fsfw/contrib/fsfw_contrib/etl-20.39.4/test/test_callback_timer_atomic.cpp

907 lines
29 KiB
C++

/******************************************************************************
The MIT License(MIT)
Embedded Template Library.
https://github.com/ETLCPP/etl
https://www.etlcpp.com
Copyright(c) 2021 John Wellbelove
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files(the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and / or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions :
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
******************************************************************************/
#include "unit_test_framework.h"
#include "etl/callback_timer_atomic.h"
#include "etl/delegate.h"
#if ETL_HAS_ATOMIC
#include <iostream>
#include <vector>
#include <thread>
#include <chrono>
#include <atomic>
#if defined(ETL_COMPILER_MICROSOFT)
#include <Windows.h>
#endif
#define REALTIME_TEST 0
namespace
{
uint64_t ticks = 0ULL;
//***************************************************************************
// Class callback via etl::function
//***************************************************************************
class Object
{
public:
Object()
: p_controller(nullptr)
{
}
void callback1()
{
tick_list.push_back(ticks);
}
void callback2()
{
tick_list.push_back(ticks);
p_controller->start(2);
p_controller->start(1);
}
void set_controller(etl::callback_timer_atomic<3, std::atomic_uint32_t>& controller)
{
p_controller = &controller;
}
std::vector<uint64_t> tick_list;
etl::callback_timer_atomic<3, std::atomic_uint32_t>* p_controller;
};
using callback_type = etl::icallback_timer_atomic<std::atomic_uint32_t>::callback_type;
Object object;
callback_type member_callback1 = callback_type::create<Object, object, &Object::callback1>();
callback_type member_callback2 = callback_type::create<Object, object, &Object::callback2>();
//***************************************************************************
// Free function callback via etl::function
//***************************************************************************
std::vector<uint64_t> free_tick_list1;
void free_callback1()
{
free_tick_list1.push_back(ticks);
}
callback_type free_function_callback1 = callback_type::create<free_callback1>();
//***************************************************************************
// Free function callback via function pointer
//***************************************************************************
std::vector<uint64_t> free_tick_list2;
void free_callback2()
{
free_tick_list2.push_back(ticks);
}
callback_type free_function_callback2 = callback_type::create<free_callback2>();
SUITE(test_callback_timer_atomic)
{
//*************************************************************************
TEST(callback_timer_atomic_too_many_timers)
{
etl::callback_timer_atomic<2, std::atomic_uint32_t> timer_controller;
etl::timer::id::type id1 = timer_controller.register_timer(member_callback1, 37, etl::timer::mode::Single_Shot);
etl::timer::id::type id2 = timer_controller.register_timer(free_function_callback1, 23, etl::timer::mode::Single_Shot);
etl::timer::id::type id3 = timer_controller.register_timer(free_function_callback2, 11, etl::timer::mode::Single_Shot);
CHECK(id1 != etl::timer::id::NO_TIMER);
CHECK(id2 != etl::timer::id::NO_TIMER);
CHECK(id3 == etl::timer::id::NO_TIMER);
timer_controller.clear();
id3 = timer_controller.register_timer(free_function_callback2, 11, etl::timer::mode::Single_Shot);
CHECK(id3 != etl::timer::id::NO_TIMER);
}
//*************************************************************************
