#include "MgmRM3100Handler.h" #include "fsfw/datapool/PoolReadGuard.h" #include "fsfw/devicehandlers/DeviceHandlerMessage.h" #include "fsfw/globalfunctions/bitutility.h" #include "fsfw/objectmanager/SystemObjectIF.h" #include "fsfw/returnvalues/returnvalue.h" MgmRM3100Handler::MgmRM3100Handler(object_id_t objectId, object_id_t deviceCommunication, CookieIF *comCookie, uint32_t transitionDelay) : DeviceHandlerBase(objectId, deviceCommunication, comCookie), primaryDataset(this), transitionDelay(transitionDelay) {} MgmRM3100Handler::~MgmRM3100Handler() {} void MgmRM3100Handler::doStartUp() { switch (internalState) { case (InternalState::NONE): { internalState = InternalState::CONFIGURE_CMM; break; } case (InternalState::CONFIGURE_CMM): { internalState = InternalState::READ_CMM; break; } case (InternalState::READ_CMM): { if (commandExecuted) { internalState = InternalState::STATE_CONFIGURE_TMRC; } break; } case (InternalState::STATE_CONFIGURE_TMRC): { if (commandExecuted) { internalState = InternalState::STATE_READ_TMRC; } break; } case (InternalState::STATE_READ_TMRC): { if (commandExecuted) { internalState = InternalState::NORMAL; if (goToNormalModeAtStartup) { setMode(MODE_NORMAL); } else { setMode(_MODE_TO_ON); } } break; } default: { break; } } } void MgmRM3100Handler::doShutDown() { setMode(_MODE_POWER_DOWN); } ReturnValue_t MgmRM3100Handler::buildTransitionDeviceCommand(DeviceCommandId_t *id) { size_t commandLen = 0; switch (internalState) { case (InternalState::NONE): case (InternalState::NORMAL): { return NOTHING_TO_SEND; } case (InternalState::CONFIGURE_CMM): { *id = mgmRm3100::CONFIGURE_CMM; break; } case (InternalState::READ_CMM): { *id = mgmRm3100::READ_CMM; break; } case (InternalState::STATE_CONFIGURE_TMRC): { commandBuffer[0] = mgmRm3100::TMRC_DEFAULT_VALUE; commandLen = 1; *id = mgmRm3100::CONFIGURE_TMRC; break; } case (InternalState::STATE_READ_TMRC): { *id = mgmRm3100::READ_TMRC; break; } default: #if FSFW_VERBOSE_LEVEL >= 1 #if FSFW_CPP_OSTREAM_ENABLED == 1 // Might be a configuration error sif::warning << "MgmRM3100Handler::buildTransitionDeviceCommand: " "Unknown internal state" << std::endl; #else sif::printWarning( "MgmRM3100Handler::buildTransitionDeviceCommand: " "Unknown internal state\n"); #endif #endif return returnvalue::OK; } return buildCommandFromCommand(*id, commandBuffer, commandLen); } ReturnValue_t MgmRM3100Handler::buildCommandFromCommand(DeviceCommandId_t deviceCommand, const uint8_t *commandData, size_t commandDataLen) { switch (deviceCommand) { case (mgmRm3100::CONFIGURE_CMM): { commandBuffer[0] = mgmRm3100::CMM_REGISTER; commandBuffer[1] = mgmRm3100::CMM_VALUE; rawPacket = commandBuffer; rawPacketLen = 2; break; } case (mgmRm3100::READ_CMM): { commandBuffer[0] = mgmRm3100::CMM_REGISTER | mgmRm3100::READ_MASK; commandBuffer[1] = 0; rawPacket = commandBuffer; rawPacketLen = 2; break; } case (mgmRm3100::CONFIGURE_TMRC): { return handleTmrcConfigCommand(deviceCommand, commandData, commandDataLen); } case (mgmRm3100::READ_TMRC): { commandBuffer[0] = mgmRm3100::TMRC_REGISTER | mgmRm3100::READ_MASK; commandBuffer[1] = 0; rawPacket = commandBuffer; rawPacketLen = 2; break; } case (mgmRm3100::CONFIGURE_CYCLE_COUNT): { return handleCycleCountConfigCommand(deviceCommand, commandData, commandDataLen); } case (mgmRm3100::READ_CYCLE_COUNT): { commandBuffer[0] = mgmRm3100::CYCLE_COUNT_START_REGISTER | mgmRm3100::READ_MASK; std::memset(commandBuffer + 1, 0, 6); rawPacket = commandBuffer; rawPacketLen = 7; break; } case (mgmRm3100::READ_DATA): { commandBuffer[0] = mgmRm3100::MEASUREMENT_REG_START | mgmRm3100::READ_MASK; std::memset(commandBuffer + 1, 0, 9); rawPacketLen = 10; break; } default: return DeviceHandlerIF::COMMAND_NOT_IMPLEMENTED; } return returnvalue::OK; } ReturnValue_t MgmRM3100Handler::buildNormalDeviceCommand(DeviceCommandId_t *id) { *id = mgmRm3100::READ_DATA; return buildCommandFromCommand(*id, nullptr, 0); } ReturnValue_t MgmRM3100Handler::scanForReply(const uint8_t *start, size_t len, DeviceCommandId_t *foundId, size_t *foundLen) { // For SPI, ID will always be the one of the last sent command *foundId = this->getPendingCommand(); *foundLen = len; return returnvalue::OK; } ReturnValue_t MgmRM3100Handler::interpretDeviceReply(DeviceCommandId_t id, const uint8_t *packet) { ReturnValue_t result = returnvalue::OK; switch (id) { case (mgmRm3100::CONFIGURE_CMM): case (mgmRm3100::CONFIGURE_CYCLE_COUNT): case (mgmRm3100::CONFIGURE_TMRC): { // We can only check whether write was successful with read operation if (getMode() == _MODE_START_UP) { commandExecuted = true; } break; } case (mgmRm3100::READ_CMM): { uint8_t cmmValue = packet[1]; // We clear the seventh bit in any case // because this one is zero sometimes for some reason bitutil::clear(&cmmValue, 6); if (cmmValue == cmmRegValue and internalState == InternalState::READ_CMM) { commandExecuted = true; } else { // Attempt reconfiguration internalState = InternalState::CONFIGURE_CMM; return DeviceHandlerIF::DEVICE_REPLY_INVALID; } break; } case (mgmRm3100::READ_TMRC): { if (packet[1] == tmrcRegValue) { commandExecuted = true; // Reading TMRC was commanded. Trigger event to inform ground if (getMode() != _MODE_START_UP) { triggerEvent(tmrcSet, tmrcRegValue, 0); } } else { // Attempt reconfiguration internalState = InternalState::STATE_CONFIGURE_TMRC; return DeviceHandlerIF::DEVICE_REPLY_INVALID; } break; } case (mgmRm3100::READ_CYCLE_COUNT): { uint16_t cycleCountX = packet[1] << 8 | packet[2]; uint16_t cycleCountY = packet[3] << 8 | packet[4]; uint16_t cycleCountZ = packet[5] << 8 | packet[6]; if (cycleCountX != cycleCountRegValueX or cycleCountY != cycleCountRegValueY or cycleCountZ != cycleCountRegValueZ) { return DeviceHandlerIF::DEVICE_REPLY_INVALID; } // Reading TMRC was commanded. Trigger event to inform ground if (getMode() != _MODE_START_UP) { uint32_t eventParam1 = (cycleCountX << 16) | cycleCountY; triggerEvent(cycleCountersSet, eventParam1, cycleCountZ); } break; } case (mgmRm3100::READ_DATA): { result = handleDataReadout(packet); break; } default: return DeviceHandlerIF::UNKNOWN_DEVICE_REPLY; } return result; } ReturnValue_t MgmRM3100Handler::handleCycleCountConfigCommand(DeviceCommandId_t deviceCommand, const uint8_t *commandData, size_t commandDataLen) { if (commandData == nullptr) { return DeviceHandlerIF::INVALID_COMMAND_PARAMETER; } // Set cycle count if (commandDataLen == 2) { handleCycleCommand(true, commandData, commandDataLen); } else if (commandDataLen == 6) { handleCycleCommand(false, commandData, commandDataLen); } else { return DeviceHandlerIF::INVALID_COMMAND_PARAMETER; } commandBuffer[0] = mgmRm3100::CYCLE_COUNT_VALUE; std::memcpy(commandBuffer + 1, &cycleCountRegValueX, 2); std::memcpy(commandBuffer + 3, &cycleCountRegValueY, 2); std::memcpy(commandBuffer + 5, &cycleCountRegValueZ, 2); rawPacketLen = 7; rawPacket = commandBuffer; return returnvalue::OK; } ReturnValue_t MgmRM3100Handler::handleCycleCommand(bool oneCycleValue, const uint8_t *commandData, size_t commandDataLen) { mgmRm3100::CycleCountCommand command(oneCycleValue); ReturnValue_t result = command.deSerialize(&commandData, &commandDataLen, SerializeIF::Endianness::BIG); if (result != returnvalue::OK) { return result; } // Data sheet p.30 "while noise limits the useful upper range to ~400 cycle