#include #include #include #include #include #include #include #include #include #include #include #include #include object_id_t DeviceHandlerBase::powerSwitcherId = 0; object_id_t DeviceHandlerBase::rawDataReceiverId = 0; object_id_t DeviceHandlerBase::defaultFDIRParentId = 0; DeviceHandlerBase::DeviceHandlerBase(uint32_t ioBoardAddress, object_id_t setObjectId, uint32_t maxDeviceReplyLen, uint8_t setDeviceSwitch, object_id_t deviceCommunication, uint32_t thermalStatePoolId, uint32_t thermalRequestPoolId, FailureIsolationBase* fdirInstance, uint32_t cmdQueueSize) : SystemObject(setObjectId), rawPacket(0), rawPacketLen(0), mode( MODE_OFF), submode(SUBMODE_NONE), pstStep(0), maxDeviceReplyLen( maxDeviceReplyLen), wiretappingMode(OFF), defaultRawReceiver(0), storedRawData( StorageManagerIF::INVALID_ADDRESS), requestedRawTraffic(0), powerSwitcher( NULL), IPCStore(NULL), deviceCommunicationId(deviceCommunication), communicationInterface( NULL), cookie( NULL), commandQueue(NULL), deviceThermalStatePoolId(thermalStatePoolId), deviceThermalRequestPoolId( thermalRequestPoolId), healthHelper(this, setObjectId), modeHelper( this), parameterHelper(this), childTransitionFailure(RETURN_OK), ignoreMissedRepliesCount( 0), fdirInstance(fdirInstance), hkSwitcher(this), defaultFDIRUsed( fdirInstance == NULL), switchOffWasReported(false),executingTask(NULL), actionHelper(this, NULL), cookieInfo(), ioBoardAddress( ioBoardAddress), timeoutStart(0), childTransitionDelay(5000), transitionSourceMode( _MODE_POWER_DOWN), transitionSourceSubMode(SUBMODE_NONE), deviceSwitch( setDeviceSwitch) { commandQueue = QueueFactory::instance()->createMessageQueue(cmdQueueSize, CommandMessage::MAX_MESSAGE_SIZE); cookieInfo.state = COOKIE_UNUSED; insertInCommandMap(RAW_COMMAND_ID); if (this->fdirInstance == NULL) { this->fdirInstance = new DeviceHandlerFailureIsolation(setObjectId, defaultFDIRParentId); } } DeviceHandlerBase::~DeviceHandlerBase() { communicationInterface->close(cookie); if (defaultFDIRUsed) { delete fdirInstance; } QueueFactory::instance()->deleteMessageQueue(commandQueue); } ReturnValue_t DeviceHandlerBase::performOperation(uint8_t counter) { this->pstStep = counter; if (counter == 0) { cookieInfo.state = COOKIE_UNUSED; readCommandQueue(); doStateMachine(); checkSwitchState(); decrementDeviceReplyMap(); fdirInstance->checkForFailures(); hkSwitcher.performOperation(); } if (mode == MODE_OFF) { return RETURN_OK; } switch (getRmapAction()) { case SEND_WRITE: if ((cookieInfo.state == COOKIE_UNUSED)) { buildInternalCommand(); } doSendWrite(); break; case GET_WRITE: doGetWrite(); break; case SEND_READ: doSendRead(); break; case GET_READ: doGetRead(); cookieInfo.state = COOKIE_UNUSED; break; default: break; } return RETURN_OK; } void DeviceHandlerBase::decrementDeviceReplyMap() { for (std::map::iterator iter = deviceReplyMap.begin(); iter != deviceReplyMap.end(); iter++) { if (iter->second.delayCycles != 0) { iter->second.delayCycles--; if (iter->second.delayCycles == 0) { if (iter->second.periodic != 0) { iter->second.delayCycles = iter->second.maxDelayCycles; } replyToReply(iter, TIMEOUT); missedReply(iter->first); } } } } void DeviceHandlerBase::readCommandQueue() { if (dontCheckQueue()) { return; } CommandMessage message; ReturnValue_t result = commandQueue->receiveMessage(&message); if (result != RETURN_OK) { return; } result = healthHelper.handleHealthCommand(&message); if (result == RETURN_OK) { return; } result = modeHelper.handleModeCommand(&message); if (result == RETURN_OK) { return; } result = actionHelper.handleActionMessage(&message); if (result == RETURN_OK) { return; } result = parameterHelper.handleParameterMessage(&message); if (result == RETURN_OK) { return; } result = handleDeviceHandlerMessage(&message); if (result == RETURN_OK) { return; } result = letChildHandleMessage(&message); if (result == RETURN_OK) { return; } replyReturnvalueToCommand(CommandMessage::UNKNOW_COMMAND); } void DeviceHandlerBase::doStateMachine() { switch (mode) { case _MODE_START_UP: case _MODE_SHUT_DOWN: case _MODE_TO_NORMAL: case _MODE_TO_ON: case _MODE_TO_RAW: { Mode_t currentMode = mode; callChildStatemachine(); //Only do timeout if child did not change