TEST(callback_timer_atomic_one_shot)
{
etl::callback_timer_atomic<4, std::atomic_uint32_t> timer_controller;
etl::timer::id::type id1 = timer_controller.register_timer(member_callback1, 37, etl::timer::mode::Single_Shot);
etl::timer::id::type id2 = timer_controller.register_timer(free_function_callback1, 23, etl::timer::mode::Single_Shot);
etl::timer::id::type id3 = timer_controller.register_timer(free_function_callback2, 11, etl::timer::mode::Single_Shot);
object.tick_list.clear();
free_tick_list1.clear();
free_tick_list2.clear();
timer_controller.start(id1);
timer_controller.start(id3);
timer_controller.start(id2);
timer_controller.enable(true);
ticks = 0;
const uint32_t step = 1UL;
while (ticks <= 100U)
{
ticks += step;
timer_controller.tick(step);
}
std::vector<uint64_t> compare1 = { 37 };
std::vector<uint64_t> compare2 = { 23 };
std::vector<uint64_t> compare3 = { 11 };
CHECK(object.tick_list.size() != 0);
CHECK(free_tick_list1.size() != 0);
CHECK(free_tick_list2.size() != 0);
CHECK_ARRAY_EQUAL(compare1.data(), object.tick_list.data(), compare1.size());
CHECK_ARRAY_EQUAL(compare2.data(), free_tick_list1.data(), compare2.size());
CHECK_ARRAY_EQUAL(compare3.data(), free_tick_list2.data(), compare3.size());
}
//*************************************************************************
TEST(message_timer_one_shot_after_timeout)
{
etl::callback_timer_atomic<1, std::atomic_uint32_t> timer_controller;
etl::timer::id::type id1 = timer_controller.register_timer(member_callback1, 37, etl::timer::mode::Single_Shot);
object.tick_list.clear();
timer_controller.start(id1);
timer_controller.enable(true);
ticks = 0;
const uint32_t step = 1U;
while (ticks <= 100U)
{
ticks += step;
timer_controller.tick(step);
}
// Timer should have timed out.
CHECK(timer_controller.set_period(id1, 50));
timer_controller.start(id1);
object.tick_list.clear();
ticks = 0;
while (ticks <= 100U)
{
ticks += step;
timer_controller.tick(step);
}
// Timer should have timed out.
CHECK_EQUAL(50U, *object.tick_list.data());
CHECK(timer_controller.unregister_timer(id1));
CHECK(!timer_controller.unregister_timer(id1));
CHECK(!timer_controller.start(id1));
CHECK(!timer_controller.stop(id1));
}
//*************************************************************************
TEST(callback_timer_atomic_repeating)
{
etl::callback_timer_atomic<3, std::atomic_uint32_t> timer_controller;
etl::timer::id::type id1 = timer_controller.register_timer(member_callback1, 37, etl::timer::mode::Repeating);
etl::timer::id::type id2 = timer_controller.register_timer(free_function_callback1, 23, etl::timer::mode::Repeating);
etl::timer::id::type id3 = timer_controller.register_timer(free_function_callback2, 11, etl::timer::mode::Repeating);
object.tick_list.clear();
free_tick_list1.clear();
free_tick_list2.clear();
timer_controller.start(id1);
timer_controller.start(id3);
timer_controller.start(id2);
timer_controller.enable(true);
ticks = 0;
const uint32_t step = 1U;
while (ticks <= 100U)
{
ticks += step;
timer_controller.tick(step);
}
std::vector<uint64_t> compare1 = { 37, 74 };
std::vector<uint64_t> compare2 = { 23, 46, 69, 92 };
std::vector<uint64_t> compare3 = { 11, 22, 33, 44, 55, 66, 77, 88, 99 };
CHECK(object.tick_list.size() != 0);
CHECK(free_tick_list1.size() != 0);
CHECK(free_tick_list2.size() != 0);
CHECK_ARRAY_EQUAL(compare1.data(), object.tick_list.data(), compare1.size());
CHECK_ARRAY_EQUAL(compare2.data(), free_tick_list1.data(), compare2.size());
CHECK_ARRAY_EQUAL(compare3.data(), free_tick_list2.data(), compare3.size());
}
