::HealthState health) {
void HealthHelper::informParent(HasHealthIF::HealthState health,
HasHealthIF::HealthState oldHealth) {
if (parentQueue == 0) {
if (parentQueue == MessageQueueIF::NO_QUEUE) {
return;
}
CommandMessage message;
HealthMessage::setHealthMessage(&message, HealthMessage::HEALTH_INFO,
CommandMessage information;
HealthMessage::setHealthMessage(&information, HealthMessage::HEALTH_INFO,
health, oldHealth);
if (MessageQueueSenderIF::sendMessage(parentQueue, &message,
if (MessageQueueSenderIF::sendMessage(parentQueue, &information,
owner->getCommandQueue()) != HasReturnvaluesIF::RETURN_OK) {
sif::debug << "HealthHelper::informParent: sending health reply failed."
<< std::endl;
}
}
void HealthHelper::handleSetHealthCommand(CommandMessage* message) {
ReturnValue_t result = owner->setHealth(HealthMessage::getHealth(message));
if (message->getSender() == 0) {
void HealthHelper::handleSetHealthCommand(CommandMessage* command) {
ReturnValue_t result = owner->setHealth(HealthMessage::getHealth(command));
if (command->getSender() == MessageQueueIF::NO_QUEUE) {
return;
}
CommandMessage reply;
@ -85,12 +94,12 @@ void HealthHelper::handleSetHealthCommand(CommandMessage* message) {
HealthMessage::setHealthMessage(&reply,
HealthMessage::REPLY_HEALTH_SET);
} else {
reply.setReplyRejected(result, message->getCommand());
reply.setReplyRejected(result, command->getCommand());
}
if (MessageQueueSenderIF::sendMessage(message->getSender(), &reply,
if (MessageQueueSenderIF::sendMessage(command->getSender(), &reply,
owner->getCommandQueue()) != HasReturnvaluesIF::RETURN_OK) {
sif::debug
<< "HealthHelper::handleHealthCommand: sending health reply failed."
<< std::endl;
sif::debug << "HealthHelper::handleHealthCommand: sending health "
"reply failed." << std::endl;
}
}

View File

@ -1,11 +1,13 @@
#ifndef HEALTHHELPER_H_
#define HEALTHHELPER_H_
#ifndef FSFW_HEALTH_HEALTHHELPER_H_
#define FSFW_HEALTH_HEALTHHELPER_H_
#include "../events/EventManagerIF.h"
#include "../events/EventReportingProxyIF.h"
#include "HasHealthIF.h"
#include "HealthMessage.h"
#include "HealthTableIF.h"
#include "../events/EventManagerIF.h"
#include "../events/EventReportingProxyIF.h"
#include "../ipc/MessageQueueIF.h"
#include "../objectmanager/ObjectManagerIF.h"
#include "../returnvalues/HasReturnvaluesIF.h"
@ -27,8 +29,8 @@ public:
/**
* ctor
*
* @param owner
* @param objectId the object Id to use when communication with the HealthTable
* @param useAsFrom id to use as from id when sending replies, can be set to 0
*/
HealthHelper(HasHealthIF* owner, object_id_t objectId);
@ -39,12 +41,12 @@ public:
*
* only valid after initialize() has been called
*/
HealthTableIF *healthTable;
HealthTableIF *healthTable = nullptr;
/**
* Proxy to forward events.
*/
EventReportingProxyIF* eventSender;
EventReportingProxyIF* eventSender = nullptr;
/**
* Try to handle the message.
@ -100,7 +102,7 @@ private:
/**
* The Queue of the parent
*/
MessageQueueId_t parentQueue;
MessageQueueId_t parentQueue = MessageQueueIF::NO_QUEUE;
/**
* The one using the healthHelper.
@ -117,4 +119,4 @@ private:
void handleSetHealthCommand(CommandMessage *message);
};
#endif /* HEALTHHELPER_H_ */
#endif /* FSFW_HEALTH_HEALTHHELPER_H_ */

View File

@ -64,6 +64,11 @@ ReturnValue_t PeriodicTask::sleepFor(uint32_t ms) {
void PeriodicTask::taskFunctionality() {
TickType_t xLastWakeTime;
const TickType_t xPeriod = pdMS_TO_TICKS(this->period * 1000.);
for (auto const &object: objectList) {
object->initializeAfterTaskCreation();
}
/* The xLastWakeTime variable needs to be initialized with the current tick
count. Note that this is the only time the variable is written to
explicitly. After this assignment, xLastWakeTime is updated automatically

View File

@ -1,11 +1,10 @@
#ifndef FRAMEWORK_OSAL_FREERTOS_PERIODICTASK_H_
#define FRAMEWORK_OSAL_FREERTOS_PERIODICTASK_H_
#ifndef FSFW_OSAL_FREERTOS_PERIODICTASK_H_
#define FSFW_OSAL_FREERTOS_PERIODICTASK_H_
#include "FreeRTOSTaskIF.h"
#include "../../objectmanager/ObjectManagerIF.h"
#include "../../tasks/PeriodicTaskIF.h"
#include "../../tasks/Typedef.h"
#include "FreeRTOSTaskIF.h"
#include <freertos/FreeRTOS.h>
#include <freertos/task.h>
@ -24,7 +23,6 @@ public:
/**
* Keep in Mind that you need to call before this vTaskStartScheduler()!
* A lot of task parameters are set in "FreeRTOSConfig.h".
* TODO: why does this need to be called before vTaskStartScheduler?
* @details
* The class is initialized without allocated objects.
* These need to be added with #addComponent.
@ -125,4 +123,4 @@ protected:
void handleMissedDeadline();
};
#endif /* PERIODICTASK_H_ */
#endif /* FSFW_OSAL_FREERTOS_PERIODICTASK_H_ */

227
osal/host/Clock.cpp Normal file
View File

@ -0,0 +1,227 @@
#include "../../serviceinterface/ServiceInterfaceStream.h"
#include "../../timemanager/Clock.h"
#include <chrono>
#if defined(WIN32)
#include <windows.h>
#elif defined(LINUX)
#include <fstream>
#endif
uint16_t Clock::leapSeconds = 0;
MutexIF* Clock::timeMutex = NULL;
using SystemClock = std::chrono::system_clock;
uint32_t Clock::getTicksPerSecond(void){
sif::warning << "Clock::getTicksPerSecond: not implemented yet" << std::endl;
return 0;
//return CLOCKS_PER_SEC;
//uint32_t ticks = sysconf(_SC_CLK_TCK);
//return ticks;
}
ReturnValue_t Clock::setClock(const TimeOfDay_t* time) {
// do some magic with chrono
sif::warning << "Clock::setClock: not implemented yet" << std::endl;
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t Clock::setClock(const timeval* time) {
// do some magic with chrono
#if defined(WIN32)
return HasReturnvaluesIF::RETURN_OK;
#elif defined(LINUX)
return HasReturnvaluesIF::RETURN_OK;
#else
#endif
sif::warning << "Clock::getUptime: Not implemented for found OS" << std::endl;
return HasReturnvaluesIF::RETURN_FAILED;
}
ReturnValue_t Clock::getClock_timeval(timeval* time) {
#if defined(WIN32)
auto now = std::chrono::system_clock::now();
auto secondsChrono = std::chrono::time_point_cast<std::chrono::seconds>(now);
auto epoch = now.time_since_epoch();
time->tv_sec = std::chrono::duration_cast<std::chrono::seconds>(epoch).count();
auto fraction = now - secondsChrono;
time->tv_usec = std::chrono::duration_cast<std::chrono::microseconds>(
fraction).count();
return HasReturnvaluesIF::RETURN_OK;
#elif defined(LINUX)
timespec timeUnix;
int status = clock_gettime(CLOCK_REALTIME,&timeUnix);
if(status!=0){
return HasReturnvaluesIF::RETURN_FAILED;
}
time->tv_sec = timeUnix.tv_sec;
time->tv_usec = timeUnix.tv_nsec / 1000.0;
return HasReturnvaluesIF::RETURN_OK;
#else
sif::warning << "Clock::getUptime: Not implemented for found OS" << std::endl;
return HasReturnvaluesIF::RETURN_FAILED;
#endif
}
ReturnValue_t Clock::getClock_usecs(uint64_t* time) {
// do some magic with chrono
sif::warning << "Clock::gerClock_usecs: not implemented yet" << std::endl;
return HasReturnvaluesIF::RETURN_OK;
}
timeval Clock::getUptime() {
timeval timeval;
#if defined(WIN32)
auto uptime = std::chrono::milliseconds(GetTickCount64());
auto secondsChrono = std::chrono::duration_cast<std::chrono::seconds>(uptime);
timeval.tv_sec = secondsChrono.count();
auto fraction = uptime - secondsChrono;
timeval.tv_usec = std::chrono::duration_cast<std::chrono::microseconds>(
fraction).count();
#elif defined(LINUX)
double uptimeSeconds;
if (std::ifstream("/proc/uptime", std::ios::in) >> uptimeSeconds)
{
// value is rounded down automatically
timeval.tv_sec = uptimeSeconds;
timeval.tv_usec = uptimeSeconds *(double) 1e6 - (timeval.tv_sec *1e6);
}
#else
sif::warning << "Clock::getUptime: Not implemented for found OS" << std::endl;
#endif
return timeval;
}
ReturnValue_t Clock::getUptime(timeval* uptime) {
*uptime = getUptime();
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t Clock::getUptime(uint32_t* uptimeMs) {
timeval uptime = getUptime();
*uptimeMs = uptime.tv_sec * 1000 + uptime.tv_usec / 1000;
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t Clock::getDateAndTime(TimeOfDay_t* time) {
// do some magic with chrono (C++20!)
// Right now, the library doesn't have the new features yet.
// so we work around that for now.
auto now = SystemClock::now();
auto seconds = std::chrono::time_point_cast<std::chrono::seconds>(now);
auto fraction = now - seconds;
time_t tt = SystemClock::to_time_t(now);
struct tm* timeInfo;
timeInfo = gmtime(&tt);
time->year = timeInfo->tm_year + 1900;
time->month = timeInfo->tm_mon+1;
time->day = timeInfo->tm_mday;
time->hour = timeInfo->tm_hour;
time->minute = timeInfo->tm_min;
time->second = timeInfo->tm_sec;
auto usecond = std::chrono::duration_cast<std::chrono::microseconds>(fraction);
time->usecond = usecond.count();
//sif::warning << "Clock::getDateAndTime: not implemented yet" << std::endl;
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t Clock::convertTimeOfDayToTimeval(const TimeOfDay_t* from,
timeval* to) {
struct tm time_tm;
time_tm.tm_year = from->year - 1900;
time_tm.tm_mon = from->month - 1;
time_tm.tm_mday = from->day;
time_tm.tm_hour = from->hour;
time_tm.tm_min = from->minute;
time_tm.tm_sec = from->second;
time_t seconds = mktime(&time_tm);
to->tv_sec = seconds;
to->tv_usec = from->usecond;
//Fails in 2038..
return HasReturnvaluesIF::RETURN_OK;
sif::warning << "Clock::convertTimeBla: not implemented yet" << std::endl;
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t Clock::convertTimevalToJD2000(timeval time, double* JD2000) {
*JD2000 = (time.tv_sec - 946728000. + time.tv_usec / 1000000.) / 24.
/ 3600.;
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t Clock::convertUTCToTT(timeval utc, timeval* tt) {
//SHOULDDO: works not for dates in the past (might have less leap seconds)
if (timeMutex == NULL) {
return HasReturnvaluesIF::RETURN_FAILED;
}
uint16_t leapSeconds;
ReturnValue_t result = getLeapSeconds(&leapSeconds);
if (result != HasReturnvaluesIF::RETURN_OK) {
return result;
}
timeval leapSeconds_timeval = { 0, 0 };
leapSeconds_timeval.tv_sec = leapSeconds;
//initial offset between UTC and TAI
timeval UTCtoTAI1972 = { 10, 0 };
timeval TAItoTT = { 32, 184000 };
*tt = utc + leapSeconds_timeval + UTCtoTAI1972 + TAItoTT;
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t Clock::setLeapSeconds(const uint16_t leapSeconds_) {
if(checkOrCreateClockMutex()!=HasReturnvaluesIF::RETURN_OK){
return HasReturnvaluesIF::RETURN_FAILED;
}
ReturnValue_t result = timeMutex->lockMutex(MutexIF::BLOCKING);
if (result != HasReturnvaluesIF::RETURN_OK) {
return result;
}
leapSeconds = leapSeconds_;
result = timeMutex->unlockMutex();
return result;
}
ReturnValue_t Clock::getLeapSeconds(uint16_t* leapSeconds_) {
if(timeMutex == nullptr){
return HasReturnvaluesIF::RETURN_FAILED;
}
ReturnValue_t result = timeMutex->lockMutex(MutexIF::BLOCKING);
if (result != HasReturnvaluesIF::RETURN_OK) {
return result;
}
*leapSeconds_ = leapSeconds;
result = timeMutex->unlockMutex();
return result;
}
ReturnValue_t Clock::checkOrCreateClockMutex(){
if(timeMutex == nullptr){
MutexFactory* mutexFactory = MutexFactory::instance();
if (mutexFactory == nullptr) {
return HasReturnvaluesIF::RETURN_FAILED;
}
timeMutex = mutexFactory->createMutex();
if (timeMutex == nullptr) {
return HasReturnvaluesIF::RETURN_FAILED;
}
}
return HasReturnvaluesIF::RETURN_OK;
}

