#include #include extern "C" { #include #include #include #include #include } //#include uint16_t Clock::leapSeconds = 0; MutexIF* Clock::timeMutex = NULL; uint32_t Clock::getTicksPerSecond(void){ uint32_t ticks = sysconf(_SC_CLK_TCK); return ticks; } ReturnValue_t Clock::setClock(const TimeOfDay_t* time) { timespec timeUnix; timeval timeTimeval; convertTimeOfDayToTimeval(time,&timeTimeval); timeUnix.tv_sec = timeTimeval.tv_sec; timeUnix.tv_nsec = (__syscall_slong_t) timeTimeval.tv_usec * 1000; int status = clock_settime(CLOCK_REALTIME,&timeUnix); if(status!=0){ //TODO errno return HasReturnvaluesIF::RETURN_FAILED; } return HasReturnvaluesIF::RETURN_OK; } ReturnValue_t Clock::setClock(const timeval* time) { timespec timeUnix; timeUnix.tv_sec = time->tv_sec; timeUnix.tv_nsec = (__syscall_slong_t) time->tv_usec * 1000; int status = clock_settime(CLOCK_REALTIME,&timeUnix); if(status!=0){ //TODO errno return HasReturnvaluesIF::RETURN_FAILED; } return HasReturnvaluesIF::RETURN_OK; } ReturnValue_t Clock::getClock_timeval(timeval* time) { timespec timeUnix; int status = clock_gettime(CLOCK_REALTIME,&timeUnix); if(status!=0){ return HasReturnvaluesIF::RETURN_FAILED; } time->tv_sec = timeUnix.tv_sec; time->tv_usec = timeUnix.tv_nsec / 1000.0; return HasReturnvaluesIF::RETURN_OK; } ReturnValue_t Clock::getClock_usecs(uint64_t* time) { timeval timeVal; ReturnValue_t result = getClock_timeval(&timeVal); if(result != HasReturnvaluesIF::RETURN_OK){ return result; } *time = (uint64_t)timeVal.tv_sec*1e6 + timeVal.tv_usec; return HasReturnvaluesIF::RETURN_OK; } timeval Clock::getUptime() { timeval uptime; auto result = getUptime(&uptime); if(result != HasReturnvaluesIF::RETURN_OK) { sif::error << "Clock::getUptime: Error getting uptime" << std::endl; } return uptime; } ReturnValue_t Clock::getUptime(timeval* uptime) { //TODO This is not posix compatible and delivers only seconds precision struct sysinfo sysInfo; int result = sysinfo(&sysInfo); if(result != 0){ return HasReturnvaluesIF::RETURN_FAILED; } uptime->tv_sec = sysInfo.uptime; uptime->tv_usec = 0; //Linux specific file read but more precise // double uptimeSeconds; // if(std::ifstream("/proc/uptime",std::ios::in) >> uptimeSeconds){ // uptime->tv_sec = uptimeSeconds; // uptime->tv_usec = uptimeSeconds *(double) 1e6 - (uptime->tv_sec *1e6); // } return HasReturnvaluesIF::RETURN_OK; } ReturnValue_t Clock::getUptime(uint32_t* uptimeMs) { timeval uptime; ReturnValue_t result = getUptime(&uptime); if(result != HasReturnvaluesIF::RETURN_OK){ return result; } *uptimeMs = uptime.tv_sec * 1e3 + uptime.tv_usec / 1e3; return HasReturnvaluesIF::RETURN_OK; } ReturnValue_t Clock::getDateAndTime(TimeOfDay_t* time) { timespec timeUnix; int status = clock_gettime(CLOCK_REALTIME,&timeUnix); if(status != 0){ //TODO errno return HasReturnvaluesIF::RETURN_FAILED; } struct tm* timeInfo; timeInfo = gmtime(&timeUnix.tv_sec); time->year = timeInfo->tm_year + 1900; time->month = timeInfo->tm_mon+1; time->day = timeInfo->tm_mday; time->hour = timeInfo->tm_hour; time->minute = timeInfo->tm_min; time->second = timeInfo->tm_sec; time->usecond = timeUnix.tv_nsec / 1000.0; return HasReturnvaluesIF::RETURN_OK; } ReturnValue_t Clock::convertTimeOfDayToTimeval(const TimeOfDay_t* from, timeval* to) { tm fromTm; //Note: Fails for years before AD fromTm.tm_year = from->year - 1900; fromTm.tm_mon = from->month - 1; fromTm.tm_mday = from->day; fromTm.tm_hour = from->hour; fromTm.tm_min = from->minute; fromTm.tm_sec = from->second; to->tv_sec = mktime(&fromTm); to->tv_usec = from->usecond; return HasReturnvaluesIF::RETURN_OK; } ReturnValue_t Clock::convertTimevalToJD2000(timeval time, double* JD2000) { *JD2000 = (time.tv_sec - 946728000. + time.tv_usec / 1000000.) / 24. / 3600.; return HasReturnvaluesIF::RETURN_OK; } ReturnValue_t Clock::convertUTCToTT(timeval utc, timeval* tt) { //SHOULDDO: works not for dates in the past (might have less leap seconds) if (timeMutex == NULL) { return HasReturnvaluesIF::RETURN_FAILED; } uint16_t leapSeconds; ReturnValue_t result = getLeapSeconds(&leapSeconds); if (result != HasReturnvaluesIF::RETURN_OK) { return result; } timeval leapSeconds_timeval = { 0, 0 }; leapSeconds_timeval.tv_sec = leapSeconds; //initial offset between UTC and TAI timeval UTCtoTAI1972 = { 10, 0 }; timeval TAItoTT = { 32, 184000 }; *tt = utc + leapSeconds_timeval + UTCtoTAI1972 + TAItoTT; return HasReturnvaluesIF::RETURN_OK; } ReturnValue_t Clock::setLeapSeconds(const uint16_t leapSeconds_) { if(checkOrCreateClockMutex()!=HasReturnvaluesIF::RETURN_OK){ return HasReturnvaluesIF::RETURN_FAILED; } ReturnValue_t result = timeMutex->lockMutex(MutexIF::NO_TIMEOUT); if (result != HasReturnvaluesIF::RETURN_OK) { return result; } leapSeconds = leapSeconds_; result = timeMutex->unlockMutex(); return result; } ReturnValue_t Clock::getLeapSeconds(uint16_t* leapSeconds_) { if(timeMutex==NULL){ return HasReturnvaluesIF::RETURN_FAILED; } ReturnValue_t result = timeMutex->lockMutex(MutexIF::NO_TIMEOUT); if (result != HasReturnvaluesIF::RETURN_OK) { return result; } *leapSeconds_ = leapSeconds; result = timeMutex->unlockMutex(); return result; } ReturnValue_t Clock::checkOrCreateClockMutex(){ if(timeMutex==NULL){ MutexFactory* mutexFactory = MutexFactory::instance(); if (mutexFactory == NULL) { return HasReturnvaluesIF::RETURN_FAILED; } timeMutex = mutexFactory->createMutex(); if (timeMutex == NULL) { return HasReturnvaluesIF::RETURN_FAILED; } } return HasReturnvaluesIF::RETURN_OK; }