fsfw/misc/archive/MgmLIS3MDLHandler.cpp
2024-11-05 17:02:45 +01:00

438 lines
14 KiB
C++

#include "MgmLIS3MDLHandler.h"
#include <cmath>
#include "fsfw/datapool/PoolReadGuard.h"
MgmLIS3MDLHandler::MgmLIS3MDLHandler(object_id_t objectId, object_id_t deviceCommunication,
CookieIF *comCookie, uint32_t transitionDelay)
: DeviceHandlerBase(objectId, deviceCommunication, comCookie),
dataset(this),
transitionDelay(transitionDelay) {
// Set to default values right away
registers[0] = mgmLis3::CTRL_REG1_DEFAULT;
registers[1] = mgmLis3::CTRL_REG2_DEFAULT;
registers[2] = mgmLis3::CTRL_REG3_DEFAULT;
registers[3] = mgmLis3::CTRL_REG4_DEFAULT;
registers[4] = mgmLis3::CTRL_REG5_DEFAULT;
}
MgmLIS3MDLHandler::~MgmLIS3MDLHandler() {}
void MgmLIS3MDLHandler::doStartUp() {
switch (internalState) {
case (InternalState::STATE_NONE): {
internalState = InternalState::STATE_FIRST_CONTACT;
break;
}
case (InternalState::STATE_FIRST_CONTACT): {
/* Will be set by checking device ID (WHO AM I register) */
if (commandExecuted) {
commandExecuted = false;
internalState = InternalState::STATE_SETUP;
}
break;
}
case (InternalState::STATE_SETUP): {
internalState = InternalState::STATE_CHECK_REGISTERS;
break;
}
case (InternalState::STATE_CHECK_REGISTERS): {
/* Set up cached registers which will be used to configure the MGM. */
if (commandExecuted) {
commandExecuted = false;
if (goToNormalMode) {
setMode(MODE_NORMAL);
} else {
setMode(_MODE_TO_ON);
}
}
break;
}
default:
break;
}
}
void MgmLIS3MDLHandler::doShutDown() { setMode(_MODE_POWER_DOWN); }
ReturnValue_t MgmLIS3MDLHandler::buildTransitionDeviceCommand(DeviceCommandId_t *id) {
switch (internalState) {
case (InternalState::STATE_NONE):
case (InternalState::STATE_NORMAL): {
return DeviceHandlerBase::NOTHING_TO_SEND;
}
case (InternalState::STATE_FIRST_CONTACT): {
*id = mgmLis3::IDENTIFY_DEVICE;
break;
}
case (InternalState::STATE_SETUP): {
*id = mgmLis3::SETUP_MGM;
break;
}
case (InternalState::STATE_CHECK_REGISTERS): {
*id = mgmLis3::READ_CONFIG_AND_DATA;
break;
}
default: {
/* might be a configuration error. */
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "GyroHandler::buildTransitionDeviceCommand: Unknown internal state!"
<< std::endl;
#else
sif::printWarning("GyroHandler::buildTransitionDeviceCommand: Unknown internal state!\n");
#endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */
return returnvalue::OK;
}
}
return buildCommandFromCommand(*id, NULL, 0);
}
void MgmLIS3MDLHandler::setupMgm() {
registers[0] = mgmLis3::CTRL_REG1_DEFAULT;
registers[1] = mgmLis3::CTRL_REG2_DEFAULT;
registers[2] = mgmLis3::CTRL_REG3_DEFAULT;
registers[3] = mgmLis3::CTRL_REG4_DEFAULT;
registers[4] = mgmLis3::CTRL_REG5_DEFAULT;
prepareCtrlRegisterWrite();
}
ReturnValue_t MgmLIS3MDLHandler::buildNormalDeviceCommand(DeviceCommandId_t *id) {
// Data/config register will be read in an alternating manner.