anything if (mode != currentMode) { break; } uint32_t currentUptime; Clock::getUptime(¤tUptime); if (currentUptime - timeoutStart >= childTransitionDelay) { triggerEvent(MODE_TRANSITION_FAILED, childTransitionFailure, 0); setMode(transitionSourceMode, transitionSourceSubMode); break; } } break; case _MODE_POWER_DOWN: commandSwitch(PowerSwitchIF::SWITCH_OFF); setMode(_MODE_WAIT_OFF); break; case _MODE_POWER_ON: commandSwitch(PowerSwitchIF::SWITCH_ON); setMode(_MODE_WAIT_ON); break; case _MODE_WAIT_ON: { uint32_t currentUptime; Clock::getUptime(¤tUptime); if (currentUptime - timeoutStart >= powerSwitcher->getSwitchDelayMs()) { triggerEvent(MODE_TRANSITION_FAILED, PowerSwitchIF::SWITCH_TIMEOUT, 0); setMode(_MODE_POWER_DOWN); callChildStatemachine(); break; } ReturnValue_t switchState = getStateOfSwitches(); if ((switchState == PowerSwitchIF::SWITCH_ON) || (switchState == NO_SWITCH)) { //NOTE: TransitionSourceMode and -SubMode are set by handleCommandedModeTransition childTransitionFailure = CHILD_TIMEOUT; setMode(_MODE_START_UP); callChildStatemachine(); } } break; case _MODE_WAIT_OFF: { uint32_t currentUptime; Clock::getUptime(¤tUptime); if (currentUptime - timeoutStart >= powerSwitcher->getSwitchDelayMs()) { triggerEvent(MODE_TRANSITION_FAILED, PowerSwitchIF::SWITCH_TIMEOUT, 0); setMode(MODE_ERROR_ON); break; } ReturnValue_t switchState = getStateOfSwitches(); if ((switchState == PowerSwitchIF::SWITCH_OFF) || (switchState == NO_SWITCH)) { setMode(_MODE_SWITCH_IS_OFF); } } break; case MODE_OFF: doOffActivity(); break; case MODE_ON: doOnActivity(); break; case MODE_RAW: case MODE_NORMAL: case MODE_ERROR_ON: break; case _MODE_SWITCH_IS_OFF: setMode(MODE_OFF, SUBMODE_NONE); break; default: triggerEvent(OBJECT_IN_INVALID_MODE, mode, submode); setMode(_MODE_POWER_DOWN, 0); break; } } ReturnValue_t DeviceHandlerBase::isModeCombinationValid(Mode_t mode, Submode_t submode) { switch (mode) { case MODE_OFF: case MODE_ON: case MODE_NORMAL: case MODE_RAW: if (submode == SUBMODE_NONE) { return RETURN_OK; } else { return INVALID_SUBMODE; } default: return HasModesIF::INVALID_MODE; } } ReturnValue_t DeviceHandlerBase::insertInCommandAndReplyMap( DeviceCommandId_t deviceCommand, uint16_t maxDelayCycles, uint8_t periodic, bool hasDifferentReplyId, DeviceCommandId_t replyId) { //No need to check, as we may try to insert multiple times. insertInCommandMap(deviceCommand); if (hasDifferentReplyId) { return insertInReplyMap(replyId, maxDelayCycles, periodic); } else { return insertInReplyMap(deviceCommand, maxDelayCycles, periodic); } } ReturnValue_t DeviceHandlerBase::insertInReplyMap(DeviceCommandId_t replyId, uint16_t maxDelayCycles, uint8_t periodic) { DeviceReplyInfo info; info.maxDelayCycles = maxDelayCycles; info.periodic = periodic; info.delayCycles = 0; info.command = deviceCommandMap.end(); std::pair::iterator, bool> returnValue; returnValue = deviceReplyMap.insert( std::pair(replyId, info)); if (returnValue.second) { return RETURN_OK; } else { return RETURN_FAILED; } } ReturnValue_t DeviceHandlerBase::insertInCommandMap( DeviceCommandId_t deviceCommand) { DeviceCommandInfo info; info.expectedReplies = 0; info.isExecuting = false; info.sendReplyTo = NO_COMMANDER; std::pair::iterator, bool> returnValue; returnValue = deviceCommandMap.insert( std::pair(deviceCommand, info)); if (returnValue.second) { return RETURN_OK; } else { return RETURN_FAILED; } } ReturnValue_t DeviceHandlerBase::updateReplyMapEntry( DeviceCommandId_t deviceReply, uint16_t delayCycles, uint16_t maxDelayCycles, uint8_t periodic) { std::map::iterator iter = deviceReplyMap.find(deviceReply); if (iter == deviceReplyMap.end()) { triggerEvent(INVALID_DEVICE_COMMAND, deviceReply); return RETURN_FAILED; } else { DeviceReplyInfo *info = &(iter->second); if (maxDelayCycles != 0) { info->maxDelayCycles = maxDelayCycles; } info->delayCycles = delayCycles; info->periodic = periodic; return RETURN_OK; } } void DeviceHandlerBase::callChildStatemachine() { if (mode == _MODE_START_UP) { doStartUp(); } else if (mode == _MODE_SHUT_DOWN) { doShutDown(); } else if (mode & TRANSITION_MODE_CHILD_ACTION_MASK) { doTransition(transitionSourceMode, transitionSourceSubMode); } } void