//*************************************************************************
TEST(callback_timer_atomic_repeating_bigger_step)
{
etl::callback_timer_atomic<3, std::atomic_uint32_t> timer_controller;
etl::timer::id::type id1 = timer_controller.register_timer(member_callback1, 37, etl::timer::mode::Repeating);
etl::timer::id::type id2 = timer_controller.register_timer(free_function_callback1, 23, etl::timer::mode::Repeating);
etl::timer::id::type id3 = timer_controller.register_timer(free_function_callback2, 11, etl::timer::mode::Repeating);
object.tick_list.clear();
free_tick_list1.clear();
free_tick_list2.clear();
timer_controller.start(id1);
timer_controller.start(id3);
timer_controller.start(id2);
CHECK(!timer_controller.is_running());
timer_controller.enable(true);
CHECK(timer_controller.is_running());
ticks = 0;
const uint32_t step = 5U;
while (ticks <= 100U)
{
ticks += step;
timer_controller.tick(step);
}
std::vector<uint64_t> compare1 = { 40, 75 };
std::vector<uint64_t> compare2 = { 25, 50, 70, 95 };
std::vector<uint64_t> compare3 = { 15, 25, 35, 45, 55, 70, 80, 90, 100 };
CHECK(object.tick_list.size() != 0);
CHECK(free_tick_list1.size() != 0);
CHECK(free_tick_list2.size() != 0);
CHECK_ARRAY_EQUAL(compare1.data(), object.tick_list.data(), compare1.size());
CHECK_ARRAY_EQUAL(compare2.data(), free_tick_list1.data(), compare2.size());
CHECK_ARRAY_EQUAL(compare3.data(), free_tick_list2.data(), compare3.size());
}
//*************************************************************************
TEST(callback_timer_atomic_repeating_stop_start)
{
etl::callback_timer_atomic<3, std::atomic_uint32_t> timer_controller;
etl::timer::id::type id1 = timer_controller.register_timer(member_callback1, 37, etl::timer::mode::Repeating);
etl::timer::id::type id2 = timer_controller.register_timer(free_function_callback1, 23, etl::timer::mode::Repeating);
etl::timer::id::type id3 = timer_controller.register_timer(free_function_callback2, 11, etl::timer::mode::Repeating);
object.tick_list.clear();
free_tick_list1.clear();
free_tick_list2.clear();
timer_controller.start(id3);
timer_controller.start(id2);
timer_controller.enable(true);
ticks = 0;
const uint32_t step = 1U;
while (ticks <= 100U)
{
if (ticks == 40)
{
timer_controller.start(id1);
timer_controller.stop(id2);
}
if (ticks == 80)
{
timer_controller.stop(id1);
timer_controller.start(id2);
}
ticks += step;
timer_controller.tick(step);
}
std::vector<uint64_t> compare1 = { 77 };
std::vector<uint64_t> compare2 = { 23 };
std::vector<uint64_t> compare3 = { 11, 22, 33, 44, 55, 66, 77, 88, 99 };
CHECK(object.tick_list.size() != 0);
CHECK(free_tick_list1.size() != 0);
CHECK(free_tick_list2.size() != 0);
CHECK_ARRAY_EQUAL(compare1.data(), object.tick_list.data(), compare1.size());
CHECK_ARRAY_EQUAL(compare2.data(), free_tick_list1.data(), compare2.size());
CHECK_ARRAY_EQUAL(compare3.data(), free_tick_list2.data(), compare3.size());
}
//*************************************************************************
TEST(callback_timer_atomic_timer_starts_timer_small_step)
{
etl::callback_timer_atomic<3, std::atomic_uint32_t> timer_controller;
etl::timer::id::type id1 = timer_controller.register_timer(member_callback2, 100, etl::timer::mode::Single_Shot);
etl::timer::id::type id2 = timer_controller.register_timer(member_callback1, 10, etl::timer::mode::Single_Shot);
etl::timer::id::type id3 = timer_controller.register_timer(member_callback1, 22, etl::timer::mode::Single_Shot);
(void)id2;
(void)id3;
object.set_controller(timer_controller);
object.tick_list.clear();
timer_controller.start(id1);