if (communicationStep == CommunicationStep::DATA) {
*id = mgmLis3::READ_CONFIG_AND_DATA;
communicationStep = CommunicationStep::TEMPERATURE;
return buildCommandFromCommand(*id, NULL, 0);
} else {
*id = mgmLis3::READ_TEMPERATURE;
communicationStep = CommunicationStep::DATA;
return buildCommandFromCommand(*id, NULL, 0);
}
}
ReturnValue_t MgmLIS3MDLHandler::buildCommandFromCommand(DeviceCommandId_t deviceCommand,
const uint8_t *commandData,
size_t commandDataLen) {
switch (deviceCommand) {
case (mgmLis3::READ_CONFIG_AND_DATA): {
std::memset(commandBuffer, 0, sizeof(commandBuffer));
commandBuffer[0] = mgmLis3::readCommand(mgmLis3::CTRL_REG1, true);
rawPacket = commandBuffer;
rawPacketLen = mgmLis3::NR_OF_DATA_AND_CFG_REGISTERS + 1;
return returnvalue::OK;
}
case (mgmLis3::READ_TEMPERATURE): {
std::memset(commandBuffer, 0, 3);
commandBuffer[0] = mgmLis3::readCommand(mgmLis3::TEMP_LOWBYTE, true);
rawPacket = commandBuffer;
rawPacketLen = 3;
return returnvalue::OK;
}
case (mgmLis3::IDENTIFY_DEVICE): {
return identifyDevice();
}
case (mgmLis3::TEMP_SENSOR_ENABLE): {
return enableTemperatureSensor(commandData, commandDataLen);
}
case (mgmLis3::SETUP_MGM): {
setupMgm();
return returnvalue::OK;
}
case (mgmLis3::ACCURACY_OP_MODE_SET): {
return setOperatingMode(commandData, commandDataLen);
}
default:
return DeviceHandlerIF::COMMAND_NOT_IMPLEMENTED;
}
return returnvalue::FAILED;
}
ReturnValue_t MgmLIS3MDLHandler::identifyDevice() {
uint32_t size = 2;
commandBuffer[0] = mgmLis3::readCommand(mgmLis3::IDENTIFY_DEVICE_REG_ADDR);
commandBuffer[1] = 0x00;
rawPacket = commandBuffer;
rawPacketLen = size;
return returnvalue::OK;
}
ReturnValue_t MgmLIS3MDLHandler::scanForReply(const uint8_t *start, size_t len,
DeviceCommandId_t *foundId, size_t *foundLen) {
*foundLen = len;
if (len == mgmLis3::NR_OF_DATA_AND_CFG_REGISTERS + 1) {
*foundLen = len;
*foundId = mgmLis3::READ_CONFIG_AND_DATA;
// Check validity by checking config registers
if (start[1] != registers[0] or start[2] != registers[1] or start[3] != registers[2] or
start[4] != registers[3] or start[5] != registers[4]) {
#if FSFW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "MGMHandlerLIS3MDL::scanForReply: Invalid registers!" << std::endl;
#else
sif::printWarning("MGMHandlerLIS3MDL::scanForReply: Invalid registers!\n");
#endif
#endif
return DeviceHandlerIF::INVALID_DATA;
}
if (getMode() == _MODE_START_UP) {
commandExecuted = true;
}
} else if (len == mgmLis3::TEMPERATURE_REPLY_LEN) {
*foundLen = len;
*foundId = mgmLis3::READ_TEMPERATURE;
} else if (len == mgmLis3::SETUP_REPLY_LEN) {
*foundLen = len;
*foundId = mgmLis3::SETUP_MGM;
} else if (len == SINGLE_COMMAND_ANSWER_LEN) {
*foundLen = len;
*foundId = getPendingCommand();
if (*foundId == mgmLis3::IDENTIFY_DEVICE) {
if (start[1] != mgmLis3::DEVICE_ID) {
#if FSFW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "MGMHandlerLIS3MDL::scanForReply: "
"Device identification failed!"
<< std::endl;
#else
sif::printWarning(
"MGMHandlerLIS3MDL::scanForReply: "
"Device identification failed!\n");
#endif
#endif
return DeviceHandlerIF::INVALID_DATA;
}
if (getMode() == _MODE_START_UP) {
commandExecuted = true;
}
}
} else {
return DeviceHandlerIF::INVALID_DATA;
}
/* Data with SPI Interface always has this answer */
if (start[0] == 0b11111111) {
return returnvalue::OK;
} else {
return DeviceHandlerIF::INVALID_DATA;
}
}
ReturnValue_t MgmLIS3MDLHandler::interpretDeviceReply(DeviceCommandId_t id, const uint8_t *packet) {
switch (id) {
case mgmLis3::IDENTIFY_DEVICE: {
break;
}
case mgmLis3::SETUP_MGM: {
break;
}
case mgmLis3::READ_CONFIG_AND_DATA: {
using namespace mgmLis3;
// TODO: Store configuration in new local datasets.