DeviceHandlerBase::setTransition(Mode_t modeTo, Submode_t submodeTo) { triggerEvent(CHANGING_MODE, modeTo, submodeTo); childTransitionDelay = getTransitionDelayMs(mode, modeTo); transitionSourceMode = mode; transitionSourceSubMode = submode; childTransitionFailure = CHILD_TIMEOUT; //transitionTargetMode is set by setMode setMode((modeTo | TRANSITION_MODE_CHILD_ACTION_MASK), submodeTo); } void DeviceHandlerBase::setMode(Mode_t newMode, uint8_t newSubmode) { changeHK(mode, submode, false); submode = newSubmode; mode = newMode; modeChanged(); setNormalDatapoolEntriesInvalid(); if (!isTransitionalMode()) { modeHelper.modeChanged(newMode, newSubmode); announceMode(false); } Clock::getUptime(&timeoutStart); if (mode == MODE_OFF) { DataSet mySet; PoolVariable thermalRequest(deviceThermalRequestPoolId, &mySet, PoolVariableIF::VAR_READ_WRITE); mySet.read(); if (thermalRequest != ThermalComponentIF::STATE_REQUEST_IGNORE) { thermalRequest = ThermalComponentIF::STATE_REQUEST_NON_OPERATIONAL; } mySet.commit(PoolVariableIF::VALID); } changeHK(mode, submode, true); } void DeviceHandlerBase::setMode(Mode_t newMode) { setMode(newMode, submode); } void DeviceHandlerBase::replyReturnvalueToCommand(ReturnValue_t status, uint32_t parameter) { //This is actually the reply protocol for raw and misc DH commands. if (status == RETURN_OK) { CommandMessage reply(CommandMessage::REPLY_COMMAND_OK, 0, parameter); commandQueue->reply(&reply); } else { CommandMessage reply(CommandMessage::REPLY_REJECTED, status, parameter); commandQueue->reply(&reply); } } void DeviceHandlerBase::replyToCommand(ReturnValue_t status, uint32_t parameter) { //Check if we reply to a raw command. if (cookieInfo.pendingCommand->first == RAW_COMMAND_ID) { if (status == NO_REPLY_EXPECTED) { status = RETURN_OK; } replyReturnvalueToCommand(status, parameter); //Always delete data from a raw command. IPCStore->deleteData(storedRawData); return; } //Check if we were externally commanded. if (cookieInfo.pendingCommand->second.sendReplyTo != NO_COMMANDER) { MessageQueueId_t queueId = cookieInfo.pendingCommand->second.sendReplyTo; if (status == NO_REPLY_EXPECTED) { actionHelper.finish(queueId, cookieInfo.pendingCommand->first, RETURN_OK); } else { actionHelper.step(1, queueId, cookieInfo.pendingCommand->first, status); } } } void DeviceHandlerBase::replyToReply(DeviceReplyMap::iterator iter, ReturnValue_t status) { //No need to check if iter exists, as this is checked by callers. If someone else uses the method, add check. if (iter->second.command == deviceCommandMap.end()) { //Is most likely periodic reply. Silent return. return; } //Check if more replies are expected. If so, do nothing. DeviceCommandInfo* info = &(iter->second.command->second); if (--info->expectedReplies == 0) { //Check if it was transition or internal command. Don't send any replies in that case. if (info->sendReplyTo != NO_COMMANDER) { actionHelper.finish(info->sendReplyTo, iter->first, status); } info->isExecuting = false; } } void DeviceHandlerBase::doSendWrite() { if (cookieInfo.state == COOKIE_WRITE_READY) { sif::debug<<" DeviceHandlerBase::doSendWrite: Calling sendMessage"<sendMessage(cookie, rawPacket, rawPacketLen); if (result == RETURN_OK) { cookieInfo.state = COOKIE_WRITE_SENT; sif::debug<<" DeviceHandlerBase::doSendWrite: Calling sendMessage succeeded"<first); replyToCommand(result); cookieInfo.state = COOKIE_UNUSED; cookieInfo.pendingCommand->second.isExecuting = false; } } } void DeviceHandlerBase::doGetWrite() { if (cookieInfo.state != COOKIE_WRITE_SENT) { // sif::debug<<" DeviceHandlerBase::doGetWrite: COOKIE_WRITE_SENT not set"<getSendSuccess(cookie); if (result == RETURN_OK) { if (wiretappingMode == RAW) { replyRawData(rawPacket, rawPacketLen, requestedRawTraffic, true); } //We need to distinguish here, because a raw command never expects a reply. (Could be done in eRIRM, but then child implementations need to be careful. result = enableReplyInReplyMap(cookieInfo.pendingCommand); } else { //always generate a failure event, so that FDIR knows what's up triggerEvent(DEVICE_SENDING_COMMAND_FAILED, result, cookieInfo.pendingCommand->first); } if (result != RETURN_OK) { cookieInfo.pendingCommand->second.isExecuting = false; } replyToCommand(result); } void DeviceHandlerBase::doSendRead() { ReturnValue_t result; // sif::debug<<" DeviceHandlerBase::doSendRead: Calling requestReceiveMessage"<requestReceiveMessage(cookie); if (result == RETURN_OK) { cookieInfo.state = COOKIE_READ_SENT; } else { triggerEvent(DEVICE_REQUESTING_REPLY_FAILED, result); //We can't inform anyone, because we don't know which command was sent last. //So, we need to wait for a timeout. //but I think we can allow to ignore one missedReply. ignoreMissedRepliesCount++; cookieInfo.state = COOKIE_UNUSED; } } void DeviceHandlerBase::doGetRead() { uint32_t receivedDataLen; uint8_t *receivedData; DeviceCommandId_t foundId = 0xFFFFFFFF; uint32_t foundLen = 0; ReturnValue_t result; if (cookieInfo.state != COOKIE_READ_SENT) { cookieInfo.state = COOKIE_UNUSED; return; } cookieInfo.state = COOKIE_UNUSED; // sif::debug<<" DeviceHandlerBase::doGetRead: Calling readReceivedMessage"<readReceivedMessage(cookie, &receivedData, &receivedDataLen); if (result != RETURN_OK) { triggerEvent(DEVICE_REQUESTING_REPLY_FAILED, result); //I think we can allow to ignore one missedReply. ignoreMissedRepliesCount++; return; } if (receivedDataLen == 0) return; if (wiretappingMode == RAW) { replyRawData(receivedData, receivedDataLen, requestedRawTraffic); } if (mode == MODE_RAW) { replyRawReplyIfnotWiretapped(receivedData, receivedDataLen); } else { //The loop may not execute more often than the number of received bytes (worst case). //This approach avoids infinite loops due to buggy scanForReply routines (seen in bug 1077). uint32_t remainingLength = receivedDataLen; for (uint32_t count = 0; count < receivedDataLen; count++) { sif::debug<<" DeviceHandlerBase::doGetRead: Calling scanForReply"< foundLen) { remainingLength -= foundLen; } else { return; } } } } ReturnValue_t DeviceHandlerBase::getStorageData(store_address_t storageAddress, uint8_t * *data, uint32_t * len) { size_t lenTmp; if (IPCStore == NULL) { *data = NULL; *len = 0; return RETURN_FAILED; } ReturnValue_t result = IPCStore->modifyData(storageAddress, data, &lenTmp); if (result == RETURN_OK) { *len = lenTmp; return RETURN_OK; } else { triggerEvent(StorageManagerIF::GET_DATA_FAILED, result, storageAddress.raw); *data = NULL; *len = 0; return result; } } ReturnValue_t DeviceHandlerBase::initialize() { ReturnValue_t result = SystemObject::initialize(); if (result != RETURN_OK) { return result; } communicationInterface = objectManager->get( deviceCommunicationId); if (communicationInterface == NULL) { return RETURN_FAILED; } result = communicationInterface->open(&cookie, ioBoardAddress, maxDeviceReplyLen); if (result != RETURN_OK) { return result; } IPCStore = objectManager->get(objects::IPC_STORE); if (IPCStore == NULL) { return RETURN_FAILED; } AcceptsDeviceResponsesIF *rawReceiver = objectManager->get< AcceptsDeviceResponsesIF>(rawDataReceiverId); if (rawReceiver == NULL) { return RETURN_FAILED; } defaultRawReceiver = rawReceiver->getDeviceQueue(); powerSwitcher = objectManager->get(powerSwitcherId); if (powerSwitcher == NULL) { return RETURN_FAILED; } result = healthHelper.initialize(); if (result != RETURN_OK) { return result; } result = modeHelper.initialize(); if (result != RETURN_OK) { return result; } result = actionHelper.initialize(commandQueue); if (result != RETURN_OK) { return result; } result = fdirInstance->initialize(); if (result != HasReturnvaluesIF::RETURN_OK) { return result; } result = parameterHelper.initialize(); if (result != HasReturnvaluesIF::RETURN_OK) { return result; } result = hkSwitcher.initialize(); if (result != HasReturnvaluesIF::RETURN_OK) { return result; } fillCommandAndReplyMap(); //Set temperature target state to NON_OP. DataSet mySet; PoolVariable thermalRequest(deviceThermalRequestPoolId, &mySet, PoolVariableIF::VAR_WRITE); mySet.read(); thermalRequest = ThermalComponentIF::STATE_REQUEST_NON_OPERATIONAL; mySet.commit(PoolVariableIF::VALID); return RETURN_OK; } void DeviceHandlerBase::replyRawData(const uint8_t *data, size_t len, MessageQueueId_t sendTo, bool isCommand) { if (IPCStore == NULL || len == 0) { return; } store_address_t address; ReturnValue_t result = IPCStore->addData(&address, data, len); if (result != RETURN_OK) { triggerEvent(StorageManagerIF::STORE_DATA_FAILED, result); return; } CommandMessage message; DeviceHandlerMessage::setDeviceHandlerRawReplyMessage(&message, getObjectId(), address, isCommand); // this->DeviceHandlerCommand = CommandMessage::CMD_NONE; result = commandQueue->sendMessage(sendTo, &message); if (result != RETURN_OK) { IPCStore->deleteData(address); //Silently discard data, this indicates heavy TM traffic which should not be increased by additional events. } } //Default child implementations DeviceHandlerBase::RmapAction_t DeviceHandlerBase::getRmapAction() { switch (pstStep) { case 0: return SEND_WRITE; break; case 1: return GET_WRITE; break; case 2: return SEND_READ; break; case 3: return GET_READ; break; default: break; } return NOTHING; } MessageQueueId_t DeviceHandlerBase::getCommandQueue() const { return commandQueue->getId(); } void DeviceHandlerBase::handleReply(const uint8_t* receivedData, DeviceCommandId_t foundId, uint32_t foundLen) { ReturnValue_t result; DeviceReplyMap::iterator iter = deviceReplyMap.find(foundId); if (iter == deviceReplyMap.end()) { replyRawReplyIfnotWiretapped(receivedData, foundLen); triggerEvent(DEVICE_UNKNOWN_REPLY, foundId); return; } DeviceReplyInfo *info = &(iter->second); if (info->delayCycles != 0) { if (info->periodic != 0) { info->delayCycles = info->maxDelayCycles; } else { info->delayCycles = 0; } result = interpretDeviceReply(foundId, receivedData); if (result != RETURN_OK) { //Report failed interpretation to FDIR. replyRawReplyIfnotWiretapped(receivedData, foundLen); triggerEvent(DEVICE_INTERPRETING_REPLY_FAILED, result, foundId); } replyToReply(iter, result); } else { //Other completion failure messages are created by timeout. //Powering down the device might take some time during which periodic replies may still come in. if (mode != _MODE_WAIT_OFF) { triggerEvent(DEVICE_UNREQUESTED_REPLY, foundId); } } } ReturnValue_t DeviceHandlerBase::switchCookieChannel(object_id_t newChannelId) { DeviceCommunicationIF *newCommunication = objectManager->get< DeviceCommunicationIF>(newChannelId); if (newCommunication != NULL) { ReturnValue_t result = newCommunication->reOpen(cookie, ioBoardAddress, maxDeviceReplyLen); if (result != RETURN_OK) { return result; } return RETURN_OK; } return RETURN_FAILED; } void DeviceHandlerBase::buildRawDeviceCommand(CommandMessage* commandMessage) { storedRawData = DeviceHandlerMessage::getStoreAddress(commandMessage); ReturnValue_t result = getStorageData(storedRawData, &rawPacket, &rawPacketLen); if (result != RETURN_OK) { replyReturnvalueToCommand(result, RAW_COMMAND_ID); storedRawData.raw = StorageManagerIF::INVALID_ADDRESS; } else { cookieInfo.pendingCommand = deviceCommandMap.find( (DeviceCommandId_t) RAW_COMMAND_ID); cookieInfo.pendingCommand->second.isExecuting = true; cookieInfo.state = COOKIE_WRITE_READY; } } void DeviceHandlerBase::commandSwitch(ReturnValue_t onOff) { const uint8_t *switches; uint8_t numberOfSwitches = 0; ReturnValue_t result = getSwitches(&switches, &numberOfSwitches); if (result == RETURN_OK) { while (numberOfSwitches > 0) { powerSwitcher->sendSwitchCommand(switches[numberOfSwitches - 1], onOff); numberOfSwitches--; } } } ReturnValue_t DeviceHandlerBase::getSwitches(const uint8_t **switches, uint8_t *numberOfSwitches) { *switches = &deviceSwitch; *numberOfSwitches = 1; return RETURN_OK; } void DeviceHandlerBase::modeChanged(void) { } ReturnValue_t DeviceHandlerBase::enableReplyInReplyMap( DeviceCommandMap::iterator command, uint8_t expectedReplies, bool useAlternativeId, DeviceCommandId_t alternativeReply) { DeviceReplyMap::iterator iter; if (useAlternativeId) { iter = deviceReplyMap.find(alternativeReply); } else { iter = deviceReplyMap.find(command->first); } if (iter != deviceReplyMap.end()) { DeviceReplyInfo *info = &(iter->second); info->delayCycles = info->maxDelayCycles; info->command = command; command->second.expectedReplies = expectedReplies; return RETURN_OK; } else { return NO_REPLY_EXPECTED; } } void DeviceHandlerBase::doTransition(Mode_t modeFrom, Submode_t subModeFrom) { setMode(getBaseMode(mode)); sif::debug<<"Mode: "< 0) { if (powerSwitcher->getSwitchState(switches[numberOfSwitches - 1]) == PowerSwitchIF::SWITCH_OFF) { return PowerSwitchIF::SWITCH_OFF; } numberOfSwitches--; } return PowerSwitchIF::SWITCH_ON; } return NO_SWITCH; } Mode_t DeviceHandlerBase::getBaseMode(Mode_t transitionMode) { //only child action special modes are handled, as a child should never see any base action modes if (transitionMode == _MODE_START_UP) { return _MODE_TO_ON; } if (transitionMode == _MODE_SHUT_DOWN) { return _MODE_POWER_DOWN; } return transitionMode & ~(TRANSITION_MODE_BASE_ACTION_MASK | TRANSITION_MODE_CHILD_ACTION_MASK); } //SHOULDDO: Allow transition from OFF to NORMAL to reduce complexity in assemblies. And, by the way, throw away DHB and write a new one: // - Include power and thermal completely, but more modular :-) // - Don't use modes for state transitions, reduce FSM (Finte State Machine) complexity. // - Modularization? ReturnValue_t DeviceHandlerBase::checkModeCommand(Mode_t commandedMode, Submode_t commandedSubmode, uint32_t* msToReachTheMode) { if (isTransitionalMode()) { return IN_TRANSITION; } if ((mode == MODE_ERROR_ON) && (commandedMode != MODE_OFF)) { return TRANS_NOT_ALLOWED; } if ((commandedMode == MODE_NORMAL) && (mode == MODE_OFF)) { return TRANS_NOT_ALLOWED; } if ((commandedMode == MODE_ON) && (mode == MODE_OFF) && (deviceThermalStatePoolId != PoolVariableIF::NO_PARAMETER)) { DataSet mySet; PoolVariable thermalState(deviceThermalStatePoolId, &mySet, PoolVariableIF::VAR_READ); PoolVariable thermalRequest(deviceThermalRequestPoolId, &mySet, PoolVariableIF::VAR_READ); mySet.read(); if (thermalRequest != ThermalComponentIF::STATE_REQUEST_IGNORE) { if (!ThermalComponentIF::isOperational(thermalState)) { triggerEvent(ThermalComponentIF::TEMP_NOT_IN_OP_RANGE, thermalState); return NON_OP_TEMPERATURE; } } } return isModeCombinationValid(commandedMode, commandedSubmode); } void DeviceHandlerBase::startTransition(Mode_t commandedMode, Submode_t commandedSubmode) { switch (commandedMode) { case MODE_ON: if (mode == MODE_OFF) { transitionSourceMode = _MODE_POWER_DOWN; transitionSourceSubMode = SUBMODE_NONE; setMode(_MODE_POWER_ON, commandedSubmode); //already set the delay for the child transition so we don't need to call it twice childTransitionDelay = getTransitionDelayMs(_MODE_START_UP, MODE_ON); triggerEvent(CHANGING_MODE, commandedMode, commandedSubmode); DataSet mySet; PoolVariable thermalRequest(deviceThermalRequestPoolId, &mySet, PoolVariableIF::VAR_READ_WRITE); mySet.read(); if (thermalRequest != ThermalComponentIF::STATE_REQUEST_IGNORE) { thermalRequest = ThermalComponentIF::STATE_REQUEST_OPERATIONAL; mySet.commit(PoolVariableIF::VALID); } } else { setTransition(MODE_ON, commandedSubmode); } break; case MODE_OFF: if (mode == MODE_OFF) { triggerEvent(CHANGING_MODE, commandedMode, commandedSubmode); setMode(_MODE_POWER_DOWN, commandedSubmode); } else { //already set the delay for the child transition so we don't need to call it twice childTransitionDelay = getTransitionDelayMs(mode, _MODE_POWER_DOWN); transitionSourceMode = _MODE_POWER_DOWN; transitionSourceSubMode = commandedSubmode; childTransitionFailure = CHILD_TIMEOUT; setMode(_MODE_SHUT_DOWN, commandedSubmode); triggerEvent(CHANGING_MODE, commandedMode, commandedSubmode); } break; case MODE_RAW: if (mode != MODE_OFF) { setTransition(MODE_RAW, commandedSubmode); } else { setMode(MODE_RAW, commandedSubmode); } break; case MODE_NORMAL: if (mode != MODE_OFF) { setTransition(MODE_NORMAL, commandedSubmode); } else { replyReturnvalueToCommand(HasModesIF::TRANS_NOT_ALLOWED); } break; } } void DeviceHandlerBase::getMode(Mode_t* mode, Submode_t* submode) { *mode = this->mode; *submode = this->submode; } void DeviceHandlerBase::setToExternalControl() { healthHelper.setHealth(EXTERNAL_CONTROL); } void DeviceHandlerBase::announceMode(bool recursive) { triggerEvent(MODE_INFO, mode, submode); } bool DeviceHandlerBase::dontCheckQueue() { return false; } void DeviceHandlerBase::missedReply(DeviceCommandId_t id) { if (ignoreMissedRepliesCount > 0) { ignoreMissedRepliesCount--; } else { triggerEvent(DEVICE_MISSED_REPLY, id); } } HasHealthIF::HealthState DeviceHandlerBase::getHealth() { return healthHelper.getHealth(); } ReturnValue_t