timer_controller.enable(true);
ticks = 0;
const uint32_t step = 1U;
while (ticks <= 200U)
{
ticks += step;
timer_controller.tick(step);
}
std::vector<uint64_t> compare1 = { 100, 110, 122 };
CHECK(object.tick_list.size() != 0);
CHECK_ARRAY_EQUAL(compare1.data(), object.tick_list.data(), compare1.size());
}
//*************************************************************************
TEST(callback_timer_atomic_timer_starts_timer_big_step)
{
etl::callback_timer_atomic<3, std::atomic_uint32_t> timer_controller;
etl::timer::id::type id1 = timer_controller.register_timer(member_callback2, 100, etl::timer::mode::Single_Shot);
etl::timer::id::type id2 = timer_controller.register_timer(member_callback1, 10, etl::timer::mode::Single_Shot);
etl::timer::id::type id3 = timer_controller.register_timer(member_callback1, 22, etl::timer::mode::Single_Shot);
(void)id2;
(void)id3;
object.set_controller(timer_controller);
object.tick_list.clear();
timer_controller.start(id1);
timer_controller.enable(true);
ticks = 0;
const uint32_t step = 3;
while (ticks <= 200U)
{
ticks += step;
timer_controller.tick(step);
}
std::vector<uint64_t> compare1 = { 102, 111, 123 };
CHECK(object.tick_list.size() != 0);
CHECK_ARRAY_EQUAL(compare1.data(), object.tick_list.data(), compare1.size());
}
//*************************************************************************
TEST(callback_timer_atomic_repeating_register_unregister)
{
etl::callback_timer_atomic<3, std::atomic_uint32_t> timer_controller;
etl::timer::id::type id1;
etl::timer::id::type id2 = timer_controller.register_timer(free_function_callback1, 23, etl::timer::mode::Repeating);
etl::timer::id::type id3 = timer_controller.register_timer(free_function_callback2, 11, etl::timer::mode::Repeating);
object.tick_list.clear();
free_tick_list1.clear();
free_tick_list2.clear();
timer_controller.start(id3);
timer_controller.start(id2);
timer_controller.enable(true);
ticks = 0;
const uint32_t step = 1U;
while (ticks <= 100U)
{
if (ticks == 40)
{
timer_controller.unregister_timer(id2);
id1 = timer_controller.register_timer(member_callback1, 37, etl::timer::mode::Repeating);
timer_controller.start(id1);
}
ticks += step;
timer_controller.tick(step);
}
std::vector<uint64_t> compare1 = { 77 };
std::vector<uint64_t> compare2 = { 23 };
std::vector<uint64_t> compare3 = { 11, 22, 33, 44, 55, 66, 77, 88, 99 };
CHECK(object.tick_list.size() != 0);
CHECK(free_tick_list1.size() != 0);
CHECK(free_tick_list2.size() != 0);
CHECK_ARRAY_EQUAL(compare1.data(), object.tick_list.data(), compare1.size());
CHECK_ARRAY_EQUAL(compare2.data(), free_tick_list1.data(), compare2.size());
CHECK_ARRAY_EQUAL(compare3.data(), free_tick_list2.data(), compare3.size());
}
//*************************************************************************
TEST(callback_timer_atomic_repeating_clear)
{
etl::callback_timer_atomic<3, std::atomic_uint32_t> timer_controller;
etl::timer::id::type id1 = timer_controller.register_timer(member_callback1, 37, etl::timer::mode::Repeating);
etl::timer::id::type id2 = timer_controller.register_timer(free_function_callback1, 23, etl::timer::mode::Repeating);
etl::timer::id::type id3 = timer_controller.register_timer(free_function_callback2, 11, etl::timer::mode::Repeating);
object.tick_list.clear();
free_tick_list1.clear();
free_tick_list2.clear();
timer_controller.start(id1);
timer_controller.start(id3);
timer_controller.start(id2);
timer_controller.enable(true);
ticks = 0;
const uint32_t step = 1U;
while (ticks <= 100U)
{
ticks += step;
if (ticks == 40)
{
timer_controller.clear();
}
timer_controller.tick(step);