float sensitivityFactor = getSensitivityFactor(getSensitivity(registers[2]));
int16_t mgmMeasurementRawX =
packet[mgmLis3::X_HIGHBYTE_IDX] << 8 | packet[mgmLis3::X_LOWBYTE_IDX];
int16_t mgmMeasurementRawY =
packet[mgmLis3::Y_HIGHBYTE_IDX] << 8 | packet[mgmLis3::Y_LOWBYTE_IDX];
int16_t mgmMeasurementRawZ =
packet[mgmLis3::Z_HIGHBYTE_IDX] << 8 | packet[mgmLis3::Z_LOWBYTE_IDX];
// Target value in microtesla
float mgmX = static_cast<float>(mgmMeasurementRawX) * sensitivityFactor *
mgmLis3::GAUSS_TO_MICROTESLA_FACTOR;
float mgmY = static_cast<float>(mgmMeasurementRawY) * sensitivityFactor *
mgmLis3::GAUSS_TO_MICROTESLA_FACTOR;
float mgmZ = static_cast<float>(mgmMeasurementRawZ) * sensitivityFactor *
mgmLis3::GAUSS_TO_MICROTESLA_FACTOR;
if (periodicPrintout) {
if (debugDivider.checkAndIncrement()) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info << "MGMHandlerLIS3: Magnetic field strength in"
" microtesla:"
<< std::endl;
sif::info << "X: " << mgmX << " uT" << std::endl;
sif::info << "Y: " << mgmY << " uT" << std::endl;
sif::info << "Z: " << mgmZ << " uT" << std::endl;
#else
sif::printInfo("MGMHandlerLIS3: Magnetic field strength in microtesla:\n");
sif::printInfo("X: %f uT\n", mgmX);
sif::printInfo("Y: %f uT\n", mgmY);
sif::printInfo("Z: %f uT\n", mgmZ);
#endif /* FSFW_CPP_OSTREAM_ENABLED == 0 */
}
}
PoolReadGuard readHelper(&dataset);
if (readHelper.getReadResult() == returnvalue::OK) {
if (std::abs(mgmX) > absLimitX or std::abs(mgmY) > absLimitY or
std::abs(mgmZ) > absLimitZ) {
dataset.setIsValid = false;
}
if (std::abs(mgmX) < absLimitX) {
dataset.fieldStrengths[0] = mgmX;
}
if (std::abs(mgmY) < absLimitY) {
dataset.fieldStrengths[1] = mgmY;
}
if (std::abs(mgmZ) < absLimitZ) {
dataset.fieldStrengths[2] = mgmZ;
}
dataset.setIsValid = true;
}
break;
}
case mgmLis3::READ_TEMPERATURE: {
int16_t tempValueRaw = packet[2] << 8 | packet[1];
float tempValue = 25.0 + ((static_cast<float>(tempValueRaw)) / 8.0);
if (periodicPrintout) {
if (debugDivider.check()) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info << "MGMHandlerLIS3: Temperature: " << tempValue << " C" << std::endl;
#else
sif::printInfo("MGMHandlerLIS3: Temperature: %f C\n");
#endif
}
}
ReturnValue_t result = dataset.read();
if (result == returnvalue::OK) {
dataset.temperature = tempValue;
dataset.commit();
}
break;
}
default: {
return DeviceHandlerIF::UNKNOWN_DEVICE_REPLY;
}
}
return returnvalue::OK;
}
ReturnValue_t MgmLIS3MDLHandler::enableTemperatureSensor(const uint8_t *commandData,
size_t commandDataLen) {
if (commandData == nullptr) {
return INVALID_COMMAND_PARAMETER;
}
triggerEvent(CHANGE_OF_SETUP_PARAMETER);
uint32_t size = 2;
commandBuffer[0] = mgmLis3::writeCommand(mgmLis3::CTRL_REG1);
if (commandDataLen > 1) {
return INVALID_NUMBER_OR_LENGTH_OF_PARAMETERS;
}
switch (commandData[0]) {
case (mgmLis3::ON): {
commandBuffer[1] = registers[0] | (1 << 7);
break;
}
case (mgmLis3::OFF): {
commandBuffer[1] = registers[0] & ~(1 << 7);
break;
}
default:
return INVALID_COMMAND_PARAMETER;
}
registers[0] = commandBuffer[1];