DeviceHandlerBase::setHealth(HealthState health) { healthHelper.setHealth(health); return HasReturnvaluesIF::RETURN_OK; } void DeviceHandlerBase::checkSwitchState() { if ((mode == MODE_ON || mode == MODE_NORMAL)) { //We only check in ON and NORMAL, ignore RAW and ERROR_ON. ReturnValue_t result = getStateOfSwitches(); if (result == PowerSwitchIF::SWITCH_OFF && !switchOffWasReported) { triggerEvent(PowerSwitchIF::SWITCH_WENT_OFF); switchOffWasReported = true; } } else { switchOffWasReported = false; } } void DeviceHandlerBase::doOnActivity() { } ReturnValue_t DeviceHandlerBase::acceptExternalDeviceCommands() { if ((mode != MODE_ON) && (mode != MODE_NORMAL)) { return WRONG_MODE_FOR_COMMAND; } return RETURN_OK; } void DeviceHandlerBase::replyRawReplyIfnotWiretapped(const uint8_t* data, size_t len) { if ((wiretappingMode == RAW) && (defaultRawReceiver == requestedRawTraffic)) { //The raw packet was already sent by the wiretapping service } else { replyRawData(data, len, defaultRawReceiver); } } ReturnValue_t DeviceHandlerBase::handleDeviceHandlerMessage( CommandMessage * message) { ReturnValue_t result; switch (message->getCommand()) { case DeviceHandlerMessage::CMD_WIRETAPPING: switch (DeviceHandlerMessage::getWiretappingMode(message)) { case RAW: wiretappingMode = RAW; requestedRawTraffic = commandQueue->getLastPartner(); break; case TM: wiretappingMode = TM; requestedRawTraffic = commandQueue->getLastPartner(); break; case OFF: wiretappingMode = OFF; break; default: replyReturnvalueToCommand(INVALID_COMMAND_PARAMETER); wiretappingMode = OFF; return RETURN_OK; } replyReturnvalueToCommand(RETURN_OK); return RETURN_OK; case DeviceHandlerMessage::CMD_SWITCH_IOBOARD: if (mode != MODE_OFF) { replyReturnvalueToCommand(WRONG_MODE_FOR_COMMAND); } else { result = switchCookieChannel( DeviceHandlerMessage::getIoBoardObjectId(message)); if (result == RETURN_OK) { replyReturnvalueToCommand(RETURN_OK); } else { replyReturnvalueToCommand(CANT_SWITCH_IOBOARD); } } return RETURN_OK; case DeviceHandlerMessage::CMD_RAW: if ((mode != MODE_RAW)) { DeviceHandlerMessage::clear(message); replyReturnvalueToCommand(WRONG_MODE_FOR_COMMAND); } else { buildRawDeviceCommand(message); } return RETURN_OK; default: return RETURN_FAILED; } } void DeviceHandlerBase::setParentQueue(MessageQueueId_t parentQueueId) { modeHelper.setParentQueue(parentQueueId); healthHelper.setParentQeueue(parentQueueId); } bool DeviceHandlerBase::isAwaitingReply() { std::map::iterator iter; for (iter = deviceReplyMap.begin(); iter != deviceReplyMap.end(); ++iter) { if (iter->second.delayCycles != 0) { return true; } } return false; } ReturnValue_t DeviceHandlerBase::letChildHandleMessage( CommandMessage * message) { return RETURN_FAILED; } void DeviceHandlerBase::handleDeviceTM(SerializeIF* data, DeviceCommandId_t replyId, bool neverInDataPool, bool forceDirectTm) { DeviceReplyMap::iterator iter = deviceReplyMap.find(replyId); if (iter == deviceReplyMap.end()) { triggerEvent(DEVICE_UNKNOWN_REPLY, replyId); return; } DeviceTmReportingWrapper wrapper(getObjectId(), replyId, data); if (iter->second.command != deviceCommandMap.end()) {//replies to a command MessageQueueId_t queueId = iter->second.command->second.sendReplyTo; if (queueId != NO_COMMANDER) { //This may fail, but we'll ignore the fault. actionHelper.reportData(queueId, replyId, data); } //This check should make sure we get any TM but don't get anything doubled. if (wiretappingMode == TM && (requestedRawTraffic != queueId)) { actionHelper.reportData(requestedRawTraffic, replyId, &wrapper); } else if (forceDirectTm && (defaultRawReceiver != queueId)) { // hiding of sender needed so the service will handle it as unexpected Data, no matter what state //(progress or completed) it is in actionHelper.reportData(defaultRawReceiver, replyId, &wrapper, true); } } else { //unrequested/aperiodic replies if (wiretappingMode == TM) { actionHelper.reportData(requestedRawTraffic, replyId, &wrapper); } else if (forceDirectTm) { // hiding of sender needed so the service will handle it as unexpected Data, no matter what state //(progress or completed) it is in actionHelper.reportData(defaultRawReceiver, replyId, &wrapper, true); } } //Try to cast to DataSet