///\file /****************************************************************************** The MIT License(MIT) Embedded Template Library. https://github.com/ETLCPP/etl https://www.etlcpp.com Copyright(c) 2015 John Wellbelove Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files(the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and / or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions : The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ******************************************************************************/ #ifndef ETL_FLAT_MULTMAP_INCLUDED #define ETL_FLAT_MULTMAP_INCLUDED #include "platform.h" #include "reference_flat_multimap.h" #include "pool.h" #include "utility.h" #include "placement_new.h" #include "nth_type.h" #include "type_traits.h" #include "initializer_list.h" #include "private/comparator_is_transparent.h" //***************************************************************************** ///\defgroup flat_multimap flat_multimap /// A flat_multimap with the capacity defined at compile time. /// Has insertion of O(N) and find of O(logN) /// Duplicate entries and not allowed. ///\ingroup containers //***************************************************************************** namespace etl { //*************************************************************************** /// The base class for specifically sized flat_multimaps. /// Can be used as a reference type for all flat_multimaps containing a specific type. ///\ingroup flat_multimap //*************************************************************************** template > class iflat_multimap : public etl::ireference_flat_multimap { public: typedef ETL_OR_STD::pair value_type; private: typedef etl::ireference_flat_multimap refmap_t; typedef typename refmap_t::lookup_t lookup_t; typedef etl::ipool storage_t; public: typedef TKey key_type; typedef TMapped mapped_type; typedef TKeyCompare key_compare; typedef value_type& reference; typedef const value_type& const_reference; #if ETL_USING_CPP11 typedef value_type&& rvalue_reference; #endif typedef value_type* pointer; typedef const value_type* const_pointer; typedef size_t size_type; typedef const key_type& const_key_reference; #if ETL_USING_CPP11 typedef key_type&& rvalue_key_reference; #endif typedef typename refmap_t::iterator iterator; typedef typename refmap_t::const_iterator const_iterator; typedef ETL_OR_STD::reverse_iterator reverse_iterator; typedef ETL_OR_STD::reverse_iterator const_reverse_iterator; typedef typename etl::iterator_traits::difference_type difference_type; private: //********************************************************************* /// How to compare elements and keys. //********************************************************************* class compare { public: bool operator ()(const value_type& element, key_type key) const { return comp(element.first, key); } bool operator ()(key_type key, const value_type& element) const { return comp(key, element.first); } key_compare comp; }; public: //********************************************************************* /// Returns an iterator to the beginning of the flat_multimap. ///\return An iterator to the beginning of the flat_multimap. //********************************************************************* iterator begin() { return refmap_t::begin(); } //********************************************************************* /// Returns a const_iterator to the beginning of the flat_multimap. ///\return A const iterator to the beginning of the flat_multimap. //********************************************************************* const_iterator begin() const { return refmap_t::begin(); } //********************************************************************* /// Returns an iterator to the end of the flat_multimap. ///\return An iterator to the end of the flat_multimap. //********************************************************************* iterator end() { return refmap_t::end(); } //********************************************************************* /// Returns a const_iterator to the end of the flat_multimap. ///\return A const iterator to the end of the flat_multimap. //********************************************************************* const_iterator end() const { return refmap_t::end(); } //********************************************************************* /// Returns a const_iterator to the beginning of the flat_multimap. ///\return A const iterator to the beginning of the flat_multimap. //********************************************************************* const_iterator cbegin() const { return refmap_t::cbegin(); } //********************************************************************* /// Returns a const_iterator to the end of the flat_multimap. ///\return A const iterator to the end of the flat_multimap. //********************************************************************* const_iterator cend() const { return refmap_t::cend(); } //********************************************************************* /// Returns an reverse iterator to the reverse beginning of the flat_multimap. ///\return Iterator to the reverse beginning of the flat_multimap. //********************************************************************* reverse_iterator rbegin() { return