///\file /****************************************************************************** The MIT License(MIT) Embedded Template Library. https://github.com/ETLCPP/etl https://www.etlcpp.com Copyright(c) 2014 John Wellbelove, rlindeman Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files(the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and / or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions : The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ******************************************************************************/ #ifndef ETL_SET_INCLUDED #define ETL_SET_INCLUDED #include "platform.h" #include "pool.h" #include "exception.h" #include "error_handler.h" #include "debug_count.h" #include "nullptr.h" #include "type_traits.h" #include "parameter_type.h" #include "iterator.h" #include "utility.h" #include "algorithm.h" #include "iterator.h" #include "functional.h" #include "placement_new.h" #include "nth_type.h" #include "initializer_list.h" #include "private/comparator_is_transparent.h" #include #include "private/minmax_push.h" //***************************************************************************** ///\defgroup set set /// A set with the capacity defined at compile time. ///\ingroup containers //***************************************************************************** namespace etl { //*************************************************************************** /// Exception for the set. ///\ingroup set //*************************************************************************** class set_exception : public etl::exception { public: set_exception(string_type reason_, string_type file_name_, numeric_type line_number_) : etl::exception(reason_, file_name_, line_number_) { } }; //*************************************************************************** /// Full exception for the set. ///\ingroup set //*************************************************************************** class set_full : public etl::set_exception { public: set_full(string_type file_name_, numeric_type line_number_) : etl::set_exception(ETL_ERROR_TEXT("set:full", ETL_SET_FILE_ID"A"), file_name_, line_number_) { } }; //*************************************************************************** /// Map out of bounds exception. ///\ingroup set //*************************************************************************** class set_out_of_bounds : public etl::set_exception { public: set_out_of_bounds(string_type file_name_, numeric_type line_number_) : etl::set_exception(ETL_ERROR_TEXT("set:bounds", ETL_SET_FILE_ID"B"), file_name_, line_number_) { } }; //*************************************************************************** /// Iterator exception for the set. ///\ingroup set //*************************************************************************** class set_iterator : public etl::set_exception { public: set_iterator(string_type file_name_, numeric_type line_number_) : etl::set_exception(ETL_ERROR_TEXT("set:iterator problem", ETL_SET_FILE_ID"C"), file_name_, line_number_) { } }; //*************************************************************************** /// The base class for all sets. ///\ingroup set //*************************************************************************** class set_base { public: typedef size_t size_type; ///< The type used for determining the size of set. //************************************************************************* /// Gets the size of the set. //************************************************************************* size_type size() const { return current_size; } //************************************************************************* /// Gets the maximum possible size of the set. //************************************************************************* size_type max_size() const { return CAPACITY; } //************************************************************************* /// Checks to see if the set is empty. //************************************************************************* bool empty() const { return current_size == 0; } //************************************************************************* /// Checks to see if the set is full. //************************************************************************* bool full() const { return current_size == CAPACITY; } //************************************************************************* /// Returns the capacity of the vector. ///\return The capacity of the vector. //************************************************************************* size_type capacity() const { return CAPACITY; } //************************************************************************* /// Returns the remaining capacity. ///\return The remaining capacity. //************************************************************************* size_t available() const { return max_size() - size(); } protected: enum { kLeft = 0, kRight = 1, kNeither = 2 }; //************************************************************************* /// The node element in the set. //************************************************************************* struct Node { //*********************************************************************** /// Constructor //*********************************************************************** Node() : weight(kNeither), dir(kNeither) { children[0] = ETL_NULLPTR; children[1] = ETL_NULLPTR; } //*********************************************************************** /// Marks the node as a leaf. //*********************************************************************** void mark_as_leaf() { weight = kNeither; dir = kNeither; children[0] = ETL_NULLPTR; children[1] = ETL_NULLPTR; } Node* children[2]; uint_least8_t weight; uint_least8_t dir; }; //************************************************************************* /// The constructor that is called from derived classes. //************************************************************************* set_base(size_type max_size_) : current_size(0) , CAPACITY(max_size_) , root_node(ETL_NULLPTR) { } //************************************************************************* /// The constructor that is called from derived classes. //************************************************************************* ~set_base() { } //************************************************************************* /// Attach the provided node to the position provided //************************************************************************* void attach_node(Node*& position, Node& node) { // Mark new node as leaf on attach to tree at position provided node.mark_as_leaf(); // Add the node here position = &node; // One more. ++current_size; } //************************************************************************* /// Detach the node at the position provided //************************************************************************* void detach_node(Node*& position, Node*& replacement) { // Make temporary copy of actual nodes involved because we might lose // their references in the process (e.g. position is the same as // replacement or replacement is a child of position) Node* detached = position; Node* swap = replacement; // Update current position to point to swap (replacement) node first position = swap; // Update replacement node to point to child in opposite direction // otherwise we might lose the other child of the swap node replacement = swap->children[1 - swap->dir]; // Point swap node to detached node's children and weight swap->children[kLeft] = detached->children[kLeft]; swap->children[kRight] = detached->children[kRight]; swap->weight = detached->weight; } //************************************************************************* /// Balance the critical node at the position provided as needed //************************************************************************* void balance_node(Node*& critical_node) { // Step 1: Update weights for all children of the critical node up to the // newly inserted node. This step is costly (in terms of traversing nodes // multiple times during insertion) but doesn't require as much recursion Node* weight_node = critical_node->children[critical_node->dir]; while (weight_node) { // Keep going until we reach a terminal node (dir == kNeither) if (uint_least8_t(kNeither) != weight_node->dir) { // Does this insert balance the previous weight factor value? if (weight_node->weight == 1 - weight_node->dir) { weight_node->weight = uint_least8_t(kNeither); } else { weight_node->weight = weight_node->dir; } // Update weight factor node to point to next node weight_node = weight_node->children[weight_node->dir]; } else { // Stop loop, terminal node found break; } } // while(weight_node) // Step 2: Update weight for critical_node or rotate tree to balance node if (uint_least8_t(kNeither) == critical_node->weight) { critical_node->weight = critical_node->dir; } // If direction is different than weight, then it will now be balanced else if (critical_node->dir != critical_node->weight) { critical_node->weight = uint_least8_t(kNeither); } // Rotate is required to balance the tree at the critical node else { // If critical node matches child node direction then perform a two // node rotate in the direction of the critical node if (critical_node->weight == critical_node->children[critical_node->dir]->dir) { rotate_2node(critical_node, critical_node->dir); } // Otherwise perform a three node rotation in the direction of the // critical node else { rotate_3node(critical_node, critical_node->dir, critical_node->children[critical_node->dir]->children[1 - critical_node->dir]->dir); } } } //************************************************************************* /// Find the node whose key would go before all the other keys from the /// position provided //************************************************************************* Node* find_limit_node(Node* position, const int8_t dir) const { // Something at this position and in the direction specified? keep going Node* limit_node = position; while (limit_node && limit_node->children[dir]) { limit_node = limit_node->children[dir]; } // Return the limit node position found return limit_node; } //************************************************************************* /// Find the node whose key would go before all the other keys from the /// position provided //************************************************************************* const Node* find_limit_node(const Node* position, const int8_t dir) const { // Something at this position and in the direction specified? keep going const Node* limit_node = position; while (limit_node && limit_node->children[dir]) { limit_node = limit_node->children[dir]; } // Return the limit node position found return limit_node; } //************************************************************************* /// Rotate two nodes at the position provided the to balance the tree //************************************************************************* void rotate_2node(Node*& position, uint_least8_t dir) { // A C A B // B C -> A E OR B C -> D A // D E B D D E E C // C (new position) becomes the root // A (position) takes ownership of D as its children[kRight] child // C (new position) takes ownership of A as its left child // OR // B (new position) becomes the root // A (position) takes ownership of E as its left child // B (new position) takes ownership of A as its right child // Capture new root Node* new_root = position->children[dir]; // Replace position's previous child with new root's other child position->children[dir] = new_root->children[1 - dir]; // New root now becomes parent of current position new_root->children[1 - dir] = position; // Clear weight factor from current position position->weight = uint_least8_t(kNeither); // Newly detached right now becomes current position position = new_root; // Clear weight factor from new root position->weight = uint_least8_t(kNeither); } //************************************************************************* /// Rotate three nodes at the position provided the to balance the tree //************************************************************************* void rotate_3node(Node*& position, uint_least8_t dir, uint_least8_t third) { // --A-- --E-- --A-- --D-- // _B_ C -> B A OR B _C_ -> A C // D E D F G C D E B F G E // F G F G // E (new position) becomes the root // B (position) takes ownership of F as its left child // A takes ownership of G as its right child // OR // D (new position) becomes the root // A (position) takes ownership of F as its right child // C takes ownership of G as its left child // Capture new root (either E or D depending on dir) Node* new_root = position->children[dir]->children[1 - dir]; // Set weight factor for B or C based on F or G existing and being a different than dir position->children[dir]->weight = third != uint_least8_t(kNeither) && third != dir ? dir : uint_least8_t(kNeither); // Detach new root from its tree (replace with new roots child) position->children[dir]->children[1 - dir] = new_root->children[dir]; // Attach current left tree to new root new_root->children[dir] = position->children[dir]; // Set weight factor for A based on F or G position->weight = third != uint_least8_t(kNeither) && third == dir ? 1 - dir : uint_least8_t(kNeither); // Move new root's right tree to current roots left tree position->children[dir] = new_root->children[1 - dir]; // Attach current root to new roots right tree new_root->children[1 - dir] = position; // Replace current position with new root position = new_root; // Clear weight factor for new current position position->weight = uint_least8_t(kNeither); } size_type current_size; ///< The number of the used nodes. const size_type CAPACITY; ///< The maximum size of the set. Node* root_node; ///< The node that acts as the set root. ETL_DECLARE_DEBUG_COUNT; }; //*************************************************************************** /// A templated base for all etl::set types. ///\ingroup set //*************************************************************************** template > class iset : public etl::set_base { public: typedef TKey key_type; typedef TKey value_type; typedef TCompare key_compare; typedef TCompare value_compare; typedef value_type& reference; typedef const value_type& const_reference; #if ETL_USING_CPP11 typedef value_type&& rvalue_reference; #endif typedef value_type* pointer; typedef const value_type* const_pointer; typedef size_t size_type; protected: //************************************************************************* /// The data node element in the set. //************************************************************************* struct Data_Node : public Node { explicit Data_Node(value_type value_) : value(value_) { } value_type value; }; /// Defines the key value parameter type typedef typename etl::parameter_type::type key_parameter_t; //************************************************************************* /// How to compare node elements. //************************************************************************* bool node_comp(const Data_Node& node1, const Data_Node& node2) const { return compare(node1.value, node2.value); } bool node_comp(const Data_Node& node, key_parameter_t key) const { return compare(node.value, key); } bool node_comp(key_parameter_t key, const Data_Node& node) const { return compare(key, node.value); } #if ETL_USING_CPP11 template ::value, int> = 0> bool node_comp(const Data_Node& node, const K& key) const { return compare(node.value, key); } template ::value, int> = 0> bool node_comp(const K& key, const Data_Node& node) const { return compare(key, node.value); } #endif private: /// The pool of data nodes used in the set. etl::ipool* p_node_pool; key_compare compare; //************************************************************************* /// Downcast a Node* to a Data_Node* //************************************************************************* static Data_Node* data_cast(Node* p_node) { return static_cast(p_node); } //************************************************************************* /// Downcast a Node& to a Data_Node& //************************************************************************* static Data_Node& data_cast(Node& node) { return static_cast(node); } //************************************************************************* /// Downcast a const Node* to a const Data_Node* //************************************************************************* static const Data_Node* data_cast(const Node* p_node) { return static_cast(p_node); } //************************************************************************* /// Downcast a const Node& to a const Data_Node& //************************************************************************* static const Data_Node& data_cast(const Node& node) { return static_cast(node); } public: //************************************************************************* /// iterator. //************************************************************************* class iterator : public etl::iterator { public: friend class iset; friend class const_iterator; iterator() : p_set(ETL_NULLPTR) , p_node(ETL_NULLPTR) { } iterator(iset& set) : p_set(&set) , p_node(ETL_NULLPTR) { } iterator(iset& set, Node* node) : p_set(&set) , p_node(node) { } iterator(const iterator& other) : p_set(other.p_set) , p_node(other.p_node) { } ~iterator() { } iterator& operator ++() { p_set->next_node(p_node); return *this; } iterator operator ++(int) { iterator temp(*this); p_set->next_node(p_node); return temp; } iterator& operator --() { p_set->prev_node(p_node); return *this; } iterator operator --(int) { iterator temp(*this); p_set->prev_node(p_node); return temp; } iterator& operator =(const iterator& other) { p_set = other.p_set; p_node = other.p_node; return *this; } reference operator *() const { return iset::data_cast(p_node)->value; } pointer operator &() const { return &(iset::data_cast(p_node)->value); } pointer operator ->() const { return &(iset::data_cast(p_node)->value); } friend bool operator == (const iterator& lhs, const iterator& rhs) { return lhs.p_set == rhs.p_set && lhs.p_node == rhs.p_node; } friend bool operator != (const iterator& lhs, const iterator& rhs) { return !