View File

@ -0,0 +1,197 @@
#include "../../osal/host/FixedTimeslotTask.h"
#include "../../ipc/MutexFactory.h"
#include "../../osal/host/Mutex.h"
#include "../../osal/host/FixedTimeslotTask.h"
#include "../../serviceinterface/ServiceInterfaceStream.h"
#include "../../tasks/ExecutableObjectIF.h"
#include <thread>
#include <chrono>
#if defined(WIN32)
#include <windows.h>
#elif defined(LINUX)
#include <pthread.h>
#endif
FixedTimeslotTask::FixedTimeslotTask(const char *name, TaskPriority setPriority,
TaskStackSize setStack, TaskPeriod setPeriod,
void (*setDeadlineMissedFunc)()) :
started(false), pollingSeqTable(setPeriod*1000), taskName(name),
period(setPeriod), deadlineMissedFunc(setDeadlineMissedFunc) {
// It is propably possible to set task priorities by using the native
// task handles for Windows / Linux
mainThread = std::thread(&FixedTimeslotTask::taskEntryPoint, this, this);
#if defined(WIN32)
/* List of possible priority classes:
* https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/
* nf-processthreadsapi-setpriorityclass
* And respective thread priority numbers:
* https://docs.microsoft.com/en-us/windows/
* win32/procthread/scheduling-priorities */
int result = SetPriorityClass(
reinterpret_cast<HANDLE>(mainThread.native_handle()),
ABOVE_NORMAL_PRIORITY_CLASS);
if(result != 0) {
sif::error << "FixedTimeslotTask: Windows SetPriorityClass failed with code "
<< GetLastError() << std::endl;
}
result = SetThreadPriority(
reinterpret_cast<HANDLE>(mainThread.native_handle()),
THREAD_PRIORITY_NORMAL);
if(result != 0) {
sif::error << "FixedTimeslotTask: Windows SetPriorityClass failed with code "
<< GetLastError() << std::endl;
}
#elif defined(LINUX)
// we can just copy and paste the code from linux here.
#endif
}
FixedTimeslotTask::~FixedTimeslotTask(void) {
//Do not delete objects, we were responsible for ptrs only.
terminateThread = true;
if(mainThread.joinable()) {
mainThread.join();
}
delete this;
}
void FixedTimeslotTask::taskEntryPoint(void* argument) {
FixedTimeslotTask *originalTask(reinterpret_cast<FixedTimeslotTask*>(argument));
if (not originalTask->started) {
// we have to suspend/block here until the task is started.
// if semaphores are implemented, use them here.
std::unique_lock<std::mutex> lock(initMutex);
initCondition.wait(lock);
}
this->taskFunctionality();
sif::debug << "FixedTimeslotTask::taskEntryPoint: "
"Returned from taskFunctionality." << std::endl;
}
ReturnValue_t FixedTimeslotTask::startTask() {
started = true;
// Notify task to start.
std::lock_guard<std::mutex> lock(initMutex);
initCondition.notify_one();
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t FixedTimeslotTask::sleepFor(uint32_t ms) {
std::this_thread::sleep_for(std::chrono::milliseconds(ms));
return HasReturnvaluesIF::RETURN_OK;
}
void FixedTimeslotTask::taskFunctionality() {
pollingSeqTable.intializeSequenceAfterTaskCreation();
// A local iterator for the Polling Sequence Table is created to
// find the start time for the first entry.
auto slotListIter = pollingSeqTable.current;
// Get start time for first entry.
chron_ms interval(slotListIter->pollingTimeMs);
auto currentStartTime {
std::chrono::duration_cast<chron_ms>(
std::chrono::system_clock::now().time_since_epoch())
};
if(interval.count() > 0) {
delayForInterval(&currentStartTime, interval);
}
/* Enter the loop that defines the task behavior. */
for (;;) {
if(terminateThread.load()) {
break;
}
//The component for this slot is executed and the next one is chosen.
this->pollingSeqTable.executeAndAdvance();
if (not pollingSeqTable.slotFollowsImmediately()) {
// we need to wait before executing the current slot
//this gives us the time to wait:
interval = chron_ms(this->pollingSeqTable.getIntervalToPreviousSlotMs());
delayForInterval(&currentStartTime, interval);
//TODO deadline missed check
}
}
}
ReturnValue_t FixedTimeslotTask::addSlot(object_id_t componentId,
uint32_t slotTimeMs, int8_t executionStep) {
ExecutableObjectIF* executableObject = objectManager->
get<ExecutableObjectIF>(componentId);
if (executableObject != nullptr) {
pollingSeqTable.addSlot(componentId, slotTimeMs, executionStep,
executableObject, this);
return HasReturnvaluesIF::RETURN_OK;
}
sif::error << "Component " << std::hex << componentId <<
" not found, not adding it to pst" << std::endl;
return HasReturnvaluesIF::RETURN_FAILED;
}
ReturnValue_t FixedTimeslotTask::checkSequence() const {
return pollingSeqTable.checkSequence();
}
uint32_t FixedTimeslotTask::getPeriodMs() const {
return period * 1000;
}
bool FixedTimeslotTask::delayForInterval(chron_ms * previousWakeTimeMs,
const chron_ms interval) {
bool shouldDelay = false;
//Get current wakeup time
auto currentStartTime =
std::chrono::duration_cast<chron_ms>(
std::chrono::system_clock::now().time_since_epoch());
/* Generate the tick time at which the task wants to wake. */
auto nextTimeToWake_ms = (*previousWakeTimeMs) + interval;
if (currentStartTime < *previousWakeTimeMs) {
/* The tick count has overflowed since this function was
lasted called. In this case the only time we should ever
actually delay is if the wake time has also overflowed,
and the wake time is greater than the tick time. When this
is the case it is as if neither time had overflowed. */
if ((nextTimeToWake_ms < *previousWakeTimeMs)
&& (nextTimeToWake_ms > currentStartTime)) {
shouldDelay = true;
}
} else {
/* The tick time has not overflowed. In this case we will
delay if either the wake time has overflowed, and/or the
tick time is less than the wake time. */
if ((nextTimeToWake_ms < *previousWakeTimeMs)
|| (nextTimeToWake_ms > currentStartTime)) {
shouldDelay = true;
}
}
/* Update the wake time ready for the next call. */
(*previousWakeTimeMs) = nextTimeToWake_ms;
if (shouldDelay) {
auto sleepTime = std::chrono::duration_cast<chron_ms>(
nextTimeToWake_ms - currentStartTime);
std::this_thread::sleep_for(sleepTime);
return true;
}
//We are shifting the time in case the deadline was missed like rtems
(*previousWakeTimeMs) = currentStartTime;
return false;
}

View File

@ -0,0 +1,130 @@
#ifndef FRAMEWORK_OSAL_HOST_FIXEDTIMESLOTTASK_H_
#define FRAMEWORK_OSAL_HOST_FIXEDTIMESLOTTASK_H_
#include "../../objectmanager/ObjectManagerIF.h"
#include "../../tasks/FixedSlotSequence.h"
#include "../../tasks/FixedTimeslotTaskIF.h"
#include "../../tasks/Typedef.h"
#include <vector>
#include <thread>
#include <condition_variable>
#include <atomic>
class ExecutableObjectIF;
/**
* @brief This class represents a task for periodic activities with multiple
* steps and strict timeslot requirements for these steps.
* @details
* @ingroup task_handling
*/
class FixedTimeslotTask: public FixedTimeslotTaskIF {
public:
/**
* @brief Standard constructor of the class.
* @details
* The class is initialized without allocated objects. These need to be
* added with #addComponent.
* @param priority
* @param stack_size
* @param setPeriod
* @param setDeadlineMissedFunc
* The function pointer to the deadline missed function that shall be
* assigned.
*/
FixedTimeslotTask(const char *name, TaskPriority setPriority,
TaskStackSize setStack, TaskPeriod setPeriod,
void (*setDeadlineMissedFunc)());
/**
* @brief Currently, the executed object's lifetime is not coupled with
* the task object's lifetime, so the destructor is empty.
*/
virtual ~FixedTimeslotTask(void);
/**
* @brief The method to start the task.
* @details The method starts the task with the respective system call.
* Entry point is the taskEntryPoint method described below.
* The address of the task object is passed as an argument
* to the system call.
*/
ReturnValue_t startTask(void);
/**
* Add timeslot to the polling sequence table.
* @param componentId
* @param slotTimeMs
* @param executionStep
* @return
*/
ReturnValue_t addSlot(object_id_t componentId,
uint32_t slotTimeMs, int8_t executionStep);
ReturnValue_t checkSequence() const override;
uint32_t getPeriodMs() const;
ReturnValue_t sleepFor(uint32_t ms);
protected:
using chron_ms = std::chrono::milliseconds;
bool started;
//!< Typedef for the List of objects.
typedef std::vector<ExecutableObjectIF*> ObjectList;
std::thread mainThread;
std::atomic<bool> terminateThread = false;
//! Polling sequence table which contains the object to execute
//! and information like the timeslots and the passed execution step.
FixedSlotSequence pollingSeqTable;
std::condition_variable initCondition;
std::mutex initMutex;
std::string taskName;
/**
* @brief The period of the task.
* @details
* The period determines the frequency of the task's execution.
* It is expressed in clock ticks.
*/
TaskPeriod period;
/**
* @brief The pointer to the deadline-missed function.
* @details
* This pointer stores the function that is executed if the task's deadline
* is missed. So, each may react individually on a timing failure.
* The pointer may be NULL, then nothing happens on missing the deadline.
* The deadline is equal to the next execution of the periodic task.
*/
void (*deadlineMissedFunc)(void);
/**
* @brief This is the function executed in the new task's context.
* @details
* It converts the argument back to the thread object type and copies the
* class instance to the task context.
* The taskFunctionality method is called afterwards.
* @param A pointer to the task object itself is passed as argument.
*/
void taskEntryPoint(void* argument);
/**
* @brief The function containing the actual functionality of the task.
* @details
* The method sets and starts the task's period, then enters a loop that is
* repeated as long as the isRunning attribute is true. Within the loop,
* all performOperation methods of the added objects are called. Afterwards
* the checkAndRestartPeriod system call blocks the task until the next
* period. On missing the deadline, the deadlineMissedFunction is executed.
*/
void taskFunctionality(void);
bool delayForInterval(chron_ms * previousWakeTimeMs,
const chron_ms interval);
};
#endif /* FRAMEWORK_OSAL_HOST_FIXEDTIMESLOTTASK_H_ */

