fsfw/src/fsfw/coordinates/CoordinateTransformations.cpp

279 lines
11 KiB
C++

#include "fsfw/coordinates/CoordinateTransformations.h"
#include <cmath>
#include <cstddef>
#include "fsfw/globalfunctions/constants.h"
#include "fsfw/globalfunctions/math/MatrixOperations.h"
#include "fsfw/globalfunctions/math/VectorOperations.h"
#include "fsfw/globalfunctions/sign.h"
#include "fsfw/serviceinterface.h"
void CoordinateTransformations::positionEcfToEci(const double* ecfPosition, double* eciPosition,
timeval* timeUTC) {
ecfToEci(ecfPosition, eciPosition, NULL, timeUTC);
}
void CoordinateTransformations::velocityEcfToEci(const double* ecfVelocity,
const double* ecfPosition, double* eciVelocity,
timeval* timeUTC) {
ecfToEci(ecfVelocity, eciVelocity, ecfPosition, timeUTC);
}
void CoordinateTransformations::positionEciToEcf(const double* eciCoordinates,
double* ecfCoordinates, timeval* timeUTC) {
eciToEcf(eciCoordinates, ecfCoordinates, NULL, timeUTC);
};
void CoordinateTransformations::velocityEciToEcf(const double* eciVelocity,
const double* eciPosition, double* ecfVelocity,
timeval* timeUTC) {
eciToEcf(eciVelocity, ecfVelocity, eciPosition, timeUTC);
}
double CoordinateTransformations::getEarthRotationAngle(timeval timeUTC) {
double jD2000UTC;
Clock::convertTimevalToJD2000(timeUTC, &jD2000UTC);
double TTt2000 = getJuleanCenturiesTT(timeUTC);
double theta = 2 * Math::PI * (0.779057273264 + 1.00273781191135448 * jD2000UTC);
// Correct theta according to IAU 2000 precession-nutation model
theta = theta + 7.03270725817493E-008 + 0.0223603701 * TTt2000 +
6.77128219501896E-006 * TTt2000 * TTt2000 +
4.5300990362875E-010 * TTt2000 * TTt2000 * TTt2000 +
9.12419347848147E-011 * TTt2000 * TTt2000 * TTt2000 * TTt2000;
return theta;
}
void CoordinateTransformations::getEarthRotationMatrix(timeval timeUTC, double matrix[][3]) {
double theta = getEarthRotationAngle(timeUTC);
matrix[0][0] = cos(theta);
matrix[0][1] = sin(theta);
matrix[0][2] = 0;
matrix[1][0] = -sin(theta);
matrix[1][1] = cos(theta);
matrix[1][2] = 0;
matrix[2][0] = 0;
matrix[2][1] = 0;
matrix[2][2] = 1;
}
void CoordinateTransformations::ecfToEci(const double* ecfCoordinates, double* eciCoordinates,
const double* ecfPositionIfCoordinatesAreVelocity,
timeval* timeUTCin) {
timeval timeUTC;
if (timeUTCin != NULL) {
timeUTC = *timeUTCin;
} else {
Clock::getClock_timeval(&timeUTC);
}
double Tfi[3][3];
double Tif[3][3];
getTransMatrixECITOECF(timeUTC, Tfi);
MatrixOperations<double>::transpose(Tfi[0], Tif[0], 3);
MatrixOperations<double>::multiply(Tif[0], ecfCoordinates, eciCoordinates, 3, 3, 1);
if (ecfPositionIfCoordinatesAreVelocity != NULL) {
double Tdotfi[3][3];
double Tdotif[3][3];
double Trot[3][3] = {{0, Earth::OMEGA, 0}, {0 - Earth::OMEGA, 0, 0}, {0, 0, 0}};
MatrixOperations<double>::multiply(Trot[0], Tfi[0], Tdotfi[0], 3, 3, 3);
MatrixOperations<double>::transpose(Tdotfi[0], Tdotif[0], 3);
double velocityCorrection[3];
MatrixOperations<double>::multiply(Tdotif[0], ecfPositionIfCoordinatesAreVelocity,
velocityCorrection, 3, 3, 1);
VectorOperations<double>::add(velocityCorrection, eciCoordinates, eciCoordinates, 3);
}
}
double CoordinateTransformations::getJuleanCenturiesTT(timeval timeUTC) {
timeval timeTT;
ReturnValue_t result = Clock::convertUTCToTT(timeUTC, &timeTT);
if (result != returnvalue::OK) {
// i think it is better to continue here than to abort
timeTT = timeUTC;
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "CoordinateTransformations::Conversion from UTC to TT failed. Continuing "
"calculations with UTC."