(lhs == rhs); } private: // Pointer to set associated with this iterator iset* p_set; // Pointer to the current node for this iterator Node* p_node; }; friend class iterator; //************************************************************************* /// const_iterator //************************************************************************* class const_iterator : public etl::iterator { public: friend class iset; const_iterator() : p_set(ETL_NULLPTR) , p_node(ETL_NULLPTR) { } const_iterator(const iset& set) : p_set(&set) , p_node(ETL_NULLPTR) { } const_iterator(const iset& set, const Node* node) : p_set(&set) , p_node(node) { } const_iterator(const typename iset::iterator& other) : p_set(other.p_set) , p_node(other.p_node) { } const_iterator(const const_iterator& other) : p_set(other.p_set) , p_node(other.p_node) { } ~const_iterator() { } const_iterator& operator ++() { p_set->next_node(p_node); return *this; } const_iterator operator ++(int) { const_iterator temp(*this); p_set->next_node(p_node); return temp; } const_iterator& operator --() { p_set->prev_node(p_node); return *this; } const_iterator operator --(int) { const_iterator temp(*this); p_set->prev_node(p_node); return temp; } const_iterator& operator =(const const_iterator& other) { p_set = other.p_set; p_node = other.p_node; return *this; } const_reference operator *() const { return iset::data_cast(p_node)->value; } const_pointer operator &() const { return iset::data_cast(p_node)->value; } const_pointer operator ->() const { return &(iset::data_cast(p_node)->value); } friend bool operator == (const const_iterator& lhs, const const_iterator& rhs) { return lhs.p_set == rhs.p_set && lhs.p_node == rhs.p_node; } friend bool operator != (const const_iterator& lhs, const const_iterator& rhs) { return !(lhs == rhs); } private: // Convert to an iterator. iset::iterator to_iterator() const { return iset::iterator(const_cast(*p_set), const_cast(p_node)); } // Pointer to set associated with this iterator const iset* p_set; // Pointer to the current node for this iterator const Node* p_node; }; friend class const_iterator; typedef typename etl::iterator_traits::difference_type difference_type; typedef ETL_OR_STD::reverse_iterator reverse_iterator; typedef ETL_OR_STD::reverse_iterator const_reverse_iterator; //************************************************************************* /// Assignment operator. //************************************************************************* iset& operator = (const iset& rhs) { // Skip if doing self assignment if (this != &rhs) { assign(rhs.cbegin(), rhs.cend()); } return *this; } #if ETL_USING_CPP11 //************************************************************************* /// Move assignment operator. //************************************************************************* iset& operator = (iset&& rhs) { // Skip if doing self assignment if (this != &rhs) { this->clear(); typename etl::iset::iterator from = rhs.begin(); while (from != rhs.end()) { typename etl::iset::iterator temp = from; ++temp; this->insert(etl::move(*from)); from = temp; } } return *this; } #endif //************************************************************************* /// Gets the beginning of the set. //************************************************************************* iterator begin() { return iterator(*this, find_limit_node(root_node, kLeft)); } //************************************************************************* /// Gets the beginning of the set. //************************************************************************* const_iterator begin() const { return const_iterator(*this, find_limit_node(root_node, kLeft)); } //************************************************************************* /// Gets the end of the set. //************************************************************************* iterator end() { return iterator(*this); } //************************************************************************* /// Gets the end of the set. //************************************************************************* const_iterator end() const { return const_iterator(*this); } //************************************************************************* /// Gets the beginning of the set. //************************************************************************* const_iterator cbegin() const { return const_iterator(*this, find_limit_node(root_node, kLeft)); } //************************************************************************* /// Gets the end of the set. //************************************************************************* const_iterator cend() const { return const_iterator(*this); } //************************************************************************* /// Gets the reverse beginning of the list. //************************************************************************* reverse_iterator rbegin() { return reverse_iterator(iterator(*this)); } //************************************************************************* /// Gets the reverse beginning of the list. //************************************************************************* const_reverse_iterator rbegin() const { return const_reverse_iterator(const_iterator(*this)); } //************************************************************************* /// Gets the reverse end of the list. //************************************************************************* reverse_iterator rend() { return reverse_iterator(iterator(*this, find_limit_node(root_node, kLeft))); } //************************************************************************* /// Gets the reverse end of the list. //************************************************************************* const_reverse_iterator rend() const { return const_reverse_iterator(iterator(*this, find_limit_node(root_node, kLeft))); } //************************************************************************* /// Gets the reverse beginning of the list. //************************************************************************* const_reverse_iterator crbegin() const { return const_reverse_iterator(const_iterator(*this)); } //************************************************************************* /// Gets the reverse end of the list. //************************************************************************* const_reverse_iterator crend() const { return const_reverse_iterator(const_iterator(*this, find_limit_node(root_node, kLeft))); } //********************************************************************* /// Assigns values to the set. /// If asserts or exceptions are enabled, emits set_full if the set does not have enough free space. /// If asserts or exceptions are enabled, emits set_iterator if the iterators are reversed. ///\param first The iterator to the first element. ///\param last The iterator to the last element + 1. //********************************************************************* template void assign(TIterator first, TIterator last) { initialise(); insert(first, last); } //************************************************************************* /// Clears the set. //************************************************************************* void clear() { initialise(); } //********************************************************************* /// Counts the number of elements that contain the key specified. ///\param key The key to search for. ///\return 1 if element was found, 0 otherwise. //********************************************************************* size_type count(key_parameter_t key) const { return find_node(root_node, key) ? 1 : 0; } #if ETL_USING_CPP11 //********************************************************************* template ::value, int> = 0> size_type count(const K& key) const { return find_node(root_node, key) ? 1 : 0; } #endif //************************************************************************* /// Returns two iterators with bounding (lower bound, upper bound) the /// value provided //************************************************************************* ETL_OR_STD::pair equal_range(key_parameter_t key) { return ETL_OR_STD::make_pair(iterator(*this, find_lower_node(root_node, key)), iterator(*this, find_upper_node(root_node, key))); } #if ETL_USING_CPP11 //************************************************************************* template ::value, int> = 0> ETL_OR_STD::pair equal_range(const K& key) { return ETL_OR_STD::make_pair(iterator(*this, find_lower_node(root_node, key)), iterator(*this, find_upper_node(root_node, key))); } #endif //************************************************************************* /// Returns two const iterators with bounding (lower bound, upper bound) /// the value provided. //************************************************************************* ETL_OR_STD::pair equal_range(key_parameter_t key) const { return ETL_OR_STD::make_pair(const_iterator(*this, find_lower_node(root_node, key)), const_iterator(*this, find_upper_node(root_node, key))); } #if ETL_USING_CPP11 //************************************************************************* template ::value, int> = 0> ETL_OR_STD::pair equal_range(const K& key) const { return ETL_OR_STD::make_pair(const_iterator(*this, find_lower_node(root_node, key)), const_iterator(*this, find_upper_node(root_node, key))); } #endif //************************************************************************* /// Erases the value at the specified position. //************************************************************************* iterator erase(iterator position) { // Remove the node by its node specified in iterator position return erase(const_iterator(position)); } //************************************************************************* /// Erases the value at the specified position. //************************************************************************* iterator erase(const_iterator position) { // Find the parent node to be removed Node*& reference_node = find_node(root_node, position.p_node); iterator next(*this, reference_node); ++next; remove_node(root_node, (*position)); return next; } //************************************************************************* // Erase the key specified. //************************************************************************* size_type erase(key_parameter_t key_value) { // Return 1 if key value was found and removed return remove_node(root_node, key_value) ? 