rawPacket = commandBuffer;
rawPacketLen = size;
return returnvalue::OK;
}
ReturnValue_t MgmLIS3MDLHandler::setOperatingMode(const uint8_t *commandData,
size_t commandDataLen) {
triggerEvent(CHANGE_OF_SETUP_PARAMETER);
if (commandDataLen != 1) {
return INVALID_NUMBER_OR_LENGTH_OF_PARAMETERS;
}
switch (commandData[0]) {
case mgmLis3::LOW:
registers[0] = (registers[0] & (~(1 << mgmLis3::OM1))) & (~(1 << mgmLis3::OM0));
registers[3] = (registers[3] & (~(1 << mgmLis3::OMZ1))) & (~(1 << mgmLis3::OMZ0));
break;
case mgmLis3::MEDIUM:
registers[0] = (registers[0] & (~(1 << mgmLis3::OM1))) | (1 << mgmLis3::OM0);
registers[3] = (registers[3] & (~(1 << mgmLis3::OMZ1))) | (1 << mgmLis3::OMZ0);
break;
case mgmLis3::HIGH:
registers[0] = (registers[0] | (1 << mgmLis3::OM1)) & (~(1 << mgmLis3::OM0));
registers[3] = (registers[3] | (1 << mgmLis3::OMZ1)) & (~(1 << mgmLis3::OMZ0));
break;
case mgmLis3::ULTRA:
registers[0] = (registers[0] | (1 << mgmLis3::OM1)) | (1 << mgmLis3::OM0);
registers[3] = (registers[3] | (1 << mgmLis3::OMZ1)) | (1 << mgmLis3::OMZ0);
break;
default:
break;
}
return prepareCtrlRegisterWrite();
}
void MgmLIS3MDLHandler::fillCommandAndReplyMap() {
insertInCommandAndReplyMap(mgmLis3::READ_CONFIG_AND_DATA, 1, &dataset);
insertInCommandAndReplyMap(mgmLis3::READ_TEMPERATURE, 1);
insertInCommandAndReplyMap(mgmLis3::SETUP_MGM, 1);
insertInCommandAndReplyMap(mgmLis3::IDENTIFY_DEVICE, 1);
insertInCommandAndReplyMap(mgmLis3::TEMP_SENSOR_ENABLE, 1);
insertInCommandAndReplyMap(mgmLis3::ACCURACY_OP_MODE_SET, 1);
}
void MgmLIS3MDLHandler::setToGoToNormalMode(bool enable) { this->goToNormalMode = enable; }
ReturnValue_t MgmLIS3MDLHandler::prepareCtrlRegisterWrite() {
commandBuffer[0] = mgmLis3::writeCommand(mgmLis3::CTRL_REG1, true);
for (size_t i = 0; i < mgmLis3::NR_OF_CTRL_REGISTERS; i++) {
commandBuffer[i + 1] = registers[i];
}
rawPacket = commandBuffer;
rawPacketLen = mgmLis3::NR_OF_CTRL_REGISTERS + 1;
// We dont have to check if this is working because we just did i
return returnvalue::OK;
}
void MgmLIS3MDLHandler::doTransition(Mode_t modeFrom, Submode_t subModeFrom) {
DeviceHandlerBase::doTransition(modeFrom, subModeFrom);
}
uint32_t MgmLIS3MDLHandler::getTransitionDelayMs(Mode_t from, Mode_t to) { return transitionDelay; }
void MgmLIS3MDLHandler::modeChanged(void) { internalState = InternalState::STATE_NONE; }
/*
ReturnValue_t MgmLIS3MDLHandler::initializeLocalDataPool(localpool::DataPool &localDataPoolMap,
PeriodicHkGenerationHelper &poolManager) {
localDataPoolMap.emplace(mgmLis3::FIELD_STRENGTHS, &mgmXYZ);
localDataPoolMap.emplace(mgmLis3::TEMPERATURE_CELCIUS, &temperature);
poolManager.setPeriodicFrequency(dataset.getSid(), 10'000);
return returnvalue::OK;
}
*/
void MgmLIS3MDLHandler::setAbsoluteLimits(float xLimit, float yLimit, float zLimit) {
this->absLimitX = xLimit;
this->absLimitY = yLimit;
this->absLimitZ = zLimit;
}
void MgmLIS3MDLHandler::enablePeriodicPrintouts(bool enable, uint8_t divider) {
periodicPrintout = enable;
debugDivider.setDivider(divider);
}