//----------------------------------------------------------------------------- // MurmurHash3 was written by Austin Appleby, and is placed in the public // domain. The author hereby disclaims copyright to this source code. // Note - The x86 and x64 versions do _not_ produce the same results, as the // algorithms are optimized for their respective platforms. You can still // compile and run any of them on any platform, but your performance with the // non-native version will be less than optimal. #include "etl/platform.h" #ifdef ETL_COMPILER_GCC #pragma GCC diagnostic ignored "-Wimplicit-fallthrough" #endif #include "murmurhash3.h" //----------------------------------------------------------------------------- // Platform-specific functions and macros // Microsoft Visual Studio #if defined(ETL_COMPILER_MICROSOFT) #define FORCE_INLINE __forceinline #include <stdlib.h> #define ROTL32(x,y) _rotl(x,y) #define ROTL64(x,y) _rotl64(x,y) #define BIG_CONSTANT(x) (x##UI64) // Other compilers #else // defined(ETL_COMPILER_MICROSOFT) #define FORCE_INLINE inline __attribute__((always_inline)) inline uint32_t rotl32(uint32_t x, int8_t r) { return (x << r) | (x >> (32U - r)); } inline uint64_t rotl64(uint64_t x, int8_t r) { return (x << r) | (x >> (64U - r)); } #define ROTL32(x,y) rotl32(x,y) #define ROTL64(x,y) rotl64(x,y) #define BIG_CONSTANT(x) (x##LLU) #endif // !defined(ETL_COMPILER_MICROSOFT) //----------------------------------------------------------------------------- // Block read - if your platform needs to do endian-swapping or can only // handle aligned reads, do the conversion here FORCE_INLINE uint32_t getblock32(const uint32_t * p, int i) { return p[i]; } #if ETL_USING_64BIT_TYPES FORCE_INLINE uint64_t getblock64(const uint64_t * p, int i) { return p[i]; } #endif //----------------------------------------------------------------------------- // Finalization mix - force all bits of a hash block to avalanche FORCE_INLINE uint32_t fmix32(uint32_t h) { h ^= h >> 16U; h *= 0x85ebca6bUL; h ^= h >> 13U; h *= 0xc2b2ae35UL; h ^= h >> 16U; return h; } //---------- #if ETL_USING_64BIT_TYPES FORCE_INLINE uint64_t fmix64(uint64_t k) { k ^= k >> 33U; k *= BIG_CONSTANT(0xff51afd7ed558ccd); k ^= k >> 33U; k *= BIG_CONSTANT(0xc4ceb9fe1a85ec53); k ^= k >> 33U; return k; } #endif //----------------------------------------------------------------------------- void MurmurHash3_x86_32(const void * key, int len, uint32_t seed, void * out) { const uint8_t * data = (const uint8_t*)key; const int nblocks = len / 4; uint32_t h1 = seed; const uint32_t c1 = 0xcc9e2d51UL; const uint32_t c2 = 0x1b873593UL; //---------- // body const uint32_t * blocks = (const uint32_t *)(data + nblocks * 4); for (int i = -nblocks; i; i++) { uint32_t k1 = getblock32(blocks, i); k1 *= c1; k1 = ROTL32(k1, 15); k1 *= c2; h1 ^= k1; h1 = ROTL32(h1, 13); h1 = h1 * 5 + 0xe6546b64UL; } //---------- // tail const uint8_t * tail = data + nblocks * 4; uint32_t k1 = 0U; switch (len & 3) { case 3: k1 ^= tail[2] << 16U; case 2: k1 ^= tail[1] << 8U; case 1: k1 ^= tail[0]; k1 *= c1; k1 = ROTL32(k1, 15); k1 *= c2; h1 ^= k1; }; //---------- // finalization h1 ^= len; h1 = fmix32(h1); *(uint32_t*)out = h1; } //----------------------------------------------------------------------------- void MurmurHash3_x86_128(const void * key, const int len, uint32_t seed, void * out) { const uint8_t * data = (const uint8_t*)key; const int nblocks = len / 16; uint32_t h1 = seed; uint32_t h2 = seed; uint32_t h3 = seed; uint32_t h4 = seed; const uint32_t c1 = 0x239b961bUL; const uint32_t c2 = 0xab0e9789UL; const uint32_t c3 = 0x38b34ae5UL; const uint32_t c4 = 0xa1e38b93UL; //---------- // body const uint32_t * blocks = (const uint32_t *)(data + nblocks * 16); for (int i = -nblocks; i; i++) { uint32_t k1 = getblock32(blocks, i * 4 + 0); uint32_t k2 = getblock32(blocks, i * 4 + 1); uint32_t k3 = getblock32(blocks, i * 4 + 2); uint32_t k4 = getblock32(blocks, i * 4 + 3); k1 *= c1; k1 = ROTL32(k1, 15); k1 *= c2; h1 ^= k1; h1 = ROTL32(h1, 19); h1 += h2; h1 = h1 * 5 + 0x561ccd1bUL; k2 *= c2; k2 = ROTL32(k2, 16); k2 *= c3; h2 ^= k2; h2 = ROTL32(h2, 17); h2 += h3; h2 = h2 * 5 + 0x0bcaa747UL; k3 *= c3; k3 = ROTL32(k3, 17); k3 *= c4; h3 ^= k3; h3 = ROTL32(h3, 15); h3 += h4; h3 = h3 * 5 + 0x96cd1c35UL; k4 *= c4; k4 = ROTL32(k4, 18); k4 *= c1; h4 ^= k4; h4 = ROTL32(h4, 13); h4 += h1; h4 = h4 * 5 + 0x32ac3b17UL; } //---------- // tail const uint8_t * tail = data + nblocks * 16; uint32_t k1 = 0U; uint32_t k2 = 0U; uint32_t k3 = 0U; uint32_t k4 = 0U; switch (len & 15) { case 15: k4 ^= tail[14] << 16U; case 14: k4 ^= tail[13] << 8U; case 13: k4 ^= tail[12] << 0U; k4 *= c4; k4 = ROTL32(k4, 18); k4 *= c1; h4 ^= k4; case 12: k3 ^= tail[11] << 24U; case 11: k3 ^= tail[10] << 16U; case 10: k3 ^= tail[9] << 8U; case 9: k3 ^= tail[8] << 0U; k3 *= c3; k3 = ROTL32(k3, 17); k3 *= c4; h3 ^= k3; case 8: k2 ^= tail[7] << 24U; case 7: k2 ^= tail[6] << 16U; case 6: k2 ^= tail[5] << 8U; case 5: k2 ^= tail[4] << 0U; k2 *= c2; k2 = ROTL32(k2, 16); k2 *= c3; h2 ^= k2; case 4: k1 ^= tail[3] << 24U; case 3: k1 ^= tail[2] << 16U; case 2: k1 ^= tail[1] << 8U; case 1: k1 ^= tail[0] << 0U; k1 *= c1; k1 = ROTL32(k1, 15); k1 *= c2; h1 ^= k1; }; //---------- // finalization h1 ^= len; h2 ^= len; h3 ^= len; h4 ^= len; h1 += h2; h1 += h3; h1 += h4; h2 += h1; h3 += h1; h4 += h1; h1 = fmix32(h1); h2 = fmix32(h2); h3 = fmix32(h3); h4 = fmix32(h4); h1 += h2; h1 += h3; h1 += h4; h2 += h1; h3 += h1; h4 += h1; ((uint32_t*)out)[0] = h1; ((uint32_t*)out)[1] = h2; ((uint32_t*)out)[2] = h3; ((uint32_t*)out)[3] = h4; } //----------------------------------------------------------------------------- #if ETL_USING_64BIT_TYPES void MurmurHash3_x64_128(const void * key, const int len, const uint32_t seed, void * out) { const uint8_t * data = (const uint8_t*)key; const int nblocks = len / 16; uint64_t h1 = seed; uint64_t h2 = seed; const uint64_t c1 = BIG_CONSTANT(0x87c37b91114253d5); const uint64_t c2 = BIG_CONSTANT(0x4cf5ad432745937f); //---------- // body const uint64_t * blocks = (const uint64_t *)(data); for (int i = 0; i < nblocks; i++) { uint64_t k1 = getblock64(blocks, i * 2 + 0); uint64_t k2 = getblock64(blocks, i * 2 + 1); k1 *= c1; k1 = ROTL64(k1, 31); k1 *= c2; h1 ^= k1; h1 = ROTL64(h1, 27); h1 += h2; h1 = h1 * 5 + 0x52dce729UL; k2 *= c2; k2 = ROTL64(k2, 33); k2 *= c1; h2 ^= k2; h2 = ROTL64(h2, 31); h2 += h1; h2 = h2 * 5 + 0x38495ab5UL; } //---------- // tail const uint8_t * tail = data + nblocks * 16; uint64_t k1 = 0ULL; uint64_t k2 = 0ULL; switch (len & 15) { case 15: k2 ^= ((uint64_t)tail[14]) << 48U; case 14: k2 ^= ((uint64_t)tail[13]) << 40U; case 13: k2 ^= ((uint64_t)tail[12]) << 32U; case 12: k2 ^= ((uint64_t)tail[11]) << 24U; case 11: k2 ^= ((uint64_t)tail[10]) << 16U; case 10: k2 ^= ((uint64_t)tail[9]) << 8U; case 9: k2 ^= ((uint64_t)tail[8]) << 0U; k2 *= c2; k2 = ROTL64(k2, 33); k2 *= c1; h2 ^= k2; case 8: k1 ^= ((uint64_t)tail[7]) << 56U; case 7: k1 ^= ((uint64_t)tail[6]) << 48U; case 6: k1 ^= ((uint64_t)tail[5]) << 40U; case 5: k1 ^= ((uint64_t)tail[4]) << 32U; case 4: k1 ^= ((uint64_t)tail[3]) << 24U; case 3: k1 ^= ((uint64_t)tail[2]) << 16U; case 2: k1 ^= ((uint64_t)tail[1]) << 8U; case 1: k1 ^= ((uint64_t)tail[0]) << 0U; k1 *= c1; k1 = ROTL64(k1, 31); k1 *= c2; h1 ^= k1; }; //---------- // finalization h1 ^= len; h2 ^= len; h1 += h2; h2 += h1; h1 = fmix64(h1); h2 = fmix64(h2); h1 += h2; h2 += h1; ((uint64_t*)out)[0] = h1; ((uint64_t*)out)[1] = h2; } #endif