1 : 0; } //************************************************************************* #if ETL_USING_CPP11 template ::value, int> = 0> size_type erase(K&& key_value) { // Return 1 if key value was found and removed return remove_node(root_node, etl::forward(key_value)) ? 1 : 0; } #endif //************************************************************************* /// Erases a range of elements. //************************************************************************* iterator erase(const_iterator first, const_iterator last) { while (first != last) { first = erase(first); } return last.to_iterator(); } //********************************************************************* /// Finds an element. ///\param key The key to search for. ///\return An iterator pointing to the element or end() if not found. //********************************************************************* iterator find(key_parameter_t key_value) { return iterator(*this, find_node(root_node, key_value)); } #if ETL_USING_CPP11 //********************************************************************* template ::value, int> = 0> iterator find(const K& k) { return iterator(*this, find_node(root_node, k)); } #endif //********************************************************************* /// Finds an element. ///\param key The key to search for. ///\return An iterator pointing to the element or end() if not found. //********************************************************************* const_iterator find(key_parameter_t key_value) const { return const_iterator(*this, find_node(root_node, key_value)); } #if ETL_USING_CPP11 //********************************************************************* template ::value, int> = 0> const_iterator find(const K& key_value) const { return const_iterator(*this, find_node(root_node, key_value)); } #endif //********************************************************************* /// Inserts a value to the set. /// If asserts or exceptions are enabled, emits set_full if the set is already full. ///\param value The value to insert. //********************************************************************* ETL_OR_STD::pair insert(const_reference value) { // Default to no inserted node Node* inserted_node = ETL_NULLPTR; bool inserted = false; if (full()) { iterator iter = find(value); if (iter == end()) { ETL_ASSERT_FAIL(ETL_ERROR(set_full)); } else { return ETL_OR_STD::make_pair(iter, false); } } // Get next available free node Data_Node& node = allocate_data_node(value); // Obtain the inserted node (might be ETL_NULLPTR if node was a duplicate) inserted_node = insert_node(root_node, node); inserted = inserted_node == &node; // Insert node into tree and return iterator to new node location in tree return ETL_OR_STD::make_pair(iterator(*this, inserted_node), inserted); } #if ETL_USING_CPP11 //********************************************************************* /// Inserts a value to the set. /// If asserts or exceptions are enabled, emits set_full if the set is already full. ///\param value The value to insert. //********************************************************************* ETL_OR_STD::pair insert(rvalue_reference value) { // Default to no inserted node Node* inserted_node = ETL_NULLPTR; bool inserted = false; if (full()) { iterator iter = find(value); if (iter == end()) { ETL_ASSERT_FAIL(ETL_ERROR(set_full)); } else { return ETL_OR_STD::make_pair(iter, false); } } // Get next available free node Data_Node& node = allocate_data_node(etl::move(value)); // Obtain the inserted node (might be ETL_NULLPTR if node was a duplicate) inserted_node = insert_node(root_node, node); inserted = inserted_node == &node; // Insert node into tree and return iterator to new node location in tree return ETL_OR_STD::make_pair(iterator(*this, inserted_node), inserted); } #endif //********************************************************************* /// Inserts a value to the set starting at the position recommended. /// If asserts or exceptions are enabled, emits set_full if the set is already full. ///\param position The position that would precede the value to insert. ///\param value The value to insert. //********************************************************************* iterator insert(const_iterator, const_reference value) { // Default to no inserted node Node* inserted_node = ETL_NULLPTR; if (full()) { iterator iter = find(value); if (iter == end()) { ETL_ASSERT_FAIL(ETL_ERROR(set_full)); } else { return iter; } } // Get next available free node Data_Node& node = allocate_data_node(value); // Obtain the inserted node (might be ETL_NULLPTR if node was a duplicate) inserted_node = insert_node(root_node, node); // Insert node into tree and return iterator to new node location in tree return iterator(*this, inserted_node); } #if ETL_USING_CPP11 //********************************************************************* /// Inserts a value to the set starting at the position recommended. /// If asserts or exceptions are enabled, emits set_full if the set is already full. ///\param position The position that would precede the value to insert. ///\param value The value to insert. //********************************************************************* iterator insert(const_iterator, rvalue_reference value) { // Default to no inserted node Node* inserted_node = ETL_NULLPTR; if (full()) { iterator iter = find(value); if (iter == end()) { ETL_ASSERT_FAIL(ETL_ERROR(set_full)); } else { return iter; } } // Get next available free node Data_Node& node = allocate_data_node(etl::move(value)); // Obtain the inserted node (might be ETL_NULLPTR if node was a duplicate) inserted_node = insert_node(root_node, node); // Insert node into tree and return iterator to new node location in tree return iterator(*this, inserted_node); } #endif //********************************************************************* /// Inserts a range of values to the set. /// If asserts or exceptions are enabled, emits set_full if the set does not have enough free space. ///\param position The position to insert at. ///\param first The first element to add. ///\param last The last + 1 element to add. //********************************************************************* template void insert(TIterator first, TIterator last) { while (first != last) { insert(*first); ++first; } } //********************************************************************* /// Returns an iterator pointing to the first element in the container /// whose key is not considered to go before the key provided or end() /// if all keys are considered to go before the key provided. ///\return An iterator pointing to the element not before key or end() //********************************************************************* iterator lower_bound(key_parameter_t key) { return iterator(*this, find_lower_node(root_node, key)); } #if ETL_USING_CPP11 //********************************************************************* template ::value, int> = 0> iterator lower_bound(const K& key) { return iterator(*this, find_lower_node(root_node, key)); } #endif //********************************************************************* /// Returns a const_iterator pointing to the first element in the /// container whose key is not considered to go before the key provided /// or end() if all keys are considered to go before the key provided. ///\return An const_iterator pointing to the element not before key or end() //********************************************************************* const_iterator lower_bound(key_parameter_t key) const { return const_iterator(*this, find_lower_node(root_node, key)); } #if ETL_USING_CPP11 //********************************************************************* template ::value, int> = 0> const_iterator lower_bound(const K& key) const { return const_iterator(*this, find_lower_node(root_node, key)); } #endif //********************************************************************* /// Returns an iterator pointing to the first element in the container /// whose key is not considered to go after the key provided or end() /// if all keys are considered to go after the key provided. ///\return An iterator pointing to the element after key or end() //********************************************************************* iterator upper_bound(key_parameter_t key) { return iterator(*this, find_upper_node(root_node, key)); } #if ETL_USING_CPP11 //********************************************************************* template ::value, int> = 0> iterator upper_bound(const K& key) { return iterator(*this, find_upper_node(root_node, key)); } #endif //********************************************************************* /// Returns a const_iterator pointing to the first element in the /// container whose key is not considered to go after the key provided /// or end() if all keys are considered to go after the key provided. ///\return An const_iterator pointing to the element after key or end() //********************************************************************* const_iterator upper_bound(key_parameter_t key) const { return const_iterator(*this, find_upper_node(root_node, key)); } #if ETL_USING_CPP11 //********************************************************************* template ::value, int> = 0> const_iterator upper_bound(const K& key) const { return const_iterator(*this, find_upper_node(root_node, key)); } #endif //************************************************************************* /// How to compare two key elements. //************************************************************************* key_compare key_comp() const { return compare; }; //************************************************************************* /// How to compare two value elements. //************************************************************************* value_compare value_comp() const { return compare; }; //************************************************************************* /// Check if the set contains the key. //************************************************************************* bool contains(const TKey& key) const { return find(key) != end(); } #if ETL_USING_CPP11 //************************************************************************* template ::value, int> = 0> bool contains(const K& k) const { return find(k) != end(); } #endif protected: //************************************************************************* /// Constructor. //************************************************************************* iset(etl::ipool& node_pool, size_t max_size_) : etl::set_base(max_size_) , p_node_pool(&node_pool) { } //************************************************************************* /// Initialise the set. //************************************************************************* void initialise() { const_iterator item = begin(); while (item != end()) { item = erase(item); } } private: //************************************************************************* /// Allocate a Data_Node. //************************************************************************* Data_Node& allocate_data_node(const_reference value) { Data_Node* node = allocate_data_node(); ::new ((void*)&node->value) value_type(value); ETL_INCREMENT_DEBUG_COUNT; return *node; } #if ETL_USING_CPP11 //************************************************************************* /// Allocate a Data_Node. //************************************************************************* Data_Node& allocate_data_node(rvalue_reference value) { Data_Node* node = allocate_data_node(); ::new ((void*)&node->value) value_type(etl::move(value)); ETL_INCREMENT_DEBUG_COUNT; return *node; } #endif //************************************************************************* /// Create a Data_Node. //************************************************************************* Data_Node* allocate_data_node() { Data_Node* (etl::ipool::*func)() = &etl::ipool::allocate; return (p_node_pool->*func)(); } //************************************************************************* /// Destroy a Data_Node. //************************************************************************* void destroy_data_node(Data_Node& node) { node.value.~value_type(); p_node_pool->release(&node); ETL_DECREMENT_DEBUG_COUNT; } //************************************************************************* /// Find the value matching the node provided //************************************************************************* Node* find_node(Node* position, key_parameter_t key) { Node* found = position; while (found) { // Downcast found to Data_Node class for comparison and other operations Data_Node& found_data_node = iset::data_cast(*found); // Compare the node value to the current position value if (node_comp(key, found_data_node)) { // Keep searching for the node on the left found = found->children[kLeft]; } else if (node_comp(found_data_node, key)) { // Keep searching for the node on the right found = found->children[kRight]; } else { // Node that matches the key provided was found, exit loop break; } } // Return the node found (might be ETL_NULLPTR) return found; } #if ETL_USING_CPP11 //************************************************************************* template ::value, int> = 0> Node* find_node(Node* position, const K& key) { Node* found = position; while (found) { // Downcast found to Data_Node class for comparison and other operations Data_Node& found_data_node = iset::data_cast(*found); // Compare the node value to the current position value if (node_comp(key, found_data_node)) { // Keep searching for the node on the left found = found->children[kLeft]; } else if (node_comp(found_data_node, key)) { // Keep searching for the node on the right found = found->children[kRight]; } else { // Node that matches the key provided was found, exit loop break; } } // Return the node found (might be ETL_NULLPTR) return found; } #endif //************************************************************************* /// Find the value matching the node provided //************************************************************************* const Node* find_node(const Node* position, key_parameter_t key) const { const Node* found = position; while (found) { // Downcast found to Data_Node class for comparison and other operations const Data_Node& found_data_node = iset::data_cast(*found); // Compare the node value to the current position value if (node_comp(key, found_data_node)) { // Keep searching for the node on the left found = found->children[kLeft]; } else if (node_comp(found_data_node, key)) { // Keep searching for the node on the right found = found->children[kRight]; } else { // Node that matches the key provided was found, exit loop break; } } // Return the node found (might be ETL_NULLPTR) return found; } #if ETL_USING_CPP11 //************************************************************************* template ::value, int> = 0> const Node* find_node(const Node* position, const K& key) const { const Node* found = position; while (found) { // Downcast found to Data_Node class for comparison and other operations const Data_Node& found_data_node = iset::data_cast(*found); // Compare the node value to the current position value if (node_comp(key, found_data_node)) { // Keep searching for the node on the left found = found->children[kLeft]; } else if (node_comp(found_data_node, key)) { // Keep searching for the node on the right found = found->children[kRight]; } else { // Node that matches the key provided was found, exit loop break; } } // Return the node found (might be ETL_NULLPTR) return found; } #endif //************************************************************************* /// Find the reference node matching the node provided //************************************************************************* Node*& find_node(Node*& position, const Node* node) { Node* found = position; while (found) { if (found->children[kLeft] == node) { return found->children[kLeft]; } else if (found->children[kRight] == node) { return found->children[kRight]; } else { // Downcast found to Data_Node class for comparison and other operations Data_Node& found_data_node = iset::data_cast(*found); const Data_Node& data_node = iset::data_cast(*node); // Compare the node value to the current position value if (node_comp(data_node, found_data_node)) { // Keep searching for the node on the left found = found->children[kLeft]; } else if (node_comp(found_data_node, data_node)) { // Keep searching for the node on the right found = found->children[kRight]; } else { // Return position provided (it matches the node) return position; } } } // Return root node if nothing was found return root_node; } //************************************************************************* /// Find the parent node that contains the node provided in its left or /// right tree //************************************************************************* Node* find_parent_node(Node* position, const Node* node) { // Default to no parent node found Node* found = ETL_NULLPTR; // If the position provided is the same as the node then there is no parent if (position && node && position != node) { while (position) { // Is this position not the parent of the node we are looking for? if (position->children[kLeft] != node && position->children[kRight] != node) { // Downcast node and position to Data_Node references for key comparisons const Data_Node& node_data_node = iset::data_cast(*node); Data_Node& position_data_node = iset::data_cast(*position); // Compare the node value to the current position value if (node_comp(node_data_node, position_data_node)) { // Keep looking for parent on the left position = position->children[kLeft]; } else if (node_comp(position_data_node, node_data_node)) { // Keep looking for parent on the right position = position->children[kRight]; } } else { // Return the current position as the parent node found found = position; // Parent node found, exit loop break; } } } // Return the parent node found (might be ETL_NULLPTR) return found; } //************************************************************************* /// Find the parent node that contains the node provided in its left or /// right tree //************************************************************************* const Node* find_parent_node(const Node* position, const Node* node) const { // Default to no parent node found const Node* found = ETL_NULLPTR; // If the position provided is the same as the node then there is no parent if (position && node && position != node) { while (position) { // Is this position not the parent of the node we are looking for? if (position->children[kLeft] != node && position->children[kRight] != node) { // Downcast node and position to Data_Node references for key comparisons const Data_Node& node_data_node = iset::data_cast(*node); const Data_Node& position_data_node = iset::data_cast(*position); // Compare the node value to the current position value if (node_comp(node_data_node, position_data_node)) { // Keep looking for parent on the left position = position->children[kLeft]; } else if (node_comp(position_data_node, node_data_node)) { // Keep looking for parent on the right position = position->children[kRight]; } } else { // Return the current position as the parent node found found = position; // Parent node found, exit loop break; } } } // Return the parent node found (might be ETL_NULLPTR) return found; } //************************************************************************* /// Find the node whose key is not considered to go before the key provided //************************************************************************* Node* find_lower_node(Node* position, key_parameter_t key) const { // Something at this position? keep going Node* lower_node = ETL_NULLPTR; while (position) { // Downcast lower node to Data_Node reference for key comparisons Data_Node& data_node = iset::data_cast(*position); // Compare the key value to the current lower node key value if (node_comp(key, data_node)) { lower_node = position; if (position->children[kLeft]) { position = position->children[kLeft]; } else { // Found lowest node break; } } else if (node_comp(data_node, key)) { position = position->children[kRight]; } else { // Make note of current position, but keep looking to left for more lower_node = position; position = position->children[kLeft]; } } // Return the lower_node position found return lower_node; } #if ETL_USING_CPP11 //************************************************************************* template ::value, int> = 0> Node* find_lower_node(Node* position, const K& key) const { // Something at this position? keep going Node* lower_node = ETL_NULLPTR; while (position) { // Downcast lower node to Data_Node reference for key comparisons Data_Node& data_node = iset::data_cast(*position); // Compare the key value to the current lower node key value if (node_comp(key, data_node)) { lower_node = position; if (position->children[kLeft]) { position = position->children[kLeft]; } else { // Found lowest node break; } } else if (node_comp(data_node, key)) { position = position->children[kRight]; } else { // Make note of current position, but keep looking to left for more lower_node = position; position = position->children[kLeft]; } } // Return the lower_node position found return lower_node; } #endif //************************************************************************* /// Find the node whose key is considered to go after the key provided //************************************************************************* Node* find_upper_node(Node* position, key_parameter_t key) const { // Keep track of parent of last upper node Node* upper_node = ETL_NULLPTR; // Start with position provided Node* node = position; while (node) { // Downcast position to Data_Node reference for key comparisons Data_Node& data_node = iset::data_cast(*node); // Compare the key value to the current upper node key value if (node_comp(key, data_node)) { upper_node = node; node = node->children[kLeft]; } else if (node_comp(data_node, key)) { node = node->children[kRight]; } else if (node->children[kRight]) { upper_node = find_limit_node(node->children[kRight], kLeft); break; } else { break; } } // Return the upper node position found (might be ETL_NULLPTR) return upper_node; } #if ETL_USING_CPP11 //************************************************************************* template ::value, int> = 0> Node* find_upper_node(Node* position, const K& key) const { // Keep track of parent of last upper node Node* upper_node = ETL_NULLPTR; // Start with position provided Node* node = position; while (node) { // Downcast position to Data_Node reference for key comparisons Data_Node& data_node = iset::data_cast(*node); // Compare the key value to the current upper node key value if (node_comp(key, data_node)) { upper_node = node; node = node->children[kLeft]; } else if (node_comp(data_node, key)) { node = node->children[kRight]; } else if (node->children[kRight]) { upper_node = find_limit_node(node->children[kRight], kLeft); break; } else { break; } } // Return the upper node position found (might be ETL_NULLPTR) return upper_node; } #endif //************************************************************************* /// Insert a node. //************************************************************************* Node* insert_node(Node*& position, Data_Node& node) { // Find the location where the node belongs Node* found = position; // Was position provided not empty? then find where the node belongs if (position) { // Find the critical parent node (default to ETL_NULLPTR) Node* critical_parent_node = ETL_NULLPTR; Node* critical_node = root_node; while (found) { // Search for critical weight node (all nodes whose weight factor // is set to kNeither (balanced) if (kNeither != found->weight) { critical_node = found; } // Downcast found to Data_Node class for comparison and other operations Data_Node& found_data_node = iset::data_cast(*found); // Is the node provided to the left of the current position? if (node_comp(node, found_data_node)) { // Update direction taken to insert new node in parent node found->dir = kLeft; } // Is the node provided to the right of the current position? else if (node_comp(found_data_node, node)) { // Update direction taken to insert new node in parent node found->dir = kRight; } else { // Update direction taken to insert new node in parent node found->dir = kNeither; // Clear critical node value to skip weight step below critical_node = ETL_NULLPTR; // Destroy the node provided (its a duplicate) destroy_data_node(node); // Exit loop, duplicate node found break; } // Is there a child of this parent node? if (found->children[found->dir]) { // Will this node be the parent of the next critical node whose // weight factor is set to kNeither (balanced)? if (kNeither != found->children[found->dir]->weight) { critical_parent_node = found; } // Keep looking for empty spot to insert new node found = found->children[found->dir]; } else { // Attach node to right attach_node(found->children[found->dir], node); // Return newly added node found = found->children[found->dir]; // Exit loop break; } } // Was a critical node found that should be checked for balance? if (critical_node) { if (critical_parent_node == ETL_NULLPTR && critical_node == root_node) { balance_node(root_node); } else if (critical_parent_node == ETL_NULLPTR && critical_node == position) { balance_node(position); } else { if (critical_parent_node != ETL_NULLPTR) { balance_node(critical_parent_node->children[critical_parent_node->dir]); } } } } else { // Attach node to current position attach_node(position, node); // Return newly added node at current position found = position; } // Return the node found (might be ETL_NULLPTR) return found; } //************************************************************************* /// Find the next node in sequence from the node provided //************************************************************************* void next_node(Node*&position) { if (position) { // Is there a tree on the right? then find the minimum of that tree if (position->children[kRight]) { // Return minimum node found position = find_limit_node(position->children[kRight], kLeft); } // Otherwise find the parent of this node else { // Start with current position as parent Node* parent = position; do { // Update current position as previous parent position = parent; // Find parent of current position parent = find_parent_node(root_node, position); // Repeat while previous position was on right side of parent tree } while (parent && parent->children[kRight] == position); // Set parent node as the next position position = parent; } } } //************************************************************************* /// Find the next node in sequence from the node provided //************************************************************************* void next_node(const Node*& position) const { if (position) { // Is there a tree on the right? then find the minimum of that tree if (position->children[kRight]) { // Return minimum node found position = find_limit_node(position->children[kRight], kLeft); } // Otherwise find the parent of this node else { // Start with current position as parent const Node* parent = position; do { // Update current position as previous parent position = parent; // Find parent of current position parent = find_parent_node(root_node, position); // Repeat while previous position was on right side of parent tree } while (parent && parent->children[kRight] == position); // Set parent node as the next position position = parent; } } } //************************************************************************* /// Find the previous node in sequence from the node provided //************************************************************************* void prev_node(Node*&position) { // If starting at the terminal end, the previous node is the maximum node // from the root if (!position) { position = find_limit_node(root_node, kRight); } else { // Is there a tree on the left? then find the maximum of that tree if (position->children[kLeft]) { // Return maximum node found position = find_limit_node(position->children[kLeft], kRight); } // Otherwise find the parent of this node else { // Start with current position as parent Node* parent = position; do { // Update current position as previous parent position = parent; // Find parent of current position parent = find_parent_node(root_node, position); // Repeat while previous position was on left side of parent tree } while (parent && parent->children[kLeft] == position); // Set parent node as the next position position = parent; } } } //************************************************************************* /// Find the previous node in sequence from the node provided //************************************************************************* void prev_node(const Node*& position) const { // If starting at the terminal end, the previous node is the maximum node // from the root if (!position) { position = find_limit_node(root_node, kRight); } else { // Is there a tree on the left? then find the maximum of that tree if (position->children[kLeft]) { // Return maximum node found position = find_limit_node(position->children[kLeft], kRight); } // Otherwise find the parent of this node else { // Start with current position as parent const Node* parent = position; do { // Update current position as previous parent position = parent; // Find parent of current position parent = find_parent_node(root_node, position); // Repeat while previous position was on left side of parent tree } while (parent && parent->children[kLeft] == position); // Set parent node as the next position position = parent; } } } //************************************************************************* /// Remove the node specified from somewhere starting at the position /// provided //************************************************************************* Node* remove_node(Node*& position, key_parameter_t key) { // Step 1: Find the target node that matches the key provided, the // replacement node (might be the same as target node), and the critical // node to start rebalancing the tree from (up to the replacement node) Node* found_parent = ETL_NULLPTR; Node* found = ETL_NULLPTR; Node* replace_parent = ETL_NULLPTR; Node* replace = position; Node* balance_parent = ETL_NULLPTR; Node* balance = root_node; while (replace) { // Downcast found to Data_Node class for comparison and other operations Data_Node& replace_data_node = iset::data_cast(*replace); // Compare the key provided to the replace data node key if (node_comp(key, replace_data_node)) { // Update the direction to the target/replace node replace->dir = kLeft; } else if (node_comp(replace_data_node, key)) { // Update the direction to the target/replace node replace->dir = kRight; } else { // Update the direction to the replace node (target node found here) replace->dir = replace->children[kLeft] ? kLeft : kRight; // Note the target node was found (and its parent) found_parent = replace_parent; found = replace; } // Replacement node found if its missing a child in the replace->dir // value set above if (replace->children[replace->dir] == ETL_NULLPTR) { // Exit loop once replace node is found (target might not have been) break; } // If replacement node weight is kNeither or we are taking the shorter // path of replacement node and our sibling (on longer path) is // balanced then we need to update the balance node to match this // replacement node but all our ancestors will not require rebalancing if ((replace->weight == kNeither) || (replace->weight == (1 - replace->dir) && replace->children[1 - replace->dir]->weight == kNeither)) { // Update balance node (and its parent) to replacement node balance_parent = replace_parent; balance = replace; } // Keep searching for the replacement node replace_parent = replace; replace = replace->children[replace->dir]; } // If target node was found, proceed with rebalancing and replacement if (found) { // Step 2: Update weights from critical node to replacement parent node while (balance) { if (balance->children[balance->dir] == ETL_NULLPTR) { break; } if (balance->weight == kNeither) { balance->weight = 1 - balance->dir; } else if (balance->weight == balance->dir) { balance->weight = kNeither; } else { int weight = balance->children[1 - balance->dir]->weight; // Perform a 3 node rotation if weight is same as balance->dir if (weight == balance->dir) { // Is the root node being rebalanced (no parent) if (balance_parent == ETL_NULLPTR) { rotate_3node(root_node, 1 - balance->dir, balance->children[1 - balance->dir]->children[balance->dir]->weight); } else { rotate_3node(balance_parent->children[balance_parent->dir], 1 - balance->dir, balance->children[1 - balance->dir]->children[balance->dir]->weight); } } // Already balanced, rebalance and make it heavy in opposite // direction of the node being removed else if (weight == kNeither) { // Is the root node being rebalanced (no parent) if (balance_parent == ETL_NULLPTR) { rotate_2node(root_node, 1 - balance->dir); root_node->weight = balance->dir; } else { rotate_2node(balance_parent->children[balance_parent->dir], 1 - balance->dir); balance_parent->children[balance_parent->dir]->weight = balance->dir; } // Update balance node weight in opposite direction of node removed balance->weight = 1 - balance->dir; } // Rebalance and leave it balanced else { // Is the root node being rebalanced (no parent) if (balance_parent == ETL_NULLPTR) { rotate_2node(root_node, 1 - balance->dir); } else { rotate_2node(balance_parent->children[balance_parent->dir], 1 - balance->dir); } } // Is balance node the same as the target node found? then update // its parent after the rotation performed above if (balance == found) { if (balance_parent) { found_parent = balance_parent->children[balance_parent->dir]; // Update dir since it is likely stale found_parent->dir = found_parent->children[kLeft] == found ? kLeft : kRight; } else { found_parent = root_node; root_node->dir = root_node->children[kLeft] == found ? kLeft : kRight; } } } // Next balance node to consider balance_parent = balance; balance = balance->children[balance->dir]; } // while(balance) // Step 3: Swap found node with replacement node if (found_parent) { // Handle traditional case detach_node(found_parent->children[found_parent->dir], replace_parent->children[replace_parent->dir]); } // Handle root node removal else { // Valid replacement node for root node being removed? if (replace_parent) { detach_node(root_node, replace_parent->children[replace_parent->dir]); } else { // Target node and replacement node are both root node detach_node(root_node, root_node); } } // Downcast found into data node Data_Node& found_data_node = iset::data_cast(*found); // One less. --current_size; // Destroy the node removed destroy_data_node(found_data_node); } // if(found) // Return node found (might be ETL_NULLPTR) return found; } #if ETL_USING_CPP11 //************************************************************************* template ::value, int> = 0> Node* remove_node(Node*& position, const K& key) { // Step 1: Find the target node that matches the key provided, the // replacement node (might be the same as target node), and the critical // node to start rebalancing the tree from (up to the replacement node) Node* found_parent = ETL_NULLPTR; Node* found = ETL_NULLPTR; Node* replace_parent = ETL_NULLPTR; Node* replace = position; Node* balance_parent = ETL_NULLPTR; Node* balance = root_node; while (replace) { // Downcast found to Data_Node class for comparison and other operations Data_Node& replace_data_node = iset::data_cast(*replace); // Compare the key provided to the replace data node key if (node_comp(key, replace_data_node)) { // Update the direction to the target/replace node replace->dir = kLeft; } else if (node_comp(replace_data_node, key)) { // Update the direction to the target/replace node replace->dir = kRight; } else { // Update the direction to the replace node (target node found here) replace->dir = replace->children[kLeft] ? kLeft : kRight; // Note the target node was found (and its parent) found_parent = replace_parent; found = replace; } // Replacement node found if its missing a child in the replace->dir // value set above if (replace->children[replace->dir] == ETL_NULLPTR) { // Exit loop once replace node is found (target might not have been) break; } // If replacement node weight is kNeither or we are taking the shorter // path of replacement node and our sibling (on longer path) is // balanced then we need to update the balance node to match this // replacement node but all our ancestors will not require rebalancing if ((replace->weight == kNeither) || (replace->weight == (1 - replace->dir) && replace->children[1 - replace->dir]->weight == kNeither)) { // Update balance node (and its parent) to replacement node balance_parent = replace_parent; balance = replace; } // Keep searching for the replacement node replace_parent = replace; replace = replace->children[replace->dir]; } // If target node was found, proceed with rebalancing and replacement if (found) { // Step 2: Update weights from critical node to replacement parent node while (balance) { if (balance->children[balance->dir] == ETL_NULLPTR) { break; } if (balance->weight == kNeither) { balance->weight = 1 - balance->dir; } else if (balance->weight == balance->dir) { balance->weight = kNeither; } else { int weight = balance->children[1 - balance->dir]->weight; // Perform a 3 node rotation if weight is same as balance->dir if (weight == balance->dir) { // Is the root node being rebalanced (no parent) if (balance_parent == ETL_NULLPTR) { rotate_3node(root_node, 1 - balance->dir, balance->children[1 - balance->dir]->children[balance->dir]->weight); } else { rotate_3node(balance_parent->children[balance_parent->dir], 1 - balance->dir, balance->children[1 - balance->dir]->children[balance->dir]->weight); } } // Already balanced, rebalance and make it heavy in opposite // direction of the node being removed else if (weight == kNeither) { // Is the root node being rebalanced (no parent) if (balance_parent == ETL_NULLPTR) { rotate_2node(root_node, 1 - balance->dir); root_node->weight = balance->dir; } else { rotate_2node(balance_parent->children[balance_parent->dir], 1 - balance->dir); balance_parent->children[balance_parent->dir]->weight = balance->dir; } // Update balance node weight in opposite direction of node removed balance->weight = 1 - balance->dir; } // Rebalance and leave it balanced else { // Is the root node being rebalanced (no parent) if (balance_parent == ETL_NULLPTR) { rotate_2node(root_node, 1 - balance->dir); } else { rotate_2node(balance_parent->children[balance_parent->dir], 1 - balance->dir); } } // Is balance node the same as the target node found? then update // its parent after the rotation performed above if (balance == found) { if (balance_parent) { found_parent = balance_parent->children[balance_parent->dir]; // Update dir since it is likely stale found_parent->dir = found_parent->children[kLeft] == found ? kLeft : kRight; } else { found_parent = root_node; root_node->dir = root_node->children[kLeft] == found ? kLeft : kRight; } } } // Next balance node to consider balance_parent = balance; balance = balance->children[balance->dir]; } // while(balance) // Step 3: Swap found node with replacement node if (found_parent) { // Handle traditional case detach_node(found_parent->children[found_parent->dir], replace_parent->children[replace_parent->dir]); } // Handle root node removal else { // Valid replacement node for root node being removed? if (replace_parent) { detach_node(root_node, replace_parent->children[replace_parent->dir]); } else { // Target node and replacement node are both root node detach_node(root_node, root_node); } } // Downcast found into data node Data_Node& found_data_node = iset::data_cast(*found); // One less. --current_size; // Destroy the node removed destroy_data_node(found_data_node); } // if(found) // Return node found (might be ETL_NULLPTR) return found; } #endif // Disable copy construction. iset(const iset&); //************************************************************************* /// Destructor. //************************************************************************* #if defined(ETL_POLYMORPHIC_SET) || defined(ETL_POLYMORPHIC_CONTAINERS) public: virtual ~iset() { } #else protected: ~iset() { } #endif }; //************************************************************************* /// A templated set implementation that uses a fixed size buffer. //************************************************************************* template > class set : public etl::iset { public: static ETL_CONSTANT size_t MAX_SIZE = MAX_SIZE_; //************************************************************************* /// Default constructor. //************************************************************************* set() : etl::iset(node_pool, MAX_SIZE) { this->initialise(); } //************************************************************************* /// Copy constructor. //************************************************************************* set(const set& other) : etl::iset(node_pool, MAX_SIZE) { if (this != &other) { this->assign(other.cbegin(), other.cend()); } } #if ETL_USING_CPP11 //************************************************************************* /// Move constructor. //************************************************************************* set(set&& other) : etl::iset(node_pool, MAX_SIZE) { if (this != &other) { typename etl::iset::iterator from = other.begin(); while (from != other.end()) { typename etl::iset::iterator temp = from; ++temp; this->insert(etl::move(*from)); from = temp; } } } #endif //************************************************************************* /// Constructor, from an iterator range. ///\tparam TIterator The iterator type. ///\param first The iterator to the first element. ///\param last The iterator to the last element + 1. //************************************************************************* template set(TIterator first, TIterator last) : etl::iset(node_pool, MAX_SIZE) { this->assign(first, last); } #if ETL_HAS_INITIALIZER_LIST //************************************************************************* /// Constructor, from an initializer_list. //************************************************************************* set(std::initializer_list::value_type> init) : etl::iset(node_pool, MAX_SIZE) { this->assign(init.begin(), init.end()); } #endif //************************************************************************* /// Destructor. //************************************************************************* ~set() { this->initialise(); } //************************************************************************* /// Assignment operator. //************************************************************************* set& operator = (const set& rhs) { // Skip if doing self assignment if (this != &rhs) { this->assign(rhs.cbegin(), rhs.cend()); } return *this; } #if ETL_USING_CPP11 //************************************************************************* /// Move assignment operator. //************************************************************************* set& operator = (set&& rhs) { // Skip if doing self assignment if (this != &rhs) { this->clear(); typename etl::iset::iterator from = rhs.begin(); while (from != rhs.end()) { typename etl::iset::iterator temp = from; ++temp; this->insert(etl::move(*from)); from = temp; } } return *this; } #endif private: /// The pool of data nodes used for the set. etl::pool::Data_Node, MAX_SIZE> node_pool; }; template ETL_CONSTANT size_t set::MAX_SIZE; //************************************************************************* /// Template deduction guides. //************************************************************************* #if ETL_USING_CPP17 && ETL_HAS_INITIALIZER_LIST template set(T...) -> set, sizeof...(T)>; #endif //************************************************************************* /// Make //************************************************************************* #if ETL_USING_CPP11 && ETL_HAS_INITIALIZER_LIST template , typename... T> constexpr auto make_set(T&&... keys) -> etl::set { return { etl::forward(keys)... }; } #endif //*************************************************************************** /// Equal operator. ///\param lhs Reference to the first lookup. ///\param rhs Reference to the second lookup. ///\return true if the arrays are equal, otherwise false ///\ingroup lookup //*************************************************************************** template bool operator ==(const etl::iset& lhs, const etl::iset& rhs) { return (lhs.size() == rhs.size()) && etl::equal(lhs.begin(), lhs.end(), rhs.begin()); } //*************************************************************************** /// Not equal operator. ///\param lhs Reference to the first lookup. ///\param rhs Reference to the second lookup. ///\return true if the arrays are not equal, otherwise false ///\ingroup lookup //*************************************************************************** template bool operator !=(const etl::iset& lhs, const etl::iset& rhs) { return !(lhs == rhs); } //************************************************************************* /// Less than operator. ///\param lhs Reference to the first list. ///\param rhs Reference to the second list. ///\return true if the first list is lexicographically less than the /// second, otherwise false. //************************************************************************* template bool operator <(const etl::iset& lhs, const etl::iset& rhs) { return etl::lexicographical_compare(lhs.begin(), lhs.end(), rhs.begin(), rhs.end()); } //************************************************************************* /// Greater than operator. ///\param lhs Reference to the first list. ///\param rhs Reference to the second list. ///\return true if the first list is lexicographically greater than the /// second, otherwise false. //************************************************************************* template bool operator >(const etl::iset& lhs, const etl::iset& rhs) { return (rhs < lhs); } //************************************************************************* /// Less than or equal operator. ///\param lhs Reference to the first list. ///\param rhs Reference to the second list. ///\return true if the first list is lexicographically less than or equal /// to the second, otherwise false. //************************************************************************* template bool operator <=(const etl::iset& lhs, const etl::iset& rhs) { return !(lhs > rhs); } //************************************************************************* /// Greater than or equal operator. ///\param lhs Reference to the first list. ///\param rhs Reference to the second list. ///\return true if the first list is lexicographically greater than or /// equal to the second, otherwise false. //************************************************************************* template bool operator >=(const etl::iset& lhs, const etl::iset& rhs) { return !(lhs < rhs); } } #include "private/minmax_pop.h" #endif