fsfw/osal/rtems/Clock.cpp

219 lines
6.7 KiB
C++

#include "RtemsBasic.h"
#include "../../timemanager/Clock.h"
#include "../../ipc/MutexHelper.h"
#include <rtems/score/todimpl.h>
#include <rtems/rtems/clockimpl.h>
uint16_t Clock::leapSeconds = 0;
MutexIF* Clock::timeMutex = nullptr;
uint32_t Clock::getTicksPerSecond(void){
rtems_interval ticks_per_second = rtems_clock_get_ticks_per_second();
return static_cast<uint32_t>(ticks_per_second);
}
ReturnValue_t Clock::setClock(const TimeOfDay_t* time) {
rtems_time_of_day timeRtems;
timeRtems.year = time->year;
timeRtems.month = time->month;
timeRtems.day = time->day;
timeRtems.hour = time->hour;
timeRtems.minute = time->minute;
timeRtems.second = time->second;
timeRtems.ticks = time->usecond * getTicksPerSecond() / 1e6;
rtems_status_code status = rtems_clock_set(&timeRtems);
switch(status){
case RTEMS_SUCCESSFUL:
return HasReturnvaluesIF::RETURN_OK;
case RTEMS_INVALID_ADDRESS:
return HasReturnvaluesIF::RETURN_FAILED;
case RTEMS_INVALID_CLOCK:
return HasReturnvaluesIF::RETURN_FAILED;
default:
return HasReturnvaluesIF::RETURN_FAILED;
}
}
ReturnValue_t Clock::setClock(const timeval* time) {
timespec newTime;
newTime.tv_sec = time->tv_sec;
if(time->tv_usec < 0) {
// better returnvalue.
return HasReturnvaluesIF::RETURN_FAILED;
}
newTime.tv_nsec = time->tv_usec * TOD_NANOSECONDS_PER_MICROSECOND;
ISR_lock_Context context;
_TOD_Lock();
_TOD_Acquire(&context);
Status_Control status = _TOD_Set(&newTime, &context);
_TOD_Unlock();
if(status == STATUS_SUCCESSFUL) {
return HasReturnvaluesIF::RETURN_OK;
}
// better returnvalue
return HasReturnvaluesIF::RETURN_FAILED;
}
ReturnValue_t Clock::getClock_timeval(timeval* time) {
//Callable from ISR
rtems_status_code status = rtems_clock_get_tod_timeval(time);
switch(status){
case RTEMS_SUCCESSFUL:
return HasReturnvaluesIF::RETURN_OK;
case RTEMS_NOT_DEFINED:
return HasReturnvaluesIF::RETURN_FAILED;
default:
return HasReturnvaluesIF::RETURN_FAILED;
}
}
ReturnValue_t Clock::getUptime(timeval* uptime) {
//According to docs.rtems.org for rtems 5 this method is more accurate than rtems_clock_get_ticks_since_boot
timespec time;
rtems_status_code status = rtems_clock_get_uptime(&time);
uptime->tv_sec = time.tv_sec;
time.tv_nsec = time.tv_nsec / 1000;
uptime->tv_usec = time.tv_nsec;
switch(status){
case RTEMS_SUCCESSFUL:
return HasReturnvaluesIF::RETURN_OK;
default:
return HasReturnvaluesIF::RETURN_FAILED;
}
}
ReturnValue_t Clock::getUptime(uint32_t* uptimeMs) {
//This counter overflows after 50 days
*uptimeMs = rtems_clock_get_ticks_since_boot();
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t Clock::getClock_usecs(uint64_t* time) {
timeval temp_time;
rtems_status_code returnValue = rtems_clock_get_tod_timeval(&temp_time);
*time = ((uint64_t) temp_time.tv_sec * 1000000) + temp_time.tv_usec;
switch(returnValue){
case RTEMS_SUCCESSFUL:
return HasReturnvaluesIF::RETURN_OK;
default:
return HasReturnvaluesIF::RETURN_FAILED;
}
}
ReturnValue_t Clock::getDateAndTime(TimeOfDay_t* time) {
/* For all but the last field, the struct will be filled with the correct values */
rtems_time_of_day timeRtems;
rtems_status_code status = rtems_clock_get_tod(&timeRtems);
switch (status) {
case RTEMS_SUCCESSFUL: {
/* The last field now contains the RTEMS ticks of the seconds from 0
to rtems_clock_get_ticks_per_second() minus one.