}
std::vector<uint64_t> compare1 = { 37 };
std::vector<uint64_t> compare2 = { 23 };
std::vector<uint64_t> compare3 = { 11, 22, 33 };
CHECK(object.tick_list.size() != 0);
CHECK(free_tick_list1.size() != 0);
CHECK(free_tick_list2.size() != 0);
CHECK_ARRAY_EQUAL(compare1.data(), object.tick_list.data(), compare1.size());
CHECK_ARRAY_EQUAL(compare2.data(), free_tick_list1.data(), compare2.size());
CHECK_ARRAY_EQUAL(compare3.data(), free_tick_list2.data(), compare3.size());
}
//*************************************************************************
TEST(callback_timer_atomic_delayed_immediate)
{
etl::callback_timer_atomic<3, std::atomic_uint32_t> timer_controller;
etl::timer::id::type id1 = timer_controller.register_timer(member_callback1, 37, etl::timer::mode::Repeating);
etl::timer::id::type id2 = timer_controller.register_timer(free_function_callback1, 23, etl::timer::mode::Repeating);
etl::timer::id::type id3 = timer_controller.register_timer(free_function_callback2, 11, etl::timer::mode::Repeating);
object.tick_list.clear();
free_tick_list1.clear();
free_tick_list2.clear();
timer_controller.enable(true);
ticks = 5;
timer_controller.tick(uint32_t(ticks));
timer_controller.start(id1, etl::timer::start::Immediate);
timer_controller.start(id2, etl::timer::start::Immediate);
timer_controller.start(id3, etl::timer::start::Delayed);
const uint32_t step = 1U;
while (ticks <= 100U)
{
ticks += step;
timer_controller.tick(step);
}
std::vector<uint64_t> compare1 = { 6, 42, 79 };
std::vector<uint64_t> compare2 = { 6, 28, 51, 74, 97 };
std::vector<uint64_t> compare3 = { 16, 27, 38, 49, 60, 71, 82, 93 };
CHECK(object.tick_list.size() != 0);
CHECK(free_tick_list1.size() != 0);
CHECK(free_tick_list2.size() != 0);
CHECK_ARRAY_EQUAL(compare1.data(), object.tick_list.data(), compare1.size());
CHECK_ARRAY_EQUAL(compare2.data(), free_tick_list1.data(), compare2.size());
CHECK_ARRAY_EQUAL(compare3.data(), free_tick_list2.data(), compare3.size());
}
//*************************************************************************
TEST(callback_timer_atomic_one_shot_big_step_short_delay_insert)
{
etl::callback_timer_atomic<3, std::atomic_uint32_t> timer_controller;
etl::timer::id::type id1 = timer_controller.register_timer(free_function_callback1, 15, etl::timer::mode::Single_Shot);
etl::timer::id::type id2 = timer_controller.register_timer(free_function_callback2, 5, etl::timer::mode::Repeating);
free_tick_list1.clear();
free_tick_list2.clear();
timer_controller.start(id1);
timer_controller.start(id2);
timer_controller.enable(true);
ticks = 0;
const uint32_t step = 11U;
ticks += step;
timer_controller.tick(step);
ticks += step;
timer_controller.tick(step);
std::vector<uint64_t> compare1 = { 22 };
std::vector<uint64_t> compare2 = { 11, 11, 22, 22 };
CHECK(free_tick_list1.size() != 0);
CHECK(free_tick_list2.size() != 0);
CHECK_ARRAY_EQUAL(compare1.data(), free_tick_list1.data(), compare1.size());
CHECK_ARRAY_EQUAL(compare2.data(), free_tick_list2.data(), compare2.size());
}
//*************************************************************************
TEST(callback_timer_atomic_one_shot_empty_list_huge_tick_before_insert)
{
etl::callback_timer_atomic<3, std::atomic_uint32_t> timer_controller;
etl::timer::id::type id1 = timer_controller.register_timer(free_function_callback1, 5, etl::timer::mode::Single_Shot);
free_tick_list1.clear();
timer_controller.start(id1);
timer_controller.enable(true);
ticks = 0;
const uint32_t step = 5U;
for (uint32_t i = 0U; i < step; ++i)
{
++ticks;
timer_controller.tick(1);
}
// Huge tick count.