159
osal/host/MessageQueue.cpp Normal file
View File

@ -0,0 +1,159 @@
#include "MessageQueue.h"
#include "QueueMapManager.h"
#include "../../serviceinterface/ServiceInterfaceStream.h"
#include "../../ipc/MutexFactory.h"
#include "../../ipc/MutexHelper.h"
MessageQueue::MessageQueue(size_t messageDepth, size_t maxMessageSize):
messageSize(maxMessageSize), messageDepth(messageDepth) {
queueLock = MutexFactory::instance()->createMutex();
auto result = QueueMapManager::instance()->addMessageQueue(this, &mqId);
if(result != HasReturnvaluesIF::RETURN_OK) {
sif::error << "MessageQueue::MessageQueue:"
<< " Could not be created" << std::endl;
}
}
MessageQueue::~MessageQueue() {
MutexFactory::instance()->deleteMutex(queueLock);
}
ReturnValue_t MessageQueue::sendMessage(MessageQueueId_t sendTo,
MessageQueueMessageIF* message, bool ignoreFault) {
return sendMessageFrom(sendTo, message, this->getId(), ignoreFault);
}
ReturnValue_t MessageQueue::sendToDefault(MessageQueueMessageIF* message) {
return sendToDefaultFrom(message, this->getId());
}
ReturnValue_t MessageQueue::sendToDefaultFrom(MessageQueueMessageIF* message,
MessageQueueId_t sentFrom, bool ignoreFault) {
return sendMessageFrom(defaultDestination,message,sentFrom,ignoreFault);
}
ReturnValue_t MessageQueue::reply(MessageQueueMessageIF* message) {
if (this->lastPartner != 0) {
return sendMessageFrom(this->lastPartner, message, this->getId());
} else {
return MessageQueueIF::NO_REPLY_PARTNER;
}
}
ReturnValue_t MessageQueue::sendMessageFrom(MessageQueueId_t sendTo,
MessageQueueMessageIF* message, MessageQueueId_t sentFrom,
bool ignoreFault) {
return sendMessageFromMessageQueue(sendTo, message, sentFrom,
ignoreFault);
}
ReturnValue_t MessageQueue::receiveMessage(MessageQueueMessageIF* message,
MessageQueueId_t* receivedFrom) {
ReturnValue_t status = this->receiveMessage(message);
if(status == HasReturnvaluesIF::RETURN_OK) {
*receivedFrom = this->lastPartner;
}
return status;
}
ReturnValue_t MessageQueue::receiveMessage(MessageQueueMessageIF* message) {
if(messageQueue.empty()) {
return MessageQueueIF::EMPTY;
}
// not sure this will work..
//*message = std::move(messageQueue.front());
MutexHelper mutexLock(queueLock, MutexIF::TimeoutType::WAITING, 20);
MessageQueueMessage* currentMessage = &messageQueue.front();
std::copy(currentMessage->getBuffer(),
currentMessage->getBuffer() + messageSize, message->getBuffer());
messageQueue.pop();
// The last partner is the first uint32_t field in the message
this->lastPartner = message->getSender();
return HasReturnvaluesIF::RETURN_OK;
}
MessageQueueId_t MessageQueue::getLastPartner() const {
return lastPartner;
}
ReturnValue_t MessageQueue::flush(uint32_t* count) {
*count = messageQueue.size();
// Clears the queue.
messageQueue = std::queue<MessageQueueMessage>();
return HasReturnvaluesIF::RETURN_OK;
}
MessageQueueId_t MessageQueue::getId() const {
return mqId;
}
void MessageQueue::setDefaultDestination(MessageQueueId_t defaultDestination) {
defaultDestinationSet = true;
this->defaultDestination = defaultDestination;
}
MessageQueueId_t MessageQueue::getDefaultDestination() const {
return defaultDestination;
}
bool MessageQueue::isDefaultDestinationSet() const {
return defaultDestinationSet;
}
// static core function to send messages.
ReturnValue_t MessageQueue::sendMessageFromMessageQueue(MessageQueueId_t sendTo,
MessageQueueMessageIF* message, MessageQueueId_t sentFrom,
bool ignoreFault) {
if(message->getMessageSize() > message->getMaximumMessageSize()) {
// Actually, this should never happen or an error will be emitted
// in MessageQueueMessage.
// But I will still return a failure here.
return HasReturnvaluesIF::RETURN_FAILED;
}
MessageQueue* targetQueue = dynamic_cast<MessageQueue*>(
QueueMapManager::instance()->getMessageQueue(sendTo));
if(targetQueue == nullptr) {
if(not ignoreFault) {
InternalErrorReporterIF* internalErrorReporter =
objectManager->get<InternalErrorReporterIF>(
objects::INTERNAL_ERROR_REPORTER);
if (internalErrorReporter != nullptr) {
internalErrorReporter->queueMessageNotSent();
}
}
// TODO: Better returnvalue
return HasReturnvaluesIF::RETURN_FAILED;
}
if(targetQueue->messageQueue.size() < targetQueue->messageDepth) {
MutexHelper mutexLock(targetQueue->queueLock,
MutexIF::TimeoutType::WAITING, 20);
// not ideal, works for now though.
MessageQueueMessage* mqmMessage =
dynamic_cast<MessageQueueMessage*>(message);
if(message != nullptr) {
targetQueue->messageQueue.push(*mqmMessage);
}
else {
sif::error << "MessageQueue::sendMessageFromMessageQueue: Message"
"is not MessageQueueMessage!" << std::endl;
}
}
else {
return MessageQueueIF::FULL;
}
message->setSender(sentFrom);
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t MessageQueue::lockQueue(MutexIF::TimeoutType timeoutType,
dur_millis_t lockTimeout) {
return queueLock->lockMutex(timeoutType, lockTimeout);
}
ReturnValue_t MessageQueue::unlockQueue() {
return queueLock->unlockMutex();
}

231
osal/host/MessageQueue.h Normal file
View File

@ -0,0 +1,231 @@
#ifndef FRAMEWORK_OSAL_HOST_MESSAGEQUEUE_H_
#define FRAMEWORK_OSAL_HOST_MESSAGEQUEUE_H_
#include "../../internalError/InternalErrorReporterIF.h"
#include "../../ipc/MessageQueueIF.h"
#include "../../ipc/MessageQueueMessage.h"
#include "../../ipc/MutexIF.h"
#include "../../timemanager/Clock.h"
#include <queue>
#include <memory>
/**
* @brief This class manages sending and receiving of
* message queue messages.
* @details
* Message queues are used to pass asynchronous messages between processes.
* They work like post boxes, where all incoming messages are stored in FIFO
* order. This class creates a new receiving queue and provides methods to fetch
* received messages. Being a child of MessageQueueSender, this class also
* provides methods to send a message to a user-defined or a default destination.
* In addition it also provides a reply method to answer to the queue it
* received its last message from.
*
* The MessageQueue should be used as "post box" for a single owning object.
* So all message queue communication is "n-to-one".
* For creating the queue, as well as sending and receiving messages, the class
* makes use of the operating system calls provided.
*
* Please keep in mind that FreeRTOS offers different calls for message queue
* operations if called from an ISR.
* For now, the system context needs to be switched manually.
* @ingroup osal
* @ingroup message_queue
*/
class MessageQueue : public MessageQueueIF {
friend class MessageQueueSenderIF;
public:
/**
* @brief The constructor initializes and configures the message queue.
* @details
* By making use of the according operating system call, a message queue is
* created and initialized. The message depth - the maximum number of
* messages to be buffered - may be set with the help of a parameter,
* whereas the message size is automatically set to the maximum message
* queue message size. The operating system sets the message queue id, or
* in case of failure, it is set to zero.
* @param message_depth
* The number of messages to be buffered before passing an error to the
* sender. Default is three.
* @param max_message_size
* With this parameter, the maximum message size can be adjusted.
* This should be left default.
*/
MessageQueue(size_t messageDepth = 3,
size_t maxMessageSize = MessageQueueMessage::MAX_MESSAGE_SIZE);
/** Copying message queues forbidden */
MessageQueue(const MessageQueue&) = delete;
MessageQueue& operator=(const MessageQueue&) = delete;
/**
* @brief The destructor deletes the formerly created message queue.
* @details This is accomplished by using the delete call provided
* by the operating system.
*/
virtual ~MessageQueue();
/**
* @brief This operation sends a message to the given destination.
* @details It directly uses the sendMessage call of the MessageQueueSender
* parent, but passes its queue id as "sentFrom" parameter.
* @param sendTo This parameter specifies the message queue id of the
* destination message queue.
* @param message A pointer to a previously created message, which is sent.
* @param ignoreFault If set to true, the internal software fault counter
* is not incremented if queue is full.
*/
ReturnValue_t sendMessage(MessageQueueId_t sendTo,
MessageQueueMessageIF* message, bool ignoreFault = false) override;
/**
* @brief This operation sends a message to the default destination.
* @details As in the sendMessage method, this function uses the
* sendToDefault call of the MessageQueueSender parent class and adds its
* queue id as "sentFrom" information.
* @param message A pointer to a previously created message, which is sent.
*/
ReturnValue_t sendToDefault(MessageQueueMessageIF* message) override;
/**
* @brief This operation sends a message to the last communication partner.
* @details This operation simplifies answering an incoming message by using
* the stored lastPartner information as destination. If there was no
* message received yet (i.e. lastPartner is zero), an error code is returned.
* @param message A pointer to a previously created message, which is sent.
*/
ReturnValue_t reply(MessageQueueMessageIF* message) override;
/**
* @brief With the sendMessage call, a queue message is sent to a
* receiving queue.
* @details
* This method takes the message provided, adds the sentFrom information and
* passes it on to the destination provided with an operating system call.
* The OS's return value is returned.
* @param sendTo This parameter specifies the message queue id to send
* the message to.
* @param message This is a pointer to a previously created message,
* which is sent.
* @param sentFrom The sentFrom information can be set to inject the
* sender's queue id into the message. This variable is set to zero by
* default.
* @param ignoreFault If set to true, the internal software fault counter
* is not incremented if queue is full.
*/
virtual ReturnValue_t sendMessageFrom( MessageQueueId_t sendTo,
MessageQueueMessageIF* message, MessageQueueId_t sentFrom = NO_QUEUE,
bool ignoreFault = false) override;
/**
* @brief The sendToDefault method sends a queue message to the default
* destination.
* @details
* In all other aspects, it works identical to the sendMessage method.
* @param message This is a pointer to a previously created message,
* which is sent.
* @param sentFrom The sentFrom information can be set to inject the
* sender's queue id into the message. This variable is set to zero by
* default.
*/
virtual ReturnValue_t sendToDefaultFrom( MessageQueueMessageIF* message,
MessageQueueId_t sentFrom = NO_QUEUE,
bool ignoreFault = false) override;
/**
* @brief This function reads available messages from the message queue
* and returns the sender.
* @details
* It works identically to the other receiveMessage call, but in addition
* returns the sender's queue id.
* @param message A pointer to a message in which the received data is stored.
* @param receivedFrom A pointer to a queue id in which the sender's id is stored.
*/
ReturnValue_t receiveMessage(MessageQueueMessageIF* message,
MessageQueueId_t *receivedFrom) override;
/**
* @brief This function reads available messages from the message queue.
* @details
* If data is available it is stored in the passed message pointer.
* The message's original content is overwritten and the sendFrom
* information is stored in the lastPartner attribute. Else, the lastPartner
* information remains untouched, the message's content is cleared and the
* function returns immediately.
* @param message A pointer to a message in which the received data is stored.
*/
ReturnValue_t receiveMessage(MessageQueueMessageIF* message) override;
/**
* Deletes all pending messages in the queue.
* @param count The number of flushed messages.
* @return RETURN_OK on success.
*/
ReturnValue_t flush(uint32_t* count) override;
/**
* @brief This method returns the message queue id of the last
* communication partner.
*/
MessageQueueId_t getLastPartner() const override;
/**
* @brief This method returns the message queue id of this class's
* message queue.
*/
MessageQueueId_t getId() const override;
/**
* @brief This method is a simple setter for the default destination.
*/
void setDefaultDestination(MessageQueueId_t defaultDestination) override;
/**
* @brief This method is a simple getter for the default destination.
*/
MessageQueueId_t getDefaultDestination() const override;
bool isDefaultDestinationSet() const override;
ReturnValue_t lockQueue(MutexIF::TimeoutType timeoutType,
dur_millis_t lockTimeout);
ReturnValue_t unlockQueue();
protected:
/**
* @brief Implementation to be called from any send Call within
* MessageQueue and MessageQueueSenderIF.
* @details
* This method takes the message provided, adds the sentFrom information and
* passes it on to the destination provided with an operating system call.
* The OS's return value is returned.
* @param sendTo
* This parameter specifies the message queue id to send the message to.
* @param message
* This is a pointer to a previously created message, which is sent.
* @param sentFrom
* The sentFrom information can be set to inject the sender's queue id into
* the message. This variable is set to zero by default.
* @param ignoreFault
* If set to true, the internal software fault counter is not incremented
* if queue is full.
* @param context Specify whether call is made from task or from an ISR.
*/
static ReturnValue_t sendMessageFromMessageQueue(MessageQueueId_t sendTo,
MessageQueueMessageIF* message, MessageQueueId_t sentFrom = NO_QUEUE,
bool ignoreFault=false);
//static ReturnValue_t handleSendResult(BaseType_t result, bool ignoreFault);
private:
std::queue<MessageQueueMessage> messageQueue;
/**
* @brief The class stores the queue id it got assigned.
* If initialization fails, the queue id is set to zero.
*/
MessageQueueId_t mqId = 0;
size_t messageSize = 0;
size_t messageDepth = 0;
MutexIF* queueLock;
bool defaultDestinationSet = false;
MessageQueueId_t defaultDestination = 0;
MessageQueueId_t lastPartner = 0;
};
#endif /* FRAMEWORK_OSAL_HOST_MESSAGEQUEUE_H_ */