refmap_t::rbegin(); } //********************************************************************* /// Returns a const reverse iterator to the reverse beginning of the flat_multimap. ///\return Const iterator to the reverse beginning of the flat_multimap. //********************************************************************* const_reverse_iterator rbegin() const { return refmap_t::rbegin(); } //********************************************************************* /// Returns a reverse iterator to the end + 1 of the flat_multimap. ///\return Reverse iterator to the end + 1 of the flat_multimap. //********************************************************************* reverse_iterator rend() { return refmap_t::rend(); } //********************************************************************* /// Returns a const reverse iterator to the end + 1 of the flat_multimap. ///\return Const reverse iterator to the end + 1 of the flat_multimap. //********************************************************************* const_reverse_iterator rend() const { return refmap_t::rend(); } //********************************************************************* /// Returns a const reverse iterator to the reverse beginning of the flat_multimap. ///\return Const reverse iterator to the reverse beginning of the flat_multimap. //********************************************************************* const_reverse_iterator crbegin() const { return refmap_t::crbegin(); } //********************************************************************* /// Returns a const reverse iterator to the end + 1 of the flat_multimap. ///\return Const reverse iterator to the end + 1 of the flat_multimap. //********************************************************************* const_reverse_iterator crend() const { return refmap_t::crend(); } //********************************************************************* /// Assigns values to the flat_multimap. /// If asserts or exceptions are enabled, emits flat_multimap_full if the flat_multimap does not have enough free space. /// If asserts or exceptions are enabled, emits flat_multimap_iterator if the iterators are reversed. ///\param first The iterator to the first element. ///\param last The iterator to the last element + 1. //********************************************************************* template void assign(TIterator first, TIterator last) { #if ETL_IS_DEBUG_BUILD difference_type d = etl::distance(first, last); ETL_ASSERT(d <= difference_type(capacity()), ETL_ERROR(flat_multimap_full)); #endif clear(); while (first != last) { insert(*first); ++first; } } //********************************************************************* /// Inserts a value to the flat_multimap. /// If asserts or exceptions are enabled, emits flat_multimap_full if the flat_multimap is already full. ///\param value The value to insert. //********************************************************************* ETL_OR_STD::pair insert(const value_type& value) { ETL_ASSERT(!refmap_t::full(), ETL_ERROR(flat_multimap_full)); ETL_OR_STD::pair result(end(), false); iterator i_element = upper_bound(value.first); value_type* pvalue = storage.allocate(); ::new (pvalue) value_type(value); ETL_INCREMENT_DEBUG_COUNT; result = refmap_t::insert_at(i_element, *pvalue); return result; } #if ETL_USING_CPP11 //********************************************************************* /// Inserts a value to the flat_multimap. /// If asserts or exceptions are enabled, emits flat_multimap_full if the flat_multimap is already full. ///\param value The value to insert. //********************************************************************* ETL_OR_STD::pair insert(rvalue_reference value) { ETL_ASSERT(!refmap_t::full(), ETL_ERROR(flat_multimap_full)); ETL_OR_STD::pair result(end(), false); iterator i_element = upper_bound(value.first); value_type* pvalue = storage.allocate(); ::new (pvalue) value_type(etl::move(value)); ETL_INCREMENT_DEBUG_COUNT; result = refmap_t::insert_at(i_element, *pvalue); return result; } #endif //********************************************************************* /// Inserts a value to the flat_multimap. /// If asserts or exceptions are enabled, emits flat_multimap_full if the flat_multimap_full is already full. ///\param position The position to insert at. ///\param value The value to insert. //********************************************************************* iterator insert(const_iterator /*position*/, const value_type& value) { return insert(value).first; } #if ETL_USING_CPP11 //********************************************************************* /// Moves a value to the flat_multimap. /// If asserts or exceptions are enabled, emits flat_multimap_full if the flat_multimap_full is already full. ///\param position The position to insert at. ///\param value The value to insert. //********************************************************************* iterator insert(const_iterator /*position*/, rvalue_reference value) { return insert(etl::move(value)).first; } #endif //********************************************************************* /// Inserts a range of values to the flat_multimap. /// If asserts or exceptions are enabled, emits flat_multimap_full if the flat_multimap does not have enough free space. ///\param position The position to insert at. ///\param first The first element to add. ///\param last