timer_controller.tick(UINT32_MAX - step + 1);
timer_controller.start(id1);
for (uint32_t i = 0U; i < step; ++i)
{
++ticks;
timer_controller.tick(1);
}
std::vector<uint64_t> compare1 = { 5, 10 };
CHECK(free_tick_list1.size() != 0);
CHECK_ARRAY_EQUAL(compare1.data(), free_tick_list1.data(), compare1.size());
}
//*************************************************************************
TEST(message_timer_time_to_next)
{
etl::callback_timer_atomic<3, std::atomic_uint32_t> timer_controller;
etl::timer::id::type id1 = timer_controller.register_timer(member_callback1, 37, etl::timer::mode::Repeating);
etl::timer::id::type id2 = timer_controller.register_timer(free_function_callback1, 23, etl::timer::mode::Repeating);
etl::timer::id::type id3 = timer_controller.register_timer(free_function_callback2, 11, etl::timer::mode::Repeating);
timer_controller.start(id1);
timer_controller.start(id3);
timer_controller.start(id2);
timer_controller.enable(true);
CHECK_EQUAL(11, timer_controller.time_to_next());
timer_controller.tick(7);
CHECK_EQUAL(4, timer_controller.time_to_next());
timer_controller.tick(7);
CHECK_EQUAL(8, timer_controller.time_to_next());
timer_controller.tick(7);
CHECK_EQUAL(1, timer_controller.time_to_next());
timer_controller.tick(7);
CHECK_EQUAL(5, timer_controller.time_to_next());
timer_controller.tick(7);
CHECK_EQUAL(2, timer_controller.time_to_next());
timer_controller.tick(7);
CHECK_EQUAL(2, timer_controller.time_to_next());
timer_controller.tick(7);
CHECK_EQUAL(6, timer_controller.time_to_next());
timer_controller.tick(7);
CHECK_EQUAL(10, timer_controller.time_to_next());
timer_controller.tick(7);
CHECK_EQUAL(3, timer_controller.time_to_next());
timer_controller.tick(7);
CHECK_EQUAL(4, timer_controller.time_to_next());
}
//*************************************************************************
TEST(message_timer_time_to_next_with_has_active_timer)
{
etl::callback_timer_atomic<3, std::atomic_uint32_t> timer_controller;
etl::timer::id::type id1 = timer_controller.register_timer(member_callback1, 37, etl::timer::mode::Single_Shot);
etl::timer::id::type id2 = timer_controller.register_timer(free_function_callback1, 23, etl::timer::mode::Single_Shot);
etl::timer::id::type id3 = timer_controller.register_timer(free_function_callback2, 11, etl::timer::mode::Single_Shot);
timer_controller.start(id1);
timer_controller.start(id3);
timer_controller.start(id2);
timer_controller.enable(true);
timer_controller.tick(11);
CHECK_EQUAL(12, timer_controller.time_to_next());
CHECK_TRUE(timer_controller.has_active_timer());
timer_controller.tick(23);
CHECK_EQUAL(3, timer_controller.time_to_next());
CHECK_TRUE(timer_controller.has_active_timer());
timer_controller.tick(2);
CHECK_EQUAL(1, timer_controller.time_to_next());
CHECK_TRUE(timer_controller.has_active_timer());
timer_controller.tick(1);
CHECK_EQUAL(static_cast<etl::timer::interval::type>(etl::timer::interval::No_Active_Interval), timer_controller.time_to_next());
CHECK_FALSE(timer_controller.has_active_timer());
}
//*************************************************************************
class test_object
{
public:
void call()
{
++called;
}
size_t called = 0UL;
};
TEST(callback_timer_atomic_call_etl_delegate)
{
test_object test_obj;
callback_type delegate_callback = callback_type::create<test_object, &test_object::call>(test_obj);
etl::callback_timer_atomic<1, std::atomic_uint32_t> timer_controller;
timer_controller.enable(true);
etl::timer::id::type id = timer_controller.register_timer(delegate_callback, 5, etl::timer::mode::Single_Shot);
timer_controller.start(id);
timer_controller.tick(4);
CHECK(test_obj.called == 0);
timer_controller.tick(2);
CHECK(test_obj.called == 1);