and commit data. if (!neverInDataPool) { DataSet* dataSet = dynamic_cast(data); if (dataSet != NULL) { dataSet->commit(PoolVariableIF::VALID); } } } ReturnValue_t DeviceHandlerBase::executeAction(ActionId_t actionId, MessageQueueId_t commandedBy, const uint8_t* data, uint32_t size) { ReturnValue_t result = acceptExternalDeviceCommands(); if (result != HasReturnvaluesIF::RETURN_OK) { return result; } DeviceCommandMap::iterator iter = deviceCommandMap.find(actionId); if (iter == deviceCommandMap.end()) { result = COMMAND_NOT_SUPPORTED; } else if (iter->second.isExecuting) { result = COMMAND_ALREADY_SENT; } else { result = buildCommandFromCommand(actionId, data, size); } if (result == RETURN_OK) { iter->second.sendReplyTo = commandedBy; iter->second.isExecuting = true; cookieInfo.pendingCommand = iter; cookieInfo.state = COOKIE_WRITE_READY; } return result; } void DeviceHandlerBase::buildInternalCommand(void) { //Neither Raw nor Direct could build a command ReturnValue_t result = NOTHING_TO_SEND; DeviceCommandId_t deviceCommandId = NO_COMMAND_ID; if (mode == MODE_NORMAL) { result = buildNormalDeviceCommand(&deviceCommandId); if (result == BUSY) { // sif::debug << std::hex << getObjectId() // << ": DeviceHandlerBase::buildInternalCommand busy" << std::endl; //so we can track misconfigurations result = NOTHING_TO_SEND; //no need to report this } } else if (mode == MODE_RAW) { result = buildChildRawCommand(); deviceCommandId = RAW_COMMAND_ID; } else if (mode & TRANSITION_MODE_CHILD_ACTION_MASK) { result = buildTransitionDeviceCommand(&deviceCommandId); } else { return; } if (result == NOTHING_TO_SEND) { return; } if (result == RETURN_OK) { DeviceCommandMap::iterator iter = deviceCommandMap.find( deviceCommandId); if (iter == deviceCommandMap.end()) { result = COMMAND_NOT_SUPPORTED; } else if (iter->second.isExecuting) { // sif::debug << std::hex << getObjectId() // << ": DHB::buildInternalCommand: Command " // << deviceCommandId << " isExecuting" << std::endl; //so we can track misconfigurations return; //this is an internal command, no need to report a failure here, missed reply will track if a reply is too late, otherwise, it's ok } else { iter->second.sendReplyTo = NO_COMMANDER; iter->second.isExecuting = true; cookieInfo.pendingCommand = iter; cookieInfo.state = COOKIE_WRITE_READY; } } if (result != RETURN_OK) { triggerEvent(DEVICE_BUILDING_COMMAND_FAILED, result, deviceCommandId); } } ReturnValue_t DeviceHandlerBase::buildChildRawCommand() { return NOTHING_TO_SEND; } uint8_t DeviceHandlerBase::getReplyDelayCycles( DeviceCommandId_t deviceCommand) { DeviceReplyMap::iterator iter = deviceReplyMap.find(deviceCommand); if (iter == deviceReplyMap.end()) { return 0; } return iter->second.delayCycles; } Mode_t DeviceHandlerBase::getTransitionSourceMode() const { return transitionSourceMode; } Submode_t DeviceHandlerBase::getTransitionSourceSubMode() const { return transitionSourceSubMode; } void DeviceHandlerBase::triggerEvent(Event event, uint32_t parameter1, uint32_t parameter2) { fdirInstance->triggerEvent(event, parameter1, parameter2); } void DeviceHandlerBase::forwardEvent(Event event, uint32_t parameter1, uint32_t parameter2) const { fdirInstance->triggerEvent(event, parameter1, parameter2); } void DeviceHandlerBase::doOffActivity() { } ReturnValue_t DeviceHandlerBase::getParameter(uint8_t domainId, uint16_t parameterId, ParameterWrapper* parameterWrapper, const ParameterWrapper* newValues, uint16_t startAtIndex) { ReturnValue_t result = fdirInstance->getParameter(domainId, parameterId, parameterWrapper, newValues, startAtIndex); if (result != INVALID_DOMAIN_ID) { return result; } return INVALID_DOMAIN_ID; } bool DeviceHandlerBase::isTransitionalMode() { return ((mode & (TRANSITION_MODE_BASE_ACTION_MASK | TRANSITION_MODE_CHILD_ACTION_MASK)) != 0); } bool DeviceHandlerBase::commandIsExecuting(DeviceCommandId_t commandId) { auto iter = deviceCommandMap.find(commandId); if (iter != deviceCommandMap.end()) { return iter->second.isExecuting; } else { return false; } } void DeviceHandlerBase::changeHK(Mode_t mode, Submode_t submode, bool enable) { } void DeviceHandlerBase::setTaskIF(PeriodicTaskIF* task_){ executingTask = task_; }