The last + 1 element to add. //********************************************************************* template void insert(TIterator first, TIterator last) { while (first != last) { insert(*first); ++first; } } //************************************************************************* /// Emplaces a value to the map. //************************************************************************* ETL_OR_STD::pair emplace(const value_type& value) { return insert(value); } //************************************************************************* /// Emplaces a value to the map. //************************************************************************* ETL_OR_STD::pair emplace(const key_type& key, const mapped_type& mapped) { ETL_ASSERT(!full(), ETL_ERROR(flat_multimap_full)); // Create it. value_type* pvalue = storage.allocate(); ::new ((void*)etl::addressof(pvalue->first)) key_type(key); ::new ((void*)etl::addressof(pvalue->second)) mapped_type(mapped); iterator i_element = upper_bound(key); ETL_INCREMENT_DEBUG_COUNT; return refmap_t::insert_at(i_element, *pvalue); } #if ETL_USING_CPP11 && ETL_NOT_USING_STLPORT //************************************************************************* /// Emplaces a value to the map. //************************************************************************* template ETL_OR_STD::pair emplace(const key_type& key, Args && ... args) { ETL_ASSERT(!full(), ETL_ERROR(flat_multimap_full)); // Create it. value_type* pvalue = storage.allocate(); ::new ((void*)etl::addressof(pvalue->first)) key_type(key); ::new ((void*)etl::addressof(pvalue->second)) mapped_type(etl::forward(args)...); iterator i_element = upper_bound(key); ETL_INCREMENT_DEBUG_COUNT; return refmap_t::insert_at(i_element, *pvalue); } #else //************************************************************************* /// Emplaces a value to the map. //************************************************************************* template ETL_OR_STD::pair emplace(const key_type& key, const T1& value1) { ETL_ASSERT(!full(), ETL_ERROR(flat_multimap_full)); // Create it. value_type* pvalue = storage.allocate(); ::new ((void*)etl::addressof(pvalue->first)) key_type(key); ::new ((void*)etl::addressof(pvalue->second)) mapped_type(value1); iterator i_element = upper_bound(key); ETL_INCREMENT_DEBUG_COUNT; return refmap_t::insert_at(i_element, *pvalue); } //************************************************************************* /// Emplaces a value to the map. //************************************************************************* template ETL_OR_STD::pair emplace(const key_type& key, const T1& value1, const T2& value2) { ETL_ASSERT(!full(), ETL_ERROR(flat_multimap_full)); // Create it. value_type* pvalue = storage.allocate(); ::new ((void*)etl::addressof(pvalue->first)) key_type(key); ::new ((void*)etl::addressof(pvalue->second)) mapped_type(value1, value2); iterator i_element = upper_bound(key); ETL_INCREMENT_DEBUG_COUNT; return refmap_t::insert_at(i_element, *pvalue); } //************************************************************************* /// Emplaces a value to the map. //************************************************************************* template ETL_OR_STD::pair emplace(const key_type& key, const T1& value1, const T2& value2, const T3& value3) { ETL_ASSERT(!full(), ETL_ERROR(flat_multimap_full)); // Create it. value_type* pvalue = storage.allocate(); ::new ((void*)etl::addressof(pvalue->first)) key_type(key); ::new ((void*)etl::addressof(pvalue->second)) mapped_type(value1, value2, value3); iterator i_element = upper_bound(key); ETL_INCREMENT_DEBUG_COUNT; return refmap_t::insert_at(i_element, *pvalue); } //************************************************************************* /// Emplaces a value to the map. //************************************************************************* template ETL_OR_STD::pair emplace(const key_type& key, const T1& value1, const T2& value2, const T3& value3, const T4& value4) { ETL_ASSERT(!full(), ETL_ERROR(flat_multimap_full)); // Create it. value_type* pvalue = storage.allocate(); ::new ((void*)etl::addressof(pvalue->first)) key_type(key); ::new ((void*)etl::addressof(pvalue->second)) mapped_type(value1, value2, value3, value4); iterator i_element = upper_bound(key); ETL_INCREMENT_DEBUG_COUNT; return refmap_t::insert_at(i_element, *pvalue); } #endif //********************************************************************* /// Erases an element. ///\param key The key to erase. ///\return The number of elements erased. 