<< std::endl;
#endif
}
double jD2000TT;
Clock::convertTimevalToJD2000(timeTT, &jD2000TT);
return jD2000TT / 36525.;
}
void CoordinateTransformations::eciToEcf(const double* eciCoordinates, double* ecfCoordinates,
const double* eciPositionIfCoordinatesAreVelocity,
timeval* timeUTCin) {
timeval timeUTC;
if (timeUTCin != NULL) {
timeUTC = *timeUTCin;
} else {
Clock::getClock_timeval(&timeUTC);
}
double Tfi[3][3];
getTransMatrixECITOECF(timeUTC, Tfi);
MatrixOperations<double>::multiply(Tfi[0], eciCoordinates, ecfCoordinates, 3, 3, 1);
if (eciPositionIfCoordinatesAreVelocity != NULL) {
double Tdotfi[3][3];
double Trot[3][3] = {{0, Earth::OMEGA, 0}, {0 - Earth::OMEGA, 0, 0}, {0, 0, 0}};
MatrixOperations<double>::multiply(Trot[0], Tfi[0], Tdotfi[0], 3, 3, 3);
double velocityCorrection[3];
MatrixOperations<double>::multiply(Tdotfi[0], eciPositionIfCoordinatesAreVelocity,
velocityCorrection, 3, 3, 1);
VectorOperations<double>::add(ecfCoordinates, velocityCorrection, ecfCoordinates, 3);
}
};
void CoordinateTransformations::getTransMatrixECITOECF(timeval timeUTC, double Tfi[3][3]) {
double TTt2000 = getJuleanCenturiesTT(timeUTC);
//////////////////////////////////////////////////////////
// Calculate Precession Matrix
double zeta = 0.0111808609 * TTt2000 + 1.46355554053347E-006 * TTt2000 * TTt2000 +
8.72567663260943E-008 * TTt2000 * TTt2000 * TTt2000;
double theta_p = 0.0097171735 * TTt2000 - 2.06845757045384E-006 * TTt2000 * TTt2000 -
2.02812107218552E-007 * TTt2000 * TTt2000 * TTt2000;
double z =
zeta + 3.8436028638364E-006 * TTt2000 * TTt2000 + 0.000000001 * TTt2000 * TTt2000 * TTt2000;
double mPrecession[3][3];
mPrecession[0][0] = -sin(z) * sin(zeta) + cos(z) * cos(theta_p) * cos(zeta);
mPrecession[1][0] = cos(z) * sin(zeta) + sin(z) * cos(theta_p) * cos(zeta);
mPrecession[2][0] = sin(theta_p) * cos(zeta);
mPrecession[0][1] = -sin(z) * cos(zeta) - cos(z) * cos(theta_p) * sin(zeta);
mPrecession[1][1] = cos(z) * cos(zeta) - sin(z) * cos(theta_p) * sin(zeta);
mPrecession[2][1] = -sin(theta_p) * sin(zeta);
mPrecession[0][2] = -cos(z) * sin(theta_p);
mPrecession[1][2] = -sin(z) * sin(theta_p);
mPrecession[2][2] = cos(theta_p);
//////////////////////////////////////////////////////////
// Calculate Nutation Matrix
double omega_moon = 2.1824386244 - 33.7570459338 * TTt2000 +
3.61428599267159E-005 * TTt2000 * TTt2000 +
3.87850944887629E-008 * TTt2000 * TTt2000 * TTt2000;
double deltaPsi = -0.000083388 * sin(omega_moon);
double deltaEpsilon = 4.46174030725106E-005 * cos(omega_moon);
double epsilon = 0.4090928042 - 0.0002269655 * TTt2000 -
2.86040071854626E-009 * TTt2000 * TTt2000 +
8.78967203851589E-009 * TTt2000 * TTt2000 * TTt2000;
double mNutation[3][3];
mNutation[0][0] = cos(deltaPsi);
mNutation[1][0] = cos(epsilon + deltaEpsilon) * sin(deltaPsi);
mNutation[2][0] = sin(epsilon + deltaEpsilon) * sin(deltaPsi);
mNutation[0][1] = -cos(epsilon) * sin(deltaPsi);
mNutation[1][1] = cos(epsilon) * cos(epsilon + deltaEpsilon) * cos(deltaPsi) +
sin(epsilon) * sin(epsilon + deltaEpsilon);
mNutation[2][1] = cos(epsilon) * sin(epsilon + deltaEpsilon) * cos(deltaPsi) -
sin(epsilon) * cos(epsilon + deltaEpsilon);