39
osal/host/Mutex.cpp Normal file
View File

@ -0,0 +1,39 @@
#include "Mutex.h"
#include "../../serviceinterface/ServiceInterfaceStream.h"
Mutex::Mutex() {}
ReturnValue_t Mutex::lockMutex(TimeoutType timeoutType, uint32_t timeoutMs) {
if(timeoutMs == MutexIF::BLOCKING) {
mutex.lock();
locked = true;
return HasReturnvaluesIF::RETURN_OK;
}
else if(timeoutMs == MutexIF::POLLING) {
if(mutex.try_lock()) {
locked = true;
return HasReturnvaluesIF::RETURN_OK;
}
}
else if(timeoutMs > MutexIF::POLLING){
auto chronoMs = std::chrono::milliseconds(timeoutMs);
if(mutex.try_lock_for(chronoMs)) {
locked = true;
return HasReturnvaluesIF::RETURN_OK;
}
}
return MutexIF::MUTEX_TIMEOUT;
}
ReturnValue_t Mutex::unlockMutex() {
if(not locked) {
return MutexIF::CURR_THREAD_DOES_NOT_OWN_MUTEX;
}
mutex.unlock();
locked = false;
return HasReturnvaluesIF::RETURN_OK;
}
std::timed_mutex* Mutex::getMutexHandle() {
return &mutex;
}

29
osal/host/Mutex.h Normal file
View File

@ -0,0 +1,29 @@
#ifndef FSFW_OSAL_HOSTED_MUTEX_H_
#define FSFW_OSAL_HOSTED_MUTEX_H_
#include "../../ipc/MutexIF.h"
#include <mutex>
/**
* @brief OS component to implement MUTual EXclusion
*
* @details
* Mutexes are binary semaphores which include a priority inheritance mechanism.
* Documentation: https://www.freertos.org/Real-time-embedded-RTOS-mutexes.html
* @ingroup osal
*/
class Mutex : public MutexIF {
public:
Mutex();
ReturnValue_t lockMutex(TimeoutType timeoutType =
TimeoutType::BLOCKING, uint32_t timeoutMs = 0) override;
ReturnValue_t unlockMutex() override;
std::timed_mutex* getMutexHandle();
private:
bool locked = false;
std::timed_mutex mutex;
};
#endif /* FSFW_OSAL_HOSTED_MUTEX_H_ */

View File

@ -0,0 +1,28 @@
#include "../../ipc/MutexFactory.h"
#include "../../osal/host/Mutex.h"
//TODO: Different variant than the lazy loading in QueueFactory.
//What's better and why? -> one is on heap the other on bss/data
//MutexFactory* MutexFactory::factoryInstance = new MutexFactory();
MutexFactory* MutexFactory::factoryInstance = nullptr;
MutexFactory::MutexFactory() {
}
MutexFactory::~MutexFactory() {
}
MutexFactory* MutexFactory::instance() {
if (factoryInstance == nullptr){
factoryInstance = new MutexFactory();
}
return MutexFactory::factoryInstance;
}
MutexIF* MutexFactory::createMutex() {
return new Mutex();
}
void MutexFactory::deleteMutex(MutexIF* mutex) {
delete mutex;
}

176
osal/host/PeriodicTask.cpp Normal file
View File

@ -0,0 +1,176 @@
#include "Mutex.h"
#include "PeriodicTask.h"
#include "../../ipc/MutexFactory.h"
#include "../../serviceinterface/ServiceInterfaceStream.h"
#include "../../tasks/ExecutableObjectIF.h"
#include <thread>
#include <chrono>
#if defined(WIN32)
#include <windows.h>
#elif defined(LINUX)
#include <pthread.h>
#endif
PeriodicTask::PeriodicTask(const char *name, TaskPriority setPriority,
TaskStackSize setStack, TaskPeriod setPeriod,
void (*setDeadlineMissedFunc)()) :
started(false), taskName(name), period(setPeriod),
deadlineMissedFunc(setDeadlineMissedFunc) {
// It is propably possible to set task priorities by using the native
// task handles for Windows / Linux
mainThread = std::thread(&PeriodicTask::taskEntryPoint, this, this);
#if defined(WIN32)
/* List of possible priority classes:
* https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/
* nf-processthreadsapi-setpriorityclass
* And respective thread priority numbers:
* https://docs.microsoft.com/en-us/windows/
* win32/procthread/scheduling-priorities */
int result = SetPriorityClass(
reinterpret_cast<HANDLE>(mainThread.native_handle()),
ABOVE_NORMAL_PRIORITY_CLASS);
if(result != 0) {
sif::error << "PeriodicTask: Windows SetPriorityClass failed with code "
<< GetLastError() << std::endl;
}
result = SetThreadPriority(
reinterpret_cast<HANDLE>(mainThread.native_handle()),
THREAD_PRIORITY_NORMAL);
if(result != 0) {
sif::error << "PeriodicTask: Windows SetPriorityClass failed with code "
<< GetLastError() << std::endl;
}
#elif defined(LINUX)
// we can just copy and paste the code from linux here.
#endif
}
PeriodicTask::~PeriodicTask(void) {
//Do not delete objects, we were responsible for ptrs only.
terminateThread = true;
if(mainThread.joinable()) {
mainThread.join();
}
delete this;
}
void PeriodicTask::taskEntryPoint(void* argument) {
PeriodicTask *originalTask(reinterpret_cast<PeriodicTask*>(argument));
if (not originalTask->started) {
// we have to suspend/block here until the task is started.
// if semaphores are implemented, use them here.
std::unique_lock<std::mutex> lock(initMutex);
initCondition.wait(lock);
}
this->taskFunctionality();
sif::debug << "PeriodicTask::taskEntryPoint: "
"Returned from taskFunctionality." << std::endl;
}
ReturnValue_t PeriodicTask::startTask() {
started = true;
// Notify task to start.
std::lock_guard<std::mutex> lock(initMutex);
initCondition.notify_one();
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t PeriodicTask::sleepFor(uint32_t ms) {
std::this_thread::sleep_for(std::chrono::milliseconds(ms));
return HasReturnvaluesIF::RETURN_OK;
}
void PeriodicTask::taskFunctionality() {
std::chrono::milliseconds periodChrono(static_cast<uint32_t>(period*1000));
auto currentStartTime {
std::chrono::duration_cast<std::chrono::milliseconds>(
std::chrono::system_clock::now().time_since_epoch())
};
auto nextStartTime{ currentStartTime };
/* Enter the loop that defines the task behavior. */
for (;;) {
if(terminateThread.load()) {
break;
}
for (ObjectList::iterator it = objectList.begin();
it != objectList.end(); ++it) {
(*it)->performOperation();
}
if(not delayForInterval(&currentStartTime, periodChrono)) {
sif::warning << "PeriodicTask: " << taskName <<
" missed deadline!\n" << std::flush;
if(deadlineMissedFunc != nullptr) {
this->deadlineMissedFunc();
}
}
}
}
ReturnValue_t PeriodicTask::addComponent(object_id_t object) {
ExecutableObjectIF* newObject = objectManager->get<ExecutableObjectIF>(
object);
if (newObject == nullptr) {
return HasReturnvaluesIF::RETURN_FAILED;
}
objectList.push_back(newObject);
return HasReturnvaluesIF::RETURN_OK;
}
uint32_t PeriodicTask::getPeriodMs() const {
return period * 1000;
}
bool PeriodicTask::delayForInterval(chron_ms* previousWakeTimeMs,
const chron_ms interval) {
bool shouldDelay = false;
//Get current wakeup time
auto currentStartTime =
std::chrono::duration_cast<std::chrono::milliseconds>(
std::chrono::system_clock::now().time_since_epoch());
/* Generate the tick time at which the task wants to wake. */
auto nextTimeToWake_ms = (*previousWakeTimeMs) + interval;
if (currentStartTime < *previousWakeTimeMs) {
/* The tick count has overflowed since this function was
lasted called. In this case the only time we should ever
actually delay is if the wake time has also overflowed,
and the wake time is greater than the tick time. When this
is the case it is as if neither time had overflowed. */
if ((nextTimeToWake_ms < *previousWakeTimeMs)
&& (nextTimeToWake_ms > currentStartTime)) {
shouldDelay = true;
}
} else {
/* The tick time has not overflowed. In this case we will
delay if either the wake time has overflowed, and/or the
tick time is less than the wake time. */
if ((nextTimeToWake_ms < *previousWakeTimeMs)
|| (nextTimeToWake_ms > currentStartTime)) {
shouldDelay = true;
}
}
/* Update the wake time ready for the next call. */
(*previousWakeTimeMs) = nextTimeToWake_ms;
if (shouldDelay) {
auto sleepTime = std::chrono::duration_cast<std::chrono::milliseconds>(
nextTimeToWake_ms - currentStartTime);
std::this_thread::sleep_for(sleepTime);
return true;
}
//We are shifting the time in case the deadline was missed like rtems
(*previousWakeTimeMs) = currentStartTime;
return false;
}