0 or 1. //********************************************************************* size_t erase(const_key_reference key) { ETL_OR_STD::pair range = equal_range(key); if (range.first == end()) { return 0; } else { size_t d = etl::distance(range.first, range.second); erase(range.first, range.second); return d; } } #if ETL_USING_CPP11 //********************************************************************* template ::value, int> = 0> size_t erase(K&& key) { ETL_OR_STD::pair range = equal_range(etl::forward(key)); if (range.first == end()) { return 0; } else { size_t d = etl::distance(range.first, range.second); erase(range.first, range.second); return d; } } #endif //********************************************************************* /// Erases an element. ///\param i_element Iterator to the element. //********************************************************************* iterator erase(iterator i_element) { i_element->~value_type(); storage.release(etl::addressof(*i_element)); ETL_DECREMENT_DEBUG_COUNT; return refmap_t::erase(i_element); } //********************************************************************* /// Erases an element. ///\param i_element Iterator to the element. //********************************************************************* iterator erase(const_iterator i_element) { i_element->~value_type(); storage.release(etl::addressof(*i_element)); ETL_DECREMENT_DEBUG_COUNT; return refmap_t::erase(i_element); } //********************************************************************* /// Erases a range of elements. /// The range includes all the elements between first and last, including the /// element pointed by first, but not the one pointed by last. ///\param first Iterator to the first element. ///\param last Iterator to the last element. //********************************************************************* iterator erase(const_iterator first, const_iterator last) { const_iterator itr = first; while (itr != last) { itr->~value_type(); storage.release(etl::addressof(*itr)); ++itr; ETL_DECREMENT_DEBUG_COUNT; } return refmap_t::erase(first, last); } //************************************************************************* /// Clears the flat_multimap. //************************************************************************* void clear() { if ETL_IF_CONSTEXPR(etl::is_trivially_destructible::value) { storage.release_all(); } else { iterator itr = begin(); while (itr != end()) { itr->~value_type(); storage.release(etl::addressof(*itr)); ++itr; } } ETL_RESET_DEBUG_COUNT; refmap_t::clear(); } //********************************************************************* /// Finds an element. ///\param key The key to search for. ///\return An iterator pointing to the element or end() if not found. //********************************************************************* iterator find(const_key_reference key) { return refmap_t::find(key); } #if ETL_USING_CPP11 //********************************************************************* template ::value, int> = 0> iterator find(const K& key) { return refmap_t::find(key); } #endif //********************************************************************* /// Finds an element. ///\param key The key to search for. ///\return An iterator pointing to the element or end() if not found. //********************************************************************* const_iterator find(const_key_reference key) const { return refmap_t::find(key); } #if ETL_USING_CPP11 //********************************************************************* template ::value, int> = 0> const_iterator find(const K& key) const { return refmap_t::find(key); } #endif //********************************************************************* /// Counts an element. ///\param key The key to search for. ///\return 1 if the key exists, otherwise 0. //********************************************************************* size_t count(const_key_reference key) const { return refmap_t::count(key); } #if ETL_USING_CPP11 //********************************************************************* template ::value, int> = 0> size_t count(const K& key) const { return refmap_t::count(key); } #endif //********************************************************************* /// Finds the lower bound of a key ///\param key The key to search for. ///\return An iterator. //********************************************************************* iterator lower_bound(const_key_reference key) { return refmap_t::lower_bound(key); } #if ETL_USING_CPP11 //********************************************************************* template ::value, int> = 0> iterator lower_bound(const K& key) { return refmap_t::lower_bound(key); } #endif //********************************************************************* /// Finds the lower bound of a key ///\param key The key to search for. ///\return An iterator. //********************************************************************* const_iterator lower_bound(const_key_reference key) const { return refmap_t::lower_bound(key); } #if ETL_USING_CPP11 //********************************************************************* template ::value, int> = 0> const_iterator lower_bound(const K& key) const { return refmap_t::lower_bound(key); } #endif //********************************************************************* /// Finds the upper bound of a key ///\param key The key to search for. ///\return An iterator. //********************************************************************* iterator upper_bound(const_key_reference key) { return refmap_t::upper_bound(key); } #if ETL_USING_CPP11 //********************************************************************* template ::value, int> = 0> iterator upper_bound(const K& key) { return refmap_t::upper_bound(key); } #endif //********************************************************************* /// Finds the upper bound of a key ///\param key The key to search for. ///\return An iterator. //********************************************************************* const_iterator upper_bound(const_key_reference key) const { return refmap_t::upper_bound(key); } #if ETL_USING_CPP11 //********************************************************************* template ::value, int> = 0> const_iterator upper_bound(const K& key) const { return refmap_t::upper_bound(key); } #endif //********************************************************************* /// Finds the range of equal elements of a key ///\param key The key to search for. ///\return An iterator pair. //********************************************************************* ETL_OR_STD::pair equal_range(const_key_reference key) { return refmap_t::equal_range(key); } #if ETL_USING_CPP11 //********************************************************************* template ::value, int> = 0> ETL_OR_STD::pair equal_range(const K& key) { return refmap_t::equal_range(key); } #endif //********************************************************************* /// Finds the range of equal elements of a key ///\param key The key to search for. ///\return An iterator pair. //********************************************************************* ETL_OR_STD::pair equal_range(const_key_reference key) const { return refmap_t::equal_range(key); } #if ETL_USING_CPP11 //********************************************************************* template ::value, int> = 0> ETL_OR_STD::pair equal_range(const K& key) const { return refmap_t::equal_range(key); } #endif //************************************************************************* /// Check if the map contains the key. //************************************************************************* bool contains(const_key_reference key) const { return find(key) != end(); } #if ETL_USING_CPP11 //************************************************************************* template ::value, int> = 0> bool contains(const K& k) const { return find(k) != end(); } #endif //************************************************************************* /// Assignment operator. //************************************************************************* iflat_multimap& operator = (const iflat_multimap& rhs) { if (&rhs != this) { assign(rhs.cbegin(), rhs.cend()); } return *this; } #if ETL_USING_CPP11 //************************************************************************* /// Move assignment operator. //************************************************************************* iflat_multimap& operator = (iflat_multimap&& rhs) { move_container(etl::move(rhs)); return *this; } #endif //************************************************************************* /// Gets the current size of the flat_multiset. ///\return The current size of the flat_multiset. //************************************************************************* size_type size() const { return refmap_t::size(); } //************************************************************************* /// Checks the 'empty' state of the flat_multiset. ///\return true if empty. //************************************************************************* bool empty() const { return refmap_t::empty(); } //************************************************************************* /// Checks the 'full' state of the flat_multiset. ///\return true if full. //************************************************************************* bool full() const { return refmap_t::full(); } //************************************************************************* /// Returns the capacity of the flat_multiset. ///\return The capacity of the flat_multiset. //************************************************************************* size_type capacity() const { return refmap_t::capacity(); } //************************************************************************* /// Returns the maximum possible size of the flat_multiset. ///\return The maximum size of the flat_multiset. //************************************************************************* size_type max_size() const { return refmap_t::max_size(); } //************************************************************************* /// Returns the remaining capacity. ///\return The remaining capacity. //************************************************************************* size_t available() const { return refmap_t::available(); } protected: //********************************************************************* /// Constructor. //********************************************************************* iflat_multimap(lookup_t& lookup_, storage_t& storage_) : refmap_t(lookup_), storage(storage_) { } #if ETL_USING_CPP11 //************************************************************************* /// Move a flat_multimap. /// Assumes the flat_multimap is initialised and empty. //************************************************************************* void move_container(iflat_multimap&& rhs) { if (&rhs != this) { this->clear(); etl::iflat_multimap::iterator first = rhs.begin(); etl::iflat_multimap::iterator last = rhs.end(); // Move all of the elements. while (first != last) { typename etl::iflat_multimap::iterator temp = first; ++temp; this->insert(etl::move(*first)); first = temp; } } } #endif private: // Disable copy construction. iflat_multimap(const iflat_multimap&); storage_t& storage; /// Internal debugging. ETL_DECLARE_DEBUG_COUNT; //************************************************************************* /// Destructor. //************************************************************************* #if