#include "../../timemanager/Clock.h" #include "RtemsBasic.h" #include uint16_t Clock::leapSeconds = 0; MutexIF* Clock::timeMutex = NULL; uint32_t Clock::getTicksPerSecond(void){ rtems_interval ticks_per_second = rtems_clock_get_ticks_per_second(); return static_cast(ticks_per_second); } ReturnValue_t Clock::setClock(const TimeOfDay_t* time) { rtems_time_of_day timeRtems; timeRtems.year = time->year; timeRtems.month = time->month; timeRtems.day = time->day; timeRtems.hour = time->hour; timeRtems.minute = time->minute; timeRtems.second = time->second; timeRtems.ticks = time->usecond * getTicksPerSecond() / 1e6; rtems_status_code status = rtems_clock_set(&timeRtems); switch(status){ case RTEMS_SUCCESSFUL: return HasReturnvaluesIF::RETURN_OK; case RTEMS_INVALID_ADDRESS: return HasReturnvaluesIF::RETURN_FAILED; case RTEMS_INVALID_CLOCK: return HasReturnvaluesIF::RETURN_FAILED; default: return HasReturnvaluesIF::RETURN_FAILED; } } ReturnValue_t Clock::setClock(const timeval* time) { //TODO This routine uses _TOD_Set which is not timespec newTime; newTime.tv_sec = time->tv_sec; newTime.tv_nsec = time->tv_usec * TOD_NANOSECONDS_PER_MICROSECOND; //SHOULDDO: Not sure if we need to protect this call somehow (by thread lock or something). //Uli: rtems docu says you can call this from an ISR, not sure if this means no protetion needed //TODO Second parameter is ISR_lock_Context _TOD_Set(&newTime,NULL); return HasReturnvaluesIF::RETURN_OK; } ReturnValue_t Clock::getClock_timeval(timeval* time) { //Callable from ISR rtems_status_code status = rtems_clock_get_tod_timeval(time); switch(status){ case RTEMS_SUCCESSFUL: return HasReturnvaluesIF::RETURN_OK; case RTEMS_NOT_DEFINED: return HasReturnvaluesIF::RETURN_FAILED; default: return HasReturnvaluesIF::RETURN_FAILED; } } ReturnValue_t Clock::getUptime(timeval* uptime) { //According to docs.rtems.org for rtems 5 this method is more accurate than rtems_clock_get_ticks_since_boot timespec time; rtems_status_code status = rtems_clock_get_uptime(&time); uptime->tv_sec = time.tv_sec; time.tv_nsec = time.tv_nsec / 1000; uptime->tv_usec = time.tv_nsec; switch(status){ case RTEMS_SUCCESSFUL: return HasReturnvaluesIF::RETURN_OK; default: return HasReturnvaluesIF::RETURN_FAILED; } } ReturnValue_t Clock::getUptime(uint32_t* uptimeMs) { //This counter overflows after 50 days *uptimeMs = rtems_clock_get_ticks_since_boot(); return HasReturnvaluesIF::RETURN_OK; } ReturnValue_t Clock::getClock_usecs(uint64_t* time) { timeval temp_time; rtems_status_code returnValue = rtems_clock_get_tod_timeval(&temp_time); *time = ((uint64_t) temp_time.tv_sec * 1000000) + temp_time.tv_usec; switch(returnValue){ case RTEMS_SUCCESSFUL: return HasReturnvaluesIF::RETURN_OK; default: return HasReturnvaluesIF::RETURN_FAILED; } } ReturnValue_t Clock::getDateAndTime(TimeOfDay_t* time) { rtems_time_of_day* timeRtems = reinterpret_cast(time); rtems_status_code status = rtems_clock_get_tod(timeRtems); switch (status) { case RTEMS_SUCCESSFUL: return HasReturnvaluesIF::RETURN_OK; case RTEMS_NOT_DEFINED: //system date and time is not set return HasReturnvaluesIF::RETURN_FAILED; case RTEMS_INVALID_ADDRESS: //time_buffer is NULL return HasReturnvaluesIF::RETURN_FAILED; default: return HasReturnvaluesIF::RETURN_FAILED; } } ReturnValue_t Clock::convertTimeOfDayToTimeval(const TimeOfDay_t* from, timeval* to) { //Fails in 2038.. rtems_time_of_day timeRtems; timeRtems.year = from->year; timeRtems.month = from->month; timeRtems.day = from->day; timeRtems.hour = from->hour; timeRtems.minute = from->minute; timeRtems.second = from->second; timeRtems.ticks = from->usecond * getTicksPerSecond() / 1e6; to->tv_sec = _TOD_To_seconds(&timeRtems); to->tv_usec = from->usecond; return HasReturnvaluesIF::RETURN_OK; } ReturnValue_t Clock::convertTimevalToJD2000(timeval time, double* JD2000) { *JD2000 = (time.tv_sec - 946728000. + time.tv_usec / 1000000.) / 24. / 3600.; return HasReturnvaluesIF::RETURN_OK; } ReturnValue_t Clock::convertUTCToTT(timeval utc, timeval* tt) { //SHOULDDO: works not for dates in the past (might have less leap seconds) if (timeMutex == NULL) { return HasReturnvaluesIF::RETURN_FAILED; } uint16_t leapSeconds; ReturnValue_t result = getLeapSeconds(&leapSeconds); if (result != HasReturnvaluesIF::RETURN_OK) { return result; } timeval leapSeconds_timeval = { 0, 0 }; leapSeconds_timeval.tv_sec = leapSeconds; //initial offset between UTC and TAI timeval UTCtoTAI1972 = { 10, 0 }; timeval TAItoTT = { 32, 184000 }; *tt = utc + leapSeconds_timeval + UTCtoTAI1972 + TAItoTT; return HasReturnvaluesIF::RETURN_OK; } ReturnValue_t Clock::setLeapSeconds(const uint16_t leapSeconds_) { if(checkOrCreateClockMutex()!=HasReturnvaluesIF::RETURN_OK){ return HasReturnvaluesIF::RETURN_FAILED; } MutexHelper helper(timeMutex); leapSeconds = leapSeconds_; return HasReturnvaluesIF::RETURN_OK; } ReturnValue_t Clock::getLeapSeconds(uint16_t* leapSeconds_) { if(timeMutex==NULL){ return HasReturnvaluesIF::RETURN_FAILED; } MutexHelper helper(timeMutex); *leapSeconds_ = leapSeconds; return HasReturnvaluesIF::RETURN_OK; } ReturnValue_t Clock::checkOrCreateClockMutex(){ if(timeMutex==NULL){ MutexFactory* mutexFactory = MutexFactory::instance(); if (mutexFactory == NULL) { return HasReturnvaluesIF::RETURN_FAILED; } timeMutex = mutexFactory->createMutex(); if (timeMutex == NULL) { return HasReturnvaluesIF::RETURN_FAILED; } } return HasReturnvaluesIF::RETURN_OK; }