123
osal/host/PeriodicTask.h Normal file
View File

@ -0,0 +1,123 @@
#ifndef FRAMEWORK_OSAL_HOST_PERIODICTASK_H_
#define FRAMEWORK_OSAL_HOST_PERIODICTASK_H_
#include "../../objectmanager/ObjectManagerIF.h"
#include "../../tasks/PeriodicTaskIF.h"
#include "../../tasks/Typedef.h"
#include <vector>
#include <thread>
#include <condition_variable>
#include <atomic>
class ExecutableObjectIF;
/**
* @brief This class represents a specialized task for
* periodic activities of multiple objects.
* @details
*
* @ingroup task_handling
*/
class PeriodicTask: public PeriodicTaskIF {
public:
/**
* @brief Standard constructor of the class.
* @details
* The class is initialized without allocated objects. These need to be
* added with #addComponent.
* @param priority
* @param stack_size
* @param setPeriod
* @param setDeadlineMissedFunc
* The function pointer to the deadline missed function that shall be
* assigned.
*/
PeriodicTask(const char *name, TaskPriority setPriority, TaskStackSize setStack,
TaskPeriod setPeriod,void (*setDeadlineMissedFunc)());
/**
* @brief Currently, the executed object's lifetime is not coupled with
* the task object's lifetime, so the destructor is empty.
*/
virtual ~PeriodicTask(void);
/**
* @brief The method to start the task.
* @details The method starts the task with the respective system call.
* Entry point is the taskEntryPoint method described below.
* The address of the task object is passed as an argument
* to the system call.
*/
ReturnValue_t startTask(void);
/**
* Adds an object to the list of objects to be executed.
* The objects are executed in the order added.
* @param object Id of the object to add.
* @return
* -@c RETURN_OK on success
* -@c RETURN_FAILED if the object could not be added.
*/
ReturnValue_t addComponent(object_id_t object);
uint32_t getPeriodMs() const;
ReturnValue_t sleepFor(uint32_t ms);
protected:
using chron_ms = std::chrono::milliseconds;
bool started;
//!< Typedef for the List of objects.
typedef std::vector<ExecutableObjectIF*> ObjectList;
std::thread mainThread;
std::atomic<bool> terminateThread = false;
/**
* @brief This attribute holds a list of objects to be executed.
*/
ObjectList objectList;
std::condition_variable initCondition;
std::mutex initMutex;
std::string taskName;
/**
* @brief The period of the task.
* @details
* The period determines the frequency of the task's execution.
* It is expressed in clock ticks.
*/
TaskPeriod period;
/**
* @brief The pointer to the deadline-missed function.
* @details
* This pointer stores the function that is executed if the task's deadline
* is missed. So, each may react individually on a timing failure.
* The pointer may be NULL, then nothing happens on missing the deadline.
* The deadline is equal to the next execution of the periodic task.
*/
void (*deadlineMissedFunc)(void);
/**
* @brief This is the function executed in the new task's context.
* @details
* It converts the argument back to the thread object type and copies the
* class instance to the task context.
* The taskFunctionality method is called afterwards.
* @param A pointer to the task object itself is passed as argument.
*/
void taskEntryPoint(void* argument);
/**
* @brief The function containing the actual functionality of the task.
* @details
* The method sets and starts the task's period, then enters a loop that is
* repeated as long as the isRunning attribute is true. Within the loop,
* all performOperation methods of the added objects are called. Afterwards
* the checkAndRestartPeriod system call blocks the task until the next
* period. On missing the deadline, the deadlineMissedFunction is executed.
*/
void taskFunctionality(void);
bool delayForInterval(chron_ms * previousWakeTimeMs,
const chron_ms interval);
};
#endif /* PERIODICTASK_H_ */

View File

@ -0,0 +1,41 @@
#include "../../ipc/QueueFactory.h"
#include "../../osal/host/MessageQueue.h"
#include "../../serviceinterface/ServiceInterfaceStream.h"
#include <cstring>
QueueFactory* QueueFactory::factoryInstance = nullptr;
ReturnValue_t MessageQueueSenderIF::sendMessage(MessageQueueId_t sendTo,
MessageQueueMessageIF* message, MessageQueueId_t sentFrom,
bool ignoreFault) {
return MessageQueue::sendMessageFromMessageQueue(sendTo,message,
sentFrom,ignoreFault);
return HasReturnvaluesIF::RETURN_OK;
}
QueueFactory* QueueFactory::instance() {
if (factoryInstance == nullptr) {
factoryInstance = new QueueFactory;
}
return factoryInstance;
}
QueueFactory::QueueFactory() {
}
QueueFactory::~QueueFactory() {
}
MessageQueueIF* QueueFactory::createMessageQueue(uint32_t messageDepth,
size_t maxMessageSize) {
// A thread-safe queue can be implemented by using a combination
// of std::queue and std::mutex. This uses dynamic memory allocation
// which could be alleviated by using a custom allocator, external library
// (etl::queue) or simply using std::queue, we're on a host machine anyway.
return new MessageQueue(messageDepth, maxMessageSize);
}
void QueueFactory::deleteMessageQueue(MessageQueueIF* queue) {
delete queue;
}

View File

@ -0,0 +1,52 @@
#include "QueueMapManager.h"
#include "../../ipc/MutexFactory.h"
#include "../../ipc/MutexHelper.h"
QueueMapManager* QueueMapManager::mqManagerInstance = nullptr;
QueueMapManager::QueueMapManager() {
mapLock = MutexFactory::instance()->createMutex();
}
QueueMapManager* QueueMapManager::instance() {
if (mqManagerInstance == nullptr){
mqManagerInstance = new QueueMapManager();
}
return QueueMapManager::mqManagerInstance;
}
ReturnValue_t QueueMapManager::addMessageQueue(
MessageQueueIF* queueToInsert, MessageQueueId_t* id) {
// Not thread-safe, but it is assumed all message queues are created
// at software initialization now. If this is to be made thread-safe in
// the future, it propably would be sufficient to lock the increment
// operation here
uint32_t currentId = queueCounter++;
auto returnPair = queueMap.emplace(currentId, queueToInsert);
if(not returnPair.second) {
// this should never happen for the atomic variable.
sif::error << "QueueMapManager: This ID is already inside the map!"
<< std::endl;
return HasReturnvaluesIF::RETURN_FAILED;
}
if (id != nullptr) {
*id = currentId;
}
return HasReturnvaluesIF::RETURN_OK;
}
MessageQueueIF* QueueMapManager::getMessageQueue(
MessageQueueId_t messageQueueId) const {
MutexHelper(mapLock, MutexIF::TimeoutType::WAITING, 50);
auto queueIter = queueMap.find(messageQueueId);
if(queueIter != queueMap.end()) {
return queueIter->second;
}
else {
sif::warning << "QueueMapManager::getQueueHandle: The ID" <<
messageQueueId << " does not exists in the map" << std::endl;
return nullptr;
}
}

View File

@ -0,0 +1,47 @@
#ifndef FSFW_OSAL_HOST_QUEUEMAPMANAGER_H_
#define FSFW_OSAL_HOST_QUEUEMAPMANAGER_H_
#include "../../ipc/MessageQueueSenderIF.h"
#include "../../osal/host/MessageQueue.h"
#include <unordered_map>
#include <atomic>
using QueueMap = std::unordered_map<MessageQueueId_t, MessageQueueIF*>;
/**
* An internal map to map message queue IDs to message queues.
* This propably should be a singleton..
*/
class QueueMapManager {
public:
//! Returns the single instance of SemaphoreFactory.
static QueueMapManager* instance();
/**
* Insert a message queue into the map and returns a message queue ID
* @param queue The message queue to insert.
* @param id The passed value will be set unless a nullptr is passed
* @return
*/
ReturnValue_t addMessageQueue(MessageQueueIF* queue, MessageQueueId_t*
id = nullptr);
/**
* Get the message queue handle by providing a message queue ID.
* @param messageQueueId
* @return
*/
MessageQueueIF* getMessageQueue(MessageQueueId_t messageQueueId) const;
private:
//! External instantiation is forbidden.
QueueMapManager();
uint32_t queueCounter = 1;
MutexIF* mapLock;
QueueMap queueMap;
static QueueMapManager* mqManagerInstance;
};
#endif /* FSFW_OSAL_HOST_QUEUEMAPMANAGER_H_ */

View File

@ -0,0 +1,39 @@
#include "../../tasks/SemaphoreFactory.h"
#include "../../osal/linux/BinarySemaphore.h"
#include "../../osal/linux/CountingSemaphore.h"
#include "../../serviceinterface/ServiceInterfaceStream.h"
SemaphoreFactory* SemaphoreFactory::factoryInstance = nullptr;
SemaphoreFactory::SemaphoreFactory() {
}
SemaphoreFactory::~SemaphoreFactory() {
delete factoryInstance;
}
SemaphoreFactory* SemaphoreFactory::instance() {
if (factoryInstance == nullptr){
factoryInstance = new SemaphoreFactory();
}
return SemaphoreFactory::factoryInstance;
}
SemaphoreIF* SemaphoreFactory::createBinarySemaphore(uint32_t arguments) {
// Just gonna wait for full C++20 for now.
sif::error << "SemaphoreFactory: Binary Semaphore not implemented yet."
" Returning nullptr!\n" << std::flush;
return nullptr;
}
SemaphoreIF* SemaphoreFactory::createCountingSemaphore(const uint8_t maxCount,
uint8_t initCount, uint32_t arguments) {
// Just gonna wait for full C++20 for now.
sif::error << "SemaphoreFactory: Counting Semaphore not implemented yet."
" Returning nullptr!\n" << std::flush;
return nullptr;
}
void SemaphoreFactory::deleteSemaphore(SemaphoreIF* semaphore) {
delete semaphore;
}