defined(ETL_POLYMORPHIC_FLAT_MULTIMAP) || defined(ETL_POLYMORPHIC_CONTAINERS) public: virtual ~iflat_multimap() { } #else protected: ~iflat_multimap() { } #endif }; //*************************************************************************** /// Equal operator. ///\param lhs Reference to the first flat_multimap. ///\param rhs Reference to the second flat_multimap. ///\return true if the arrays are equal, otherwise false ///\ingroup flat_multimap //*************************************************************************** template bool operator ==(const etl::iflat_multimap& lhs, const etl::iflat_multimap& rhs) { return (lhs.size() == rhs.size()) && etl::equal(lhs.begin(), lhs.end(), rhs.begin()); } //*************************************************************************** /// Not equal operator. ///\param lhs Reference to the first flat_multimap. ///\param rhs Reference to the second flat_multimap. ///\return true if the arrays are not equal, otherwise false ///\ingroup flat_multimap //*************************************************************************** template bool operator !=(const etl::iflat_multimap& lhs, const etl::iflat_multimap& rhs) { return !(lhs == rhs); } //*************************************************************************** /// A flat_multimap implementation that uses a fixed size buffer. ///\tparam TKey The key type. ///\tparam TValue The value type. ///\tparam TCompare The type to compare keys. Default = etl::less ///\tparam MAX_SIZE_ The maximum number of elements that can be stored. ///\ingroup flat_multimap //*************************************************************************** template > class flat_multimap : public etl::iflat_multimap { public: static ETL_CONSTANT size_t MAX_SIZE = MAX_SIZE_; //************************************************************************* /// Constructor. //************************************************************************* flat_multimap() : etl::iflat_multimap(lookup, storage) { } //************************************************************************* /// Copy constructor. //************************************************************************* flat_multimap(const flat_multimap& other) : etl::iflat_multimap(lookup, storage) { this->assign(other.cbegin(), other.cend()); } #if ETL_USING_CPP11 //************************************************************************* /// Move constructor. //************************************************************************* flat_multimap(flat_multimap&& other) : etl::iflat_multimap(lookup, storage) { if (&other != this) { this->move_container(etl::move(other)); } } #endif //************************************************************************* /// Constructor, from an iterator range. ///\tparam TIterator The iterator type. ///\param first The iterator to the first element. ///\param last The iterator to the last element + 1. //************************************************************************* template flat_multimap(TIterator first, TIterator last) : etl::iflat_multimap(lookup, storage) { this->assign(first, last); } #if ETL_HAS_INITIALIZER_LIST //************************************************************************* /// Construct from initializer_list. //************************************************************************* flat_multimap(std::initializer_list::value_type> init) : etl::iflat_multimap(lookup, storage) { this->assign(init.begin(), init.end()); } #endif //************************************************************************* /// Destructor. //************************************************************************* ~flat_multimap() { this->clear(); } //************************************************************************* /// Assignment operator. //************************************************************************* flat_multimap& operator = (const flat_multimap& rhs) { if (&rhs != this) { this->assign(rhs.cbegin(), rhs.cend()); } return *this; } #if ETL_USING_CPP11 //************************************************************************* /// Move assignment operator. //************************************************************************* flat_multimap& operator = (flat_multimap&& rhs) { if (&rhs != this) { this->move_container(etl::move(rhs)); } return *this; } #endif private: typedef typename etl::iflat_multimap::value_type node_t; // The pool of nodes. etl::pool storage; // The vector that stores pointers to the nodes. etl::vector lookup; }; template ETL_CONSTANT size_t flat_multimap::MAX_SIZE; //************************************************************************* /// Template deduction guides. //************************************************************************* #if ETL_USING_CPP17 && ETL_HAS_INITIALIZER_LIST template flat_multimap(TPairs...) -> flat_multimap::first_type, typename etl::nth_type_t<0, TPairs...>::second_type, sizeof...(TPairs)>; #endif //************************************************************************* /// Make //************************************************************************* #if ETL_USING_CPP11 && ETL_HAS_INITIALIZER_LIST template , typename... TPairs> constexpr auto make_flat_multimap(TPairs&&... pairs) -> etl::flat_multimap { return { etl::forward(pairs)... }; } #endif } #endif