counts." if (command.cycleCountX > 450) { return DeviceHandlerIF::INVALID_COMMAND_PARAMETER; } if (not oneCycleValue and (command.cycleCountY > 450 or command.cycleCountZ > 450)) { return DeviceHandlerIF::INVALID_COMMAND_PARAMETER; } cycleCountRegValueX = command.cycleCountX; cycleCountRegValueY = command.cycleCountY; cycleCountRegValueZ = command.cycleCountZ; return returnvalue::OK; } ReturnValue_t MgmRM3100Handler::handleTmrcConfigCommand(DeviceCommandId_t deviceCommand, const uint8_t *commandData, size_t commandDataLen) { if (commandData == nullptr or commandDataLen != 1) { return DeviceHandlerIF::INVALID_COMMAND_PARAMETER; } commandBuffer[0] = mgmRm3100::TMRC_REGISTER; commandBuffer[1] = commandData[0]; tmrcRegValue = commandData[0]; rawPacketLen = 2; rawPacket = commandBuffer; return returnvalue::OK; } void MgmRM3100Handler::fillCommandAndReplyMap() { insertInCommandAndReplyMap(mgmRm3100::CONFIGURE_CMM, 3); insertInCommandAndReplyMap(mgmRm3100::READ_CMM, 3); insertInCommandAndReplyMap(mgmRm3100::CONFIGURE_TMRC, 3); insertInCommandAndReplyMap(mgmRm3100::READ_TMRC, 3); insertInCommandAndReplyMap(mgmRm3100::CONFIGURE_CYCLE_COUNT, 3); insertInCommandAndReplyMap(mgmRm3100::READ_CYCLE_COUNT, 3); insertInCommandAndReplyMap(mgmRm3100::READ_DATA, 3, &primaryDataset); } void MgmRM3100Handler::modeChanged() { internalState = InternalState::NONE; } ReturnValue_t MgmRM3100Handler::initializeLocalDataPool(localpool::DataPool &localDataPoolMap, PeriodicHkGenerationHelper &poolManager) { localDataPoolMap.emplace(mgmRm3100::FIELD_STRENGTHS, &mgmXYZ); poolManager.setPeriodicFrequency(primaryDataset.getSid(), 10'000); return returnvalue::OK; } uint32_t MgmRM3100Handler::getTransitionDelayMs(Mode_t from, Mode_t to) { return this->transitionDelay; } void MgmRM3100Handler::setToGoToNormalMode(bool enable) { goToNormalModeAtStartup = enable; } ReturnValue_t MgmRM3100Handler::handleDataReadout(const uint8_t *packet) { // Analyze data here. The sensor generates 24 bit signed values so we need to do some bitshift // trickery here to calculate the raw values first int32_t fieldStrengthRawX = ((packet[1] << 24) | (packet[2] << 16) | (packet[3] << 8)) >> 8; int32_t fieldStrengthRawY = ((packet[4] << 24) | (packet[5] << 16) | (packet[6] << 8)) >> 8; int32_t fieldStrengthRawZ = ((packet[7] << 24) | (packet[8] << 16) | (packet[9] << 8)) >> 8; // Now scale to physical value in microtesla float fieldStrengthX = fieldStrengthRawX * scaleFactorX; float fieldStrengthY = fieldStrengthRawY * scaleFactorY; float fieldStrengthZ = fieldStrengthRawZ * scaleFactorZ; if (periodicPrintout) { if (debugDivider.checkAndIncrement()) { #if FSFW_CPP_OSTREAM_ENABLED == 1 sif::info << "MgmRM3100Handler: Magnetic field strength in" " microtesla:" << std::endl; sif::info << "X: " << fieldStrengthX << " uT" << std::endl; sif::info << "Y: " << fieldStrengthY << " uT" << std::endl; sif::info << "Z: " << fieldStrengthZ << " uT" << std::endl; #else sif::printInfo("MgmRM3100Handler: Magnetic field strength in microtesla:\n"); sif::printInfo("X: %f uT\n", fieldStrengthX); sif::printInfo("Y: %f uT\n", fieldStrengthY); sif::printInfo("Z: %f uT\n", fieldStrengthZ); #endif } } // TODO: Sanity check on values? PoolReadGuard readGuard(&primaryDataset); if (readGuard.getReadResult() == returnvalue::OK) { primaryDataset.fieldStrengths[0] = fieldStrengthX; primaryDataset.fieldStrengths[1] = fieldStrengthY; primaryDataset.fieldStrengths[2] = fieldStrengthZ; primaryDataset.valid = true; } return returnvalue::OK; } void MgmRM3100Handler::enablePeriodicPrintouts(bool enable, uint8_t divider) { periodicPrintout = enable; debugDivider.setDivider(divider); }