51
osal/host/TaskFactory.cpp Normal file
View File

@ -0,0 +1,51 @@
#include "../../osal/host/FixedTimeslotTask.h"
#include "../../osal/host/PeriodicTask.h"
#include "../../tasks/TaskFactory.h"
#include "../../returnvalues/HasReturnvaluesIF.h"
#include "../../tasks/PeriodicTaskIF.h"
#include <chrono>
TaskFactory* TaskFactory::factoryInstance = new TaskFactory();
// Will propably not be used for hosted implementation
const size_t PeriodicTaskIF::MINIMUM_STACK_SIZE = 0;
TaskFactory::TaskFactory() {
}
TaskFactory::~TaskFactory() {
}
TaskFactory* TaskFactory::instance() {
return TaskFactory::factoryInstance;
}
PeriodicTaskIF* TaskFactory::createPeriodicTask(TaskName name_,
TaskPriority taskPriority_,TaskStackSize stackSize_,
TaskPeriod periodInSeconds_,
TaskDeadlineMissedFunction deadLineMissedFunction_) {
return new PeriodicTask(name_, taskPriority_, stackSize_, periodInSeconds_,
deadLineMissedFunction_);
}
FixedTimeslotTaskIF* TaskFactory::createFixedTimeslotTask(TaskName name_,
TaskPriority taskPriority_,TaskStackSize stackSize_,
TaskPeriod periodInSeconds_,
TaskDeadlineMissedFunction deadLineMissedFunction_) {
return new FixedTimeslotTask(name_, taskPriority_, stackSize_,
periodInSeconds_, deadLineMissedFunction_);
}
ReturnValue_t TaskFactory::deleteTask(PeriodicTaskIF* task) {
// This might block for some time!
delete task;
return HasReturnvaluesIF::RETURN_FAILED;
}
ReturnValue_t TaskFactory::delayTask(uint32_t delayMs){
std::this_thread::sleep_for(std::chrono::milliseconds(delayMs));
return HasReturnvaluesIF::RETURN_OK;
}

View File

@ -25,6 +25,8 @@ ReturnValue_t PeriodicPosixTask::addComponent(object_id_t object) {
ExecutableObjectIF* newObject = objectManager->get<ExecutableObjectIF>(
object);
if (newObject == nullptr) {
sif::error << "PeriodicTask::addComponent: Invalid object. Make sure"
<< " it implements ExecutableObjectIF!" << std::endl;
return HasReturnvaluesIF::RETURN_FAILED;
}
objectList.push_back(newObject);
@ -46,27 +48,33 @@ ReturnValue_t PeriodicPosixTask::startTask(void){
}
void PeriodicPosixTask::taskFunctionality(void) {
if(!started){
if(not started) {
suspend();
}
for (auto const &object: objectList) {
object->initializeAfterTaskCreation();
}
uint64_t lastWakeTime = getCurrentMonotonicTimeMs();
//The task's "infinite" inner loop is entered.
while (1) {
for (ObjectList::iterator it = objectList.begin();
it != objectList.end(); ++it) {
(*it)->performOperation();
for (auto const &object: objectList) {
object->performOperation();
}
if(!PosixThread::delayUntil(&lastWakeTime,periodMs)){
if(not PosixThread::delayUntil(&lastWakeTime, periodMs)){
char name[20] = {0};
int status = pthread_getname_np(pthread_self(), name, sizeof(name));
if(status == 0) {
sif::error << "PeriodicPosixTask " << name << ": Deadline "
"missed." << std::endl;
}else{
}
else {
sif::error << "PeriodicPosixTask X: Deadline missed. " <<
status << std::endl;
}
if (this->deadlineMissedFunc != NULL) {
if (this->deadlineMissedFunc != nullptr) {
this->deadlineMissedFunc();
}
}

View File

@ -32,7 +32,7 @@ public:
* The address of the task object is passed as an argument
* to the system call.
*/
ReturnValue_t startTask(void);
ReturnValue_t startTask() override;
/**
* Adds an object to the list of objects to be executed.
* The objects are executed in the order added.

View File

@ -64,6 +64,7 @@ enum {
LOCAL_POOL_OWNER_IF, //LPIF 58
POOL_VARIABLE_IF, //PVA 59
HOUSEKEEPING_MANAGER, //HKM 60
DLE_ENCODER, //DLEE 61
FW_CLASS_ID_COUNT //is actually count + 1 !
};

View File

@ -1,5 +1,5 @@
#ifndef ENDIANSWAPPER_H_
#define ENDIANSWAPPER_H_
#ifndef FSFW_SERIALIZE_ENDIANCONVERTER_H_
#define FSFW_SERIALIZE_ENDIANCONVERTER_H_
#include "../osal/Endiness.h"
#include <cstring>
@ -35,9 +35,7 @@
*/
class EndianConverter {
private:
EndianConverter() {
}
;
EndianConverter() {};
public:
/**
* Convert a typed variable between big endian and machine endian.
@ -123,4 +121,4 @@ public:
}
};
#endif /* ENDIANSWAPPER_H_ */
#endif /* FSFW_SERIALIZE_ENDIANCONVERTER_H_ */

View File

@ -1,13 +1,14 @@
#ifndef FRAMEWORK_SERIALIZE_SERIALARRAYLISTADAPTER_H_
#define FRAMEWORK_SERIALIZE_SERIALARRAYLISTADAPTER_H_
#ifndef FSFW_SERIALIZE_SERIALARRAYLISTADAPTER_H_
#define FSFW_SERIALIZE_SERIALARRAYLISTADAPTER_H_
#include "../container/ArrayList.h"
#include "SerializeIF.h"
#include "../container/ArrayList.h"
#include <utility>
/**
* @ingroup serialize
* Also serializes length field !
* @author baetz
* @ingroup serialize
*/
template<typename T, typename count_t = uint8_t>
class SerialArrayListAdapter : public SerializeIF {
@ -27,8 +28,8 @@ public:
buffer, size, maxSize, streamEndianness);
count_t i = 0;
while ((result == HasReturnvaluesIF::RETURN_OK) && (i < list->size)) {
result = SerializeAdapter::serialize(&list->entries[i], buffer,
size, maxSize, streamEndianness);
result = SerializeAdapter::serialize(&list->entries[i], buffer, size,
maxSize, streamEndianness);
++i;
}
return result;
@ -66,6 +67,7 @@ public:
if (tempSize > list->maxSize()) {
return SerializeIF::TOO_MANY_ELEMENTS;
}
list->size = tempSize;
count_t i = 0;
while ((result == HasReturnvaluesIF::RETURN_OK) && (i < list->size)) {
@ -76,10 +78,9 @@ public:
}
return result;
}
private:
ArrayList<T, count_t> *adaptee;
};
#endif /* FRAMEWORK_SERIALIZE_SERIALARRAYLISTADAPTER_H_ */
#endif /* FSFW_SERIALIZE_SERIALARRAYLISTADAPTER_H_ */

View File

@ -1,31 +1,57 @@
#ifndef SERIALFIXEDARRAYLISTADAPTER_H_
#define SERIALFIXEDARRAYLISTADAPTER_H_
#ifndef FSFW_SERIALIZE_SERIALFIXEDARRAYLISTADAPTER_H_
#define FSFW_SERIALIZE_SERIALFIXEDARRAYLISTADAPTER_H_
#include "../container/FixedArrayList.h"
#include "SerialArrayListAdapter.h"
#include "../container/FixedArrayList.h"
/**
* \ingroup serialize
* @brief This adapter provides an interface for SerializeIF to serialize and
* deserialize buffers with a header containing the buffer length.
* @details
* Can be used by SerialLinkedListAdapter by declaring
* as a linked element with SerializeElement<SerialFixedArrayListAdapter<...>>.
* The sequence of objects is defined in the constructor by
* using the setStart and setNext functions.
*
* @tparam BUFFER_TYPE: Specifies the data type of the buffer
* @tparam MAX_SIZE: Specifies the maximum allowed number of elements
* (not bytes!)
* @tparam count_t: specifies the type/size of the length field which defaults
* to one byte.
* @ingroup serialize
*/
template<typename T, uint32_t MAX_SIZE, typename count_t = uint8_t>
class SerialFixedArrayListAdapter : public FixedArrayList<T, MAX_SIZE, count_t>, public SerializeIF {
template<typename BUFFER_TYPE, uint32_t MAX_SIZE, typename count_t = uint8_t>
class SerialFixedArrayListAdapter :
public FixedArrayList<BUFFER_TYPE, MAX_SIZE, count_t>,
public SerializeIF {
public:
/**
* Constructor arguments are forwarded to FixedArrayList constructor.
* Refer to the fixed array list constructors for different options.
* @param args
*/
template<typename... Args>
SerialFixedArrayListAdapter(Args... args) : FixedArrayList<T, MAX_SIZE, count_t>(std::forward<Args>(args)...) {
}
SerialFixedArrayListAdapter(Args... args) :
FixedArrayList<BUFFER_TYPE, MAX_SIZE, count_t>(
std::forward<Args>(args)...){}
ReturnValue_t serialize(uint8_t** buffer, size_t* size,
size_t maxSize, Endianness streamEndianness) const {
return SerialArrayListAdapter<T, count_t>::serialize(this, buffer, size, maxSize, streamEndianness);
return SerialArrayListAdapter<BUFFER_TYPE, count_t>::serialize(this,
buffer, size, maxSize, streamEndianness);
}
size_t getSerializedSize() const {
return SerialArrayListAdapter<T, count_t>::getSerializedSize(this);
return SerialArrayListAdapter<BUFFER_TYPE, count_t>::
getSerializedSize(this);
}
ReturnValue_t deSerialize(const uint8_t** buffer, size_t* size,
Endianness streamEndianness) {
return SerialArrayListAdapter<T, count_t>::deSerialize(this, buffer, size, streamEndianness);
return SerialArrayListAdapter<BUFFER_TYPE, count_t>::deSerialize(this,
buffer, size, streamEndianness);
}
};
#endif /* SERIALFIXEDARRAYLISTADAPTER_H_ */
#endif /* FSFW_SERIALIZE_SERIALFIXEDARRAYLISTADAPTER_H_ */