}
//*************************************************************************
TEST(callback_timer_is_active)
{
etl::callback_timer_atomic<3, std::atomic_uint32_t> timer_controller;
etl::timer::id::type id1 = timer_controller.register_timer(member_callback1, 37, etl::timer::mode::Single_Shot);
etl::timer::id::type id2 = timer_controller.register_timer(free_function_callback1, 23, etl::timer::mode::Single_Shot);
etl::timer::id::type id3 = timer_controller.register_timer(free_function_callback2, 11, etl::timer::mode::Single_Shot);
timer_controller.start(id1);
timer_controller.start(id3);
timer_controller.start(id2);
timer_controller.enable(true);
CHECK_TRUE(timer_controller.is_active(id1));
CHECK_TRUE(timer_controller.is_active(id2));
CHECK_TRUE(timer_controller.is_active(id3));
timer_controller.tick(11);
CHECK_TRUE(timer_controller.is_active(id1));
CHECK_TRUE(timer_controller.is_active(id2));
CHECK_FALSE(timer_controller.is_active(id3));
timer_controller.tick(23 - 11);
CHECK_TRUE(timer_controller.is_active(id1));
CHECK_FALSE(timer_controller.is_active(id2));
CHECK_FALSE(timer_controller.is_active(id3));
timer_controller.tick(37 - 23);
CHECK_FALSE(timer_controller.is_active(id1));
CHECK_FALSE(timer_controller.is_active(id2));
CHECK_FALSE(timer_controller.is_active(id3));
}
//*************************************************************************
#if REALTIME_TEST
#if defined(ETL_TARGET_OS_WINDOWS) // Only Windows priority is currently supported
#define RAISE_THREAD_PRIORITY SetThreadPriority(GetCurrentThread(), THREAD_PRIORITY_HIGHEST)
#define FIX_PROCESSOR_AFFINITY SetThreadAffinityMask(GetCurrentThread(), 1);
#else
#define RAISE_THREAD_PRIORITY
#define FIX_PROCESSOR_AFFINITY
#endif
etl::callback_timer_atomic<3, std::atomic_uint32_t> controller;
//*********************************
void timer_event()
{
const uint32_t TICK = 1U;
uint32_t tick = TICK;
ticks = 1U;
RAISE_THREAD_PRIORITY;
FIX_PROCESSOR_AFFINITY;
while (ticks <= 1000U)
{
std::this_thread::sleep_for(std::chrono::milliseconds(1));
if (controller.tick(tick))
{
tick = TICK;
}
else
{
tick += TICK;
}
++ticks;
}
}
TEST(callback_timer_atomic_threads)
{
FIX_PROCESSOR_AFFINITY;
etl::timer::id::type id1 = controller.register_timer(member_callback1, 400, etl::timer::mode::Single_Shot);
etl::timer::id::type id2 = controller.register_timer(free_function_callback1, 100, etl::timer::mode::Repeating);
etl::timer::id::type id3 = controller.register_timer(free_function_callback2, 10, etl::timer::mode::Repeating);
object.tick_list.clear();
free_tick_list1.clear();
free_tick_list2.clear();
controller.start(id1);
controller.start(id2);
//controller.start(id3);
controller.enable(true);
std::thread t1(timer_event);
bool restart_1 = true;
while (ticks <= 1000U)
{
if ((ticks > 200U) && (ticks < 500U))
{
controller.stop(id3);
}
if ((ticks > 600U) && (ticks < 800U))
{
controller.start(id3);
}
if ((ticks > 500U) && restart_1)
{
controller.start(id1);
restart_1 = false;
}
std::this_thread::sleep_for(std::chrono::milliseconds(1));
}
//Join the thread with the main thread
t1.join();
CHECK_EQUAL(2U, object.tick_list.size());
CHECK_EQUAL(10U, free_tick_list1.size());
CHECK(free_tick_list2.size() < 65U);
//std::vector<uint64_t> compare1 = { 400, 900 };
//std::vector<uint64_t> compare2 = { 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000 };
CHECK(object.tick_list.size() != 0);
CHECK(free_tick_list1.size() != 0);
CHECK(free_tick_list2.size() != 0);
//CHECK_ARRAY_EQUAL(compare1.data(), object.tick_list.data(), min(compare1.size(), object.tick_list.size()));
//CHECK_ARRAY_EQUAL(compare2.data(), free_tick_list1.data(), min(compare2.size(), free_tick_list1.size()));
}
#endif
};
}
#endif