mNutation[0][2] = -sin(epsilon) * sin(deltaPsi);
mNutation[1][2] = sin(epsilon) * cos(epsilon + deltaEpsilon) * cos(deltaPsi) -
cos(epsilon) * sin(epsilon + deltaEpsilon);
mNutation[2][2] = sin(epsilon) * sin(epsilon + deltaEpsilon) * cos(deltaPsi) +
cos(epsilon) * cos(epsilon + deltaEpsilon);
//////////////////////////////////////////////////////////
// Calculate Earth rotation matrix
// calculate theta
double mTheta[3][3];
double Ttemp[3][3];
getEarthRotationMatrix(timeUTC, mTheta);
// polar motion is neglected
MatrixOperations<double>::multiply(mNutation[0], mPrecession[0], Ttemp[0], 3, 3, 3);
MatrixOperations<double>::multiply(mTheta[0], Ttemp[0], Tfi[0], 3, 3, 3);
};
void CoordinateTransformations::cartesianFromLatLongAlt(const double lat, const double longi,
const double alt, double* cartesianOutput) {
/* @brief: cartesianFromLatLongAlt() - calculates cartesian coordinates in ECEF from latitude,
* longitude and altitude
* @param: lat geodetic latitude [rad]
* longi longitude [rad]
* alt altitude [m]
* cartesianOutput Cartesian Coordinates in ECEF (3x1)
* @source: Fundamentals of Spacecraft Attitude Determination and Control, P.34ff
* Landis Markley and John L. Crassidis*/
double radiusPolar = 6356752.314;
double radiusEqua = 6378137;
double eccentricity = sqrt(1 - pow(radiusPolar, 2) / pow(radiusEqua, 2));
double auxRadius = radiusEqua / sqrt(1 - pow(eccentricity, 2) * pow(sin(lat), 2));
cartesianOutput[0] = (auxRadius + alt) * cos(lat) * cos(longi);
cartesianOutput[1] = (auxRadius + alt) * cos(lat) * sin(longi);
cartesianOutput[2] = ((1 - pow(eccentricity, 2)) * auxRadius + alt) * sin(lat);
};
void CoordinateTransformations::latLongAltFromCartesian(const double* vector, double& latitude,
double& longitude, double& altitude) {
/* @brief: latLongAltFromCartesian() - calculates latitude, longitude and altitude from
* cartesian coordinates in ECEF
* @param: x x-value of position vector [m]
* y y-value of position vector [m]
* z z-value of position vector [m]
* latitude geodetic latitude [rad]
* longitude longitude [rad]
* altitude altitude [m]
* @source: Fundamentals of Spacecraft Attitude Determination and Control, P.35 f
* Landis Markley and John L. Crassidis*/
// From World Geodetic System the Earth Radii
double a = 6378137.0; // semimajor axis [m]
double b = 6356752.3142; // semiminor axis [m]
// Calculation
double e2 = 1 - pow(b, 2) / pow(a, 2);
double epsilon2 = pow(a, 2) / pow(b, 2) - 1;
double rho = sqrt(pow(vector[0], 2) + pow(vector[1], 2));
double p = std::abs(vector[2]) / epsilon2;
double s = pow(rho, 2) / (e2 * epsilon2);
double q = pow(p, 2) - pow(b, 2) + s;
double u = p / sqrt(q);
double v = pow(b, 2) * pow(u, 2) / q;
double P = 27 * v * s / q;
double Q = pow(sqrt(P + 1) + sqrt(P), 2. / 3.);
double t = (1 + Q + 1 / Q) / 6;
double c = sqrt(pow(u, 2) - 1 + 2 * t);
double w = (c - u) / 2;
double d = sign(vector[2]) * sqrt(q) * (w + sqrt(sqrt(pow(t, 2) + v) - u * w - t / 2 - 1. / 4.));
double N = a * sqrt(1 + epsilon2 * pow(d, 2) / pow(b, 2));
latitude = asin((epsilon2 + 1) * d / N);
altitude = rho * cos(latitude) + vector[2] * sin(latitude) - pow(a, 2) / N;
longitude = atan2(vector[1], vector[0]);
}