View File

@ -1,32 +1,52 @@
/**
* @file SerialLinkedListAdapter.h
* @brief This file defines the SerialLinkedListAdapter class.
* @date 22.07.2014
* @author baetz
*/
#ifndef SERIALLINKEDLISTADAPTER_H_
#define SERIALLINKEDLISTADAPTER_H_
#ifndef FSFW_SERIALIZE_SERIALLINKEDLISTADAPTER_H_
#define FSFW_SERIALIZE_SERIALLINKEDLISTADAPTER_H_
#include "../container/SinglyLinkedList.h"
#include "SerializeAdapter.h"
#include "SerializeElement.h"
#include "SerializeIF.h"
//This is where we need the SerializeAdapter!
/**
* \ingroup serialize
* @brief Implement the conversion of object data to data streams
* or vice-versa, using linked lists.
* @details
* An alternative to the AutoSerializeAdapter functions
* - All object members with a datatype are declared as
* SerializeElement<element_type> members inside the class
* implementing this adapter.
* - The element type can also be a SerialBufferAdapter to
* de-/serialize buffers.
* - The element type can also be a SerialFixedArrayListAdapter to
* de-/serialize buffers with a size header, which is scanned automatically.
*
* The sequence of objects is defined in the constructor by using
* the setStart and setNext functions.
*
* 1. The serialization process is done by instantiating the class and
* calling serialize after all SerializeElement entries have been set by
* using the constructor or setter functions. An additional size variable
* can be supplied which is calculated/incremented automatically.
* 2. The deserialization process is done by instantiating the class and
* supplying a buffer with the data which is converted into an object.
* The size of data to serialize can be supplied and is
* decremented in the function. Range checking is done internally.
* @author baetz
* @ingroup serialize
*/
template<typename T, typename count_t = uint8_t>
class SerialLinkedListAdapter: public SinglyLinkedList<T>, public SerializeIF {
public:
SerialLinkedListAdapter(typename LinkedElement<T>::Iterator start,
bool printCount = false) :
SinglyLinkedList<T>(start), printCount(printCount) {
}
SerialLinkedListAdapter(LinkedElement<T>* first, bool printCount = false) :
SinglyLinkedList<T>(first), printCount(printCount) {
}
SerialLinkedListAdapter(bool printCount = false) :
SinglyLinkedList<T>(), printCount(printCount) {
}
@ -49,13 +69,14 @@ public:
uint8_t** buffer, size_t* size, size_t maxSize,
Endianness streamEndianness) {
ReturnValue_t result = HasReturnvaluesIF::RETURN_OK;
while ((result == HasReturnvaluesIF::RETURN_OK) && (element != NULL)) {
while ((result == HasReturnvaluesIF::RETURN_OK) and (element != nullptr)) {
result = element->value->serialize(buffer, size, maxSize,
streamEndianness);
element = element->getNext();
}
return result;
}
virtual size_t getSerializedSize() const override {
if (printCount) {
return SerialLinkedListAdapter<T>::getSerializedSize()
@ -64,32 +85,44 @@ public:
return getSerializedSize(SinglyLinkedList<T>::start);
}
}
static size_t getSerializedSize(const LinkedElement<T> *element) {
size_t size = 0;
while (element != NULL) {
while (element != nullptr) {
size += element->value->getSerializedSize();
element = element->getNext();
}
return size;
}
virtual ReturnValue_t deSerialize(const uint8_t** buffer, size_t* size,
Endianness streamEndianness) override {
return deSerialize(SinglyLinkedList<T>::start, buffer, size, streamEndianness);
return deSerialize(SinglyLinkedList<T>::start, buffer, size,
streamEndianness);
}
static ReturnValue_t deSerialize(LinkedElement<T>* element,
const uint8_t** buffer, size_t* size, Endianness streamEndianness) {
ReturnValue_t result = HasReturnvaluesIF::RETURN_OK;
while ((result == HasReturnvaluesIF::RETURN_OK) && (element != NULL)) {
while ((result == HasReturnvaluesIF::RETURN_OK) and (element != nullptr)) {
result = element->value->deSerialize(buffer, size, streamEndianness);
element = element->getNext();
}
return result;
}
bool printCount;
/**
* Copying is forbidden by deleting the copy constructor and the copy
* assignment operator because of the pointers to the linked list members.
* Unless the child class implements an own copy constructor or
* copy assignment operator, these operation will throw a compiler error.
* @param
*/
SerialLinkedListAdapter(const SerialLinkedListAdapter &) = delete;
SerialLinkedListAdapter& operator=(const SerialLinkedListAdapter&) = delete;
bool printCount;
};
#endif /* SERIALLINKEDLISTADAPTER_H_ */
#endif /* FSFW_SERIALIZE_SERIALLINKEDLISTADAPTER_H_ */

View File

@ -1,48 +1,114 @@
#ifndef SERIALIZEADAPTER_H_
#define SERIALIZEADAPTER_H_
#ifndef _FSFW_SERIALIZE_SERIALIZEADAPTER_H_
#define _FSFW_SERIALIZE_SERIALIZEADAPTER_H_
#include "../container/IsDerivedFrom.h"
#include "../returnvalues/HasReturnvaluesIF.h"
#include "EndianConverter.h"
#include "SerializeIF.h"
#include <string.h>
#include <cstddef>
#include <type_traits>
/**
* \ingroup serialize
* @brief These adapters provides an interface to use the SerializeIF functions
* with arbitrary template objects to facilitate and simplify the
* serialization of classes with different multiple different data types
* into buffers and vice-versa.
* @details
* The correct serialization or deserialization function is chosen at
* compile time with template type deduction.
*
* @ingroup serialize
*/
class SerializeAdapter {
public:
/***
* This function can be used to serialize a trivial copy-able type or a
* child of SerializeIF.
* The right template to be called is determined in the function itself.
* For objects of non trivial copy-able type this function is almost never
* called by the user directly. Instead helpers for specific types like
* SerialArrayListAdapter or SerialLinkedListAdapter is the right choice here.
*
* @param[in] object Object to serialize, the used type is deduced from this pointer
* @param[in/out] buffer Buffer to serialize into. Will be moved by the function.
* @param[in/out] size Size of current written buffer. Will be incremented by the function.
* @param[in] maxSize Max size of Buffer
* @param[in] streamEndianness Endianness of serialized element as in according to SerializeIF::Endianness
* @return
* - @c BUFFER_TOO_SHORT The given buffer in is too short
* - @c RETURN_FAILED Generic Error
* - @c RETURN_OK Successful serialization
*/
template<typename T>
static ReturnValue_t serialize(const T *object, uint8_t **buffer,
size_t *size, size_t maxSize, SerializeIF::Endianness streamEndianness) {
InternalSerializeAdapter<T, IsDerivedFrom<T, SerializeIF>::Is> adapter;
size_t *size, size_t maxSize,
SerializeIF::Endianness streamEndianness) {
InternalSerializeAdapter<T, std::is_base_of<SerializeIF, T>::value> adapter;
return adapter.serialize(object, buffer, size, maxSize,
streamEndianness);
}
/**
* Function to return the serialized size of the object in the pointer.
* May be a trivially copy-able object or a Child of SerializeIF
*
* @param object Pointer to Object
* @return Serialized size of object
*/
template<typename T>
static uint32_t getSerializedSize(const T *object) {
InternalSerializeAdapter<T, IsDerivedFrom<T, SerializeIF>::Is> adapter;
static size_t getSerializedSize(const T *object){
InternalSerializeAdapter<T, std::is_base_of<SerializeIF, T>::value> adapter;
return adapter.getSerializedSize(object);
}
/**
* @brief
* Deserializes a object from a given buffer of given size.
* Object Must be trivially copy-able or a child of SerializeIF.
*
* @details
* Buffer will be moved to the current read location. Size will be decreased by the function.
*
* @param[in/out] buffer Buffer to deSerialize from. Will be moved by the function.
* @param[in/out] size Remaining size of the buffer to read from. Will be decreased by function.
* @param[in] streamEndianness Endianness as in according to SerializeIF::Endianness
* @return
* - @c STREAM_TOO_SHORT The input stream is too short to deSerialize the object
* - @c TOO_MANY_ELEMENTS The buffer has more inputs than expected
* - @c RETURN_FAILED Generic Error
* - @c RETURN_OK Successful deserialization
*/
template<typename T>
static ReturnValue_t deSerialize(T *object, const uint8_t **buffer,
size_t *size, SerializeIF::Endianness streamEndianness) {
InternalSerializeAdapter<T, IsDerivedFrom<T, SerializeIF>::Is> adapter;
InternalSerializeAdapter<T, std::is_base_of<SerializeIF, T>::value> adapter;
return adapter.deSerialize(object, buffer, size, streamEndianness);
}
private:
template<typename T, int>
class InternalSerializeAdapter {
/**
* Internal template to deduce the right function calls at compile time
*/
template<typename T, bool> class InternalSerializeAdapter;
/**
* Template to be used if T is not a child of SerializeIF
*
* @tparam T T must be trivially_copyable
*/
template<typename T>
class InternalSerializeAdapter<T, false> {
static_assert (std::is_trivially_copyable<T>::value,
"If a type needs to be serialized it must be a child of "
"SerializeIF or trivially copy-able");
public:
static ReturnValue_t serialize(const T *object, uint8_t **buffer,
size_t *size, size_t max_size, SerializeIF::Endianness streamEndianness) {
size_t *size, size_t max_size,
SerializeIF::Endianness streamEndianness) {
size_t ignoredSize = 0;
if (size == NULL) {
if (size == nullptr) {
size = &ignoredSize;
}
//TODO check integer overflow of *size
if (sizeof(T) + *size <= max_size) {
// Check remaining size is large enough and check integer
// overflow of *size
size_t newSize = sizeof(T) + *size;
if ((newSize <= max_size) and (newSize > *size)) {
T tmp;
switch (streamEndianness) {
case SerializeIF::Endianness::BIG:
@ -56,7 +122,7 @@ private:
tmp = *object;
break;
}
memcpy(*buffer, &tmp, sizeof(T));
std::memcpy(*buffer, &tmp, sizeof(T));
*size += sizeof(T);
(*buffer) += sizeof(T);
return HasReturnvaluesIF::RETURN_OK;
@ -70,7 +136,7 @@ private:
T tmp;
if (*size >= sizeof(T)) {
*size -= sizeof(T);
memcpy(&tmp, *buffer, sizeof(T));
std::memcpy(&tmp, *buffer, sizeof(T));
switch (streamEndianness) {
case SerializeIF::Endianness::BIG:
*object = EndianConverter::convertBigEndian<T>(tmp);
@ -94,22 +160,26 @@ private:
uint32_t getSerializedSize(const T *object) {
return sizeof(T);
}
};
/**
* Template for objects that inherit from SerializeIF
*
* @tparam T A child of SerializeIF
*/
template<typename T>
class InternalSerializeAdapter<T, 1> {
class InternalSerializeAdapter<T, true> {
public:
ReturnValue_t serialize(const T *object, uint8_t **buffer,
size_t *size, size_t max_size,
ReturnValue_t serialize(const T *object, uint8_t **buffer, size_t *size,
size_t max_size,
SerializeIF::Endianness streamEndianness) const {
size_t ignoredSize = 0;
if (size == NULL) {
if (size == nullptr) {
size = &ignoredSize;
}
return object->serialize(buffer, size, max_size, streamEndianness);
}
uint32_t getSerializedSize(const T *object) const {
size_t getSerializedSize(const T *object) const {
return object->getSerializedSize();
}
@ -120,4 +190,4 @@ private:
};
};
#endif /* SERIALIZEADAPTER_H_ */
#endif /* _FSFW_SERIALIZE_SERIALIZEADAPTER_H_ */

View File

@ -1,12 +1,20 @@
#ifndef SERIALIZEELEMENT_H_
#define SERIALIZEELEMENT_H_
#ifndef FSFW_SERIALIZE_SERIALIZEELEMENT_H_
#define FSFW_SERIALIZE_SERIALIZEELEMENT_H_
#include "../container/SinglyLinkedList.h"
#include "SerializeAdapter.h"
#include "../container/SinglyLinkedList.h"
#include <utility>
/**
* \ingroup serialize
* @brief This class is used to mark datatypes for serialization with the
* SerialLinkedListAdapter
* @details
* Used by declaring any arbitrary datatype with SerializeElement<T> myVariable,
* inside a SerialLinkedListAdapter implementation and setting the sequence
* of objects with setNext() and setStart().
* Serialization and Deserialization is then performed automatically in
* specified sequence order.
* @ingroup serialize
*/
template<typename T>
class SerializeElement: public SerializeIF, public LinkedElement<SerializeIF> {
@ -19,7 +27,7 @@ public:
SerializeElement() :
LinkedElement<SerializeIF>(this) {
}
T entry;
ReturnValue_t serialize(uint8_t **buffer, size_t *size, size_t maxSize,
Endianness streamEndianness) const override {
return SerializeAdapter::serialize(&entry, buffer, size, maxSize,
@ -35,6 +43,7 @@ public:
return SerializeAdapter::deSerialize(&entry, buffer, size,
streamEndianness);
}
operator T() {
return entry;
}
@ -43,9 +52,12 @@ public:
entry = newValue;
return *this;
}
T* operator->() {
return &entry;
}
T entry;
};
#endif /* SERIALIZEELEMENT_H_ */
#endif /* FSFW_SERIALIZE_SERIALIZEELEMENT_H_ */