We calculate the microseconds accordingly */
time->day = timeRtems.day;
time->hour = timeRtems.hour;
time->minute = timeRtems.minute;
time->month = timeRtems.month;
time->second = timeRtems.second;
time->usecond = static_cast<float>(timeRtems.ticks) /
rtems_clock_get_ticks_per_second() * 1e6;
time->year = timeRtems.year;
return HasReturnvaluesIF::RETURN_OK;
}
case RTEMS_NOT_DEFINED:
/* System date and time is not set */
return HasReturnvaluesIF::RETURN_FAILED;
case RTEMS_INVALID_ADDRESS:
/* time_buffer is NULL */
return HasReturnvaluesIF::RETURN_FAILED;
default:
return HasReturnvaluesIF::RETURN_FAILED;
}
}
ReturnValue_t Clock::convertTimeOfDayToTimeval(const TimeOfDay_t* from,
timeval* to) {
//Fails in 2038..
rtems_time_of_day timeRtems;
timeRtems.year = from->year;
timeRtems.month = from->month;
timeRtems.day = from->day;
timeRtems.hour = from->hour;
timeRtems.minute = from->minute;
timeRtems.second = from->second;
timeRtems.ticks = from->usecond * getTicksPerSecond() / 1e6;
to->tv_sec = _TOD_To_seconds(&timeRtems);
to->tv_usec = from->usecond;
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t Clock::convertTimevalToJD2000(timeval time, double* JD2000) {
*JD2000 = (time.tv_sec - 946728000. + time.tv_usec / 1000000.) / 24.
/ 3600.;
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t Clock::convertUTCToTT(timeval utc, timeval* tt) {
//SHOULDDO: works not for dates in the past (might have less leap seconds)
if (timeMutex == nullptr) {
return HasReturnvaluesIF::RETURN_FAILED;
}
uint16_t leapSeconds;
ReturnValue_t result = getLeapSeconds(&leapSeconds);
if (result != HasReturnvaluesIF::RETURN_OK) {
return result;
}
timeval leapSeconds_timeval = { 0, 0 };
leapSeconds_timeval.tv_sec = leapSeconds;
//initial offset between UTC and TAI
timeval UTCtoTAI1972 = { 10, 0 };
timeval TAItoTT = { 32, 184000 };
*tt = utc + leapSeconds_timeval + UTCtoTAI1972 + TAItoTT;
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t Clock::setLeapSeconds(const uint16_t leapSeconds_) {
if(checkOrCreateClockMutex()!=HasReturnvaluesIF::RETURN_OK){
return HasReturnvaluesIF::RETURN_FAILED;
}
MutexHelper helper(timeMutex);
leapSeconds = leapSeconds_;
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t Clock::getLeapSeconds(uint16_t* leapSeconds_) {
if(timeMutex==nullptr){
return HasReturnvaluesIF::RETURN_FAILED;
}
MutexHelper helper(timeMutex);
*leapSeconds_ = leapSeconds;
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t Clock::checkOrCreateClockMutex(){
if(timeMutex==nullptr){
MutexFactory* mutexFactory = MutexFactory::instance();
if (mutexFactory == nullptr) {
return HasReturnvaluesIF::RETURN_FAILED;
}
timeMutex = mutexFactory->createMutex();
if (timeMutex == nullptr) {
return HasReturnvaluesIF::RETURN_FAILED;
}
}
return HasReturnvaluesIF::RETURN_OK;
}