View File

@ -2,7 +2,7 @@
#define FSFW_SERIALIZE_SERIALIZEIF_H_
#include "../returnvalues/HasReturnvaluesIF.h"
#include <stddef.h>
#include <cstddef>
/**
* @defgroup serialize Serialization
@ -10,7 +10,10 @@
*/
/**
* Translation of objects into data streams and from data streams.
* @brief Translation of objects into data streams and from data streams.
* @details
* Also provides options to convert from/to data with different endianness.
* variables.
* @ingroup serialize
*/
class SerializeIF {
@ -43,7 +46,7 @@ public:
* @param[in] maxSize The size of the buffer that is allowed to be used for serialize.
* @param[in] streamEndianness Endianness of the serialized data according to SerializeIF::Endianness
* @return
* - @¢ BUFFER_TOO_SHORT The given buffer in is too short
* - @c BUFFER_TOO_SHORT The given buffer in is too short
* - @c RETURN_FAILED Generic error
* - @c RETURN_OK Successful serialization
*/

View File

@ -550,7 +550,7 @@ Mode_t Subsystem::getFallbackSequence(Mode_t sequence) {
for (FixedMap<Mode_t, SequenceInfo>::Iterator iter = modeSequences.begin();
iter != modeSequences.end(); ++iter) {
if (iter.value->first == sequence) {
return iter->fallbackSequence;
return iter->second.fallbackSequence;
}
}
return -1;
@ -559,7 +559,7 @@ Mode_t Subsystem::getFallbackSequence(Mode_t sequence) {
bool Subsystem::isFallbackSequence(Mode_t SequenceId) {
for (FixedMap<Mode_t, SequenceInfo>::Iterator iter = modeSequences.begin();
iter != modeSequences.end(); iter++) {
if (iter->fallbackSequence == SequenceId) {
if (iter->second.fallbackSequence == SequenceId) {
return true;
}
}

View File

@ -1,7 +1,8 @@
#include "CCSDSTime.h"
#include <stdio.h>
#include <inttypes.h>
#include <math.h>
#include "../timemanager/CCSDSTime.h"
#include <cstdio>
#include <cinttypes>
#include <cmath>
CCSDSTime::CCSDSTime() {
}

View File

@ -5,7 +5,7 @@
#include "Clock.h"
#include "../returnvalues/HasReturnvaluesIF.h"
#include <stdint.h>
#include <cstdint>
bool operator<(const timeval& lhs, const timeval& rhs);
bool operator<=(const timeval& lhs, const timeval& rhs);

View File

@ -122,8 +122,8 @@ void CommandingServiceBase::handleCommandMessage(CommandMessage* reply) {
// Implemented by child class, specifies what to do with reply.
ReturnValue_t result = handleReply(reply, iter->command, &iter->state,
&nextCommand, iter->objectId, &isStep);
ReturnValue_t result = handleReply(reply, iter->second.command, &iter->second.state,
&nextCommand, iter->second.objectId, &isStep);
/* If the child implementation does not implement special handling for
* rejected replies (RETURN_FAILED or INVALID_REPLY is returned), a
@ -132,7 +132,7 @@ void CommandingServiceBase::handleCommandMessage(CommandMessage* reply) {
if((reply->getCommand() == CommandMessage::REPLY_REJECTED) and
(result == RETURN_FAILED or result == INVALID_REPLY)) {
result = reply->getReplyRejectedReason();
failureParameter1 = iter->command;
failureParameter1 = iter->second.command;
}
switch (result) {
@ -149,14 +149,14 @@ void CommandingServiceBase::handleCommandMessage(CommandMessage* reply) {
default:
if (isStep) {
verificationReporter.sendFailureReport(
TC_VERIFY::PROGRESS_FAILURE, iter->tcInfo.ackFlags,
iter->tcInfo.tcPacketId, iter->tcInfo.tcSequenceControl,
result, ++iter->step, failureParameter1,
TC_VERIFY::PROGRESS_FAILURE, iter->second.tcInfo.ackFlags,
iter->second.tcInfo.tcPacketId, iter->second.tcInfo.tcSequenceControl,
result, ++iter->second.step, failureParameter1,
failureParameter2);
} else {
verificationReporter.sendFailureReport(
TC_VERIFY::COMPLETION_FAILURE, iter->tcInfo.ackFlags,
iter->tcInfo.tcPacketId, iter->tcInfo.tcSequenceControl,
TC_VERIFY::COMPLETION_FAILURE, iter->second.tcInfo.ackFlags,
iter->second.tcInfo.tcPacketId, iter->second.tcInfo.tcSequenceControl,
result, 0, failureParameter1, failureParameter2);
}
failureParameter1 = 0;
@ -170,7 +170,7 @@ void CommandingServiceBase::handleCommandMessage(CommandMessage* reply) {
void CommandingServiceBase::handleReplyHandlerResult(ReturnValue_t result,
CommandMapIter iter, CommandMessage* nextCommand,
CommandMessage* reply, bool& isStep) {
iter->command = nextCommand->getCommand();
iter->second.command = nextCommand->getCommand();
// In case a new command is to be sent immediately, this is performed here.
// If no new command is sent, only analyse reply result by initializing
@ -185,14 +185,14 @@ void CommandingServiceBase::handleReplyHandlerResult(ReturnValue_t result,
if (isStep and result != NO_STEP_MESSAGE) {
verificationReporter.sendSuccessReport(
TC_VERIFY::PROGRESS_SUCCESS,
iter->tcInfo.ackFlags, iter->tcInfo.tcPacketId,
iter->tcInfo.tcSequenceControl, ++iter->step);
iter->second.tcInfo.ackFlags, iter->second.tcInfo.tcPacketId,
iter->second.tcInfo.tcSequenceControl, ++iter->second.step);
}
else {
verificationReporter.sendSuccessReport(
TC_VERIFY::COMPLETION_SUCCESS,
iter->tcInfo.ackFlags, iter->tcInfo.tcPacketId,
iter->tcInfo.tcSequenceControl, 0);
iter->second.tcInfo.ackFlags, iter->second.tcInfo.tcPacketId,
iter->second.tcInfo.tcSequenceControl, 0);
checkAndExecuteFifo(iter);
}
}
@ -200,16 +200,16 @@ void CommandingServiceBase::handleReplyHandlerResult(ReturnValue_t result,
if (isStep) {
nextCommand->clearCommandMessage();
verificationReporter.sendFailureReport(
TC_VERIFY::PROGRESS_FAILURE, iter->tcInfo.ackFlags,
iter->tcInfo.tcPacketId,
iter->tcInfo.tcSequenceControl, sendResult,
++iter->step, failureParameter1, failureParameter2);
TC_VERIFY::PROGRESS_FAILURE, iter->second.tcInfo.ackFlags,
iter->second.tcInfo.tcPacketId,
iter->second.tcInfo.tcSequenceControl, sendResult,
++iter->second.step, failureParameter1, failureParameter2);
} else {
nextCommand->clearCommandMessage();
verificationReporter.sendFailureReport(
TC_VERIFY::COMPLETION_FAILURE,
iter->tcInfo.ackFlags, iter->tcInfo.tcPacketId,
iter->tcInfo.tcSequenceControl, sendResult, 0,
iter->second.tcInfo.ackFlags, iter->second.tcInfo.tcPacketId,
iter->second.tcInfo.tcSequenceControl, sendResult, 0,
failureParameter1, failureParameter2);
}
failureParameter1 = 0;
@ -248,7 +248,7 @@ void CommandingServiceBase::handleRequestQueue() {
iter = commandMap.find(queue);
if (iter != commandMap.end()) {
result = iter->fifo.insert(address);
result = iter->second.fifo.insert(address);
if (result != RETURN_OK) {
rejectPacket(TC_VERIFY::START_FAILURE, &packet, OBJECT_BUSY);
}
@ -316,11 +316,11 @@ void CommandingServiceBase::startExecution(TcPacketStored *storedPacket,
CommandMapIter iter) {
ReturnValue_t result = RETURN_OK;
CommandMessage command;
iter->subservice = storedPacket->getSubService();
result = prepareCommand(&command, iter->subservice,
iter->second.subservice = storedPacket->getSubService();
result = prepareCommand(&command, iter->second.subservice,
storedPacket->getApplicationData(),
storedPacket->getApplicationDataSize(), &iter->state,
iter->objectId);
storedPacket->getApplicationDataSize(), &iter->second.state,
iter->second.objectId);
ReturnValue_t sendResult = RETURN_OK;
switch (result) {
@ -330,13 +330,13 @@ void CommandingServiceBase::startExecution(TcPacketStored *storedPacket,
&command);
}
if (sendResult == RETURN_OK) {
Clock::getUptime(&iter->uptimeOfStart);
iter->step = 0;
iter->subservice = storedPacket->getSubService();
iter->command = command.getCommand();
iter->tcInfo.ackFlags = storedPacket->getAcknowledgeFlags();
iter->tcInfo.tcPacketId = storedPacket->getPacketId();
iter->tcInfo.tcSequenceControl =
Clock::getUptime(&iter->second.uptimeOfStart);
iter->second.step = 0;
iter->second.subservice = storedPacket->getSubService();
iter->second.command = command.getCommand();
iter->second.tcInfo.ackFlags = storedPacket->getAcknowledgeFlags();
iter->second.tcInfo.tcPacketId = storedPacket->getPacketId();
iter->second.tcInfo.tcSequenceControl =
storedPacket->getPacketSequenceControl();
acceptPacket(TC_VERIFY::START_SUCCESS, storedPacket);
} else {
@ -386,7 +386,7 @@ void CommandingServiceBase::acceptPacket(uint8_t reportId,
void CommandingServiceBase::checkAndExecuteFifo(CommandMapIter iter) {
store_address_t address;
if (iter->fifo.retrieve(&address) != RETURN_OK) {
if (iter->second.fifo.retrieve(&address) != RETURN_OK) {
commandMap.erase(&iter);
} else {
TcPacketStored newPacket(address);
@ -412,10 +412,10 @@ void CommandingServiceBase::checkTimeout() {
Clock::getUptime(&uptime);
CommandMapIter iter;
for (iter = commandMap.begin(); iter != commandMap.end(); ++iter) {
if ((iter->uptimeOfStart + (timeoutSeconds * 1000)) < uptime) {
if ((iter->second.uptimeOfStart + (timeoutSeconds * 1000)) < uptime) {
verificationReporter.sendFailureReport(
TC_VERIFY::COMPLETION_FAILURE, iter->tcInfo.ackFlags,
iter->tcInfo.tcPacketId, iter->tcInfo.tcSequenceControl,
TC_VERIFY::COMPLETION_FAILURE, iter->second.tcInfo.ackFlags,
iter->second.tcInfo.tcPacketId, iter->second.tcInfo.tcSequenceControl,
TIMEOUT);
checkAndExecuteFifo(iter);
}

View File

@ -211,8 +211,7 @@ protected:
virtual void doPeriodicOperation();
struct CommandInfo {
struct CommandInfo: public SerializeIF{
struct tcInfo {
uint8_t ackFlags;
uint16_t tcPacketId;
@ -225,6 +224,20 @@ protected:
Command_t command;
object_id_t objectId;
FIFO<store_address_t, 3> fifo;
virtual ReturnValue_t serialize(uint8_t **buffer, size_t *size,
size_t maxSize, Endianness streamEndianness) const override{
return HasReturnvaluesIF::RETURN_FAILED;
};
virtual size_t getSerializedSize() const override {
return 0;
};
virtual ReturnValue_t deSerialize(const uint8_t **buffer, size_t *size,
Endianness streamEndianness) override{
return HasReturnvaluesIF::RETURN_FAILED;
};
};
using CommandMapIter = FixedMap<MessageQueueId_t,