diff --git a/CMakeLists.txt b/CMakeLists.txt index 1786f1af..a1410bdb 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -44,6 +44,8 @@ set(FSFW_PATH fsfw) set(MISSION_PATH mission) set(CSPLIB_PATH libcsp) +set(WARNING_SHADOW_LOCAL FALSE) + # Analyse different OS and architecture/target options, determine BSP_PATH, # display information about compiler etc. include (${CMAKE_SCRIPT_PATH}/HardwareOsPreConfig.cmake) @@ -87,6 +89,8 @@ add_subdirectory(${MISSION_PATH}) # Post-Sources preparation ################################################################################ +set_property(CACHE OS_FSFW PROPERTY STRINGS host linux) + # Add libraries for all sources. target_link_libraries(${TARGET_NAME} PRIVATE ${LIB_FSFW_NAME} @@ -110,7 +114,6 @@ if(CMAKE_CXX_COMPILER_ID STREQUAL "GNU") set(WARNING_FLAGS -Wall -Wextra - -Wshadow=local -Wimplicit-fallthrough=1 -Wno-unused-parameter -Wno-psabi diff --git a/README.md b/README.md index 0dd496c5..0ddf459c 100644 --- a/README.md +++ b/README.md @@ -16,55 +16,149 @@ Target systems: * Linux Kernel https://github.com/XiphosSystemsCorp/linux-xlnx.git * Host System * Generic software components which are not dependant on hardware can also - be run. All host code is contained in the hosted folder + be run on a host system. All host code is contained in the `bsp_hosted` folder * Tested for Linux (Ubuntu 20.04) and Windows 10 * Raspberry Pi * EIVE OBC can be built for Raspberry Pi as well (either directly on Raspberry Pi or by installing a cross compiler) The steps in the primary README are related to the main OBC target Q7S. +The CMake build system can be used to generate build systems as well (see helper scripts in `cmake/scripts`: + +- Linux (Raspberry Pi): Using the `bsp_rpi` BSP folder, and a very similar cross-compiler. + For running the software on a Raspberry Pi, it is recommended to follow the steps specified in + [the fsfw example](https://egit.irs.uni-stuttgart.de/fsfw/fsfw_example/src/branch/mueller/master/doc/README-rpi.md#top) and + using the TCF agent to have a similar set-up process also required for the Q7S. +- Linux Host: Uses the `bsp_hosted` BSP folder and the CMake Unix Makefiles generator. +- Windows Host: Uses the `bsp_hosted` BSP folder, the CMake MinGW Makefiles generator and MSYS2. ## Setting up development environment +### Installing Vivado the the Xilinx development tools + +It's also possible to perform debugging with a normal Eclipse installation by installing +the TCF plugin. Still, it is necessary to install Vivado to get the toolchain for generating +C++ applications. Alternatively you can download the toolchain +[from the cloud](https://eive-cloud.irs.uni-stuttgart.de/index.php/apps/files/?dir=/EIVE_IRS/Arbeitsdaten/08_Used%20Components/Q7S/Toolchain&fileid=422486). + * Install Vivado 2018.2 and Xilinx SDK from https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-tools/archive.html. - Install the Vivado Design Suite - HLx Editions - 2018.2 Full Product Installation instead of the updates. It is recommended to use the installer + Install the Vivado Design Suite - HLx Editions - 2018.2 Full Product Installation instead of the updates. It is recommended to use the installer. + * Install settings. In the Devices selection, it is sufficient to pick SoC → Zynq-7000:
-
+ +
+ +
+ +
+ * For supported OS refer to https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_2/ug973-vivado-release-notes-install-license.pdf -* Add path of linux cross-compiler to environment variables SDK\2018.2\gnu\aarch32\nt\gcc-arm-linux-gnueabi\bin -* Install make (only on windows, SDK on Linux can use the make installed with the SDK) +* Add path of linux cross-compiler to permanent environment variables (`.profile` file in Linux): + `\SDK\2018.2\gnu\aarch32\nt\gcc-arm-linux-gnueabi\bin` + or set up path each time before debugging. -### Installing make on Windows -1. Install NodeJS LTS -2. Install xpm - -```sh -npm install --global xpm -``` +### Installing CMake and MSYS2 on Windows -3. Install Windows build tools (after installation also linux commands like mkdir can be used from windows) +1. Install [MSYS2](https://www.msys2.org/) and [CMake](https://cmake.org/download/) first. -```sh -xpm install --global @xpack-dev-tools/windows-build-tools@latest -``` +2. Open the MinGW64 console. It is recommended to set up aliases in `.bashrc` to navigate to the + software repository quickly + +3. Run the following commands in MinGW64 -## Building the software + ```sh + pacman -Syuuu + ``` + + It is recommended to install the full base development toolchain + + ```sh + pacman -S base-devel + ``` + + It is also possible to only install required packages + + ```sh + pacman -S mingw-w64-x86_64-cmake mingw-w64-x86_64-make mingw-w64-x86_64-gcc mingw-w64-x86_64-gdb python3 + ``` + +### Installing CMake on Linux + +1. Run the following command + + ```sh + sudo apt-get install cmake + ```` + +## Building the software with CMake + +When using Windows, run theses steps in MSYS2. 1. Clone the repository with -```sh -git clone https://egit.irs.uni-stuttgart.de/eive/eive_obsw.git -``` + + ```sh + git clone https://egit.irs.uni-stuttgart.de/eive/eive_obsw.git + ``` 2. Update all the submodules -```sh -git submodule init -git submodule sync -git submodule update -``` -3. Open Xilinx SDK 2018.2 -4. Import project + ```sh + git submodule init + git submodule sync + git submodule update + ``` + +3. Ensure that the cross-compiler is working with `arm-linux-gnueabihf-gcc --version`. + It is recommended to run the shell script `win_path_helper_xilinx_tools.sh` in `cmake/scripts/Q7S` + or to set up the [PATH and the CROSS_COMPILE variable permanently](https://unix.stackexchange.com/questions/26047/how-to-correctly-add-a-path-to-path) + in the `.profile` file. + +4. Run the CMake configuration to create the build system in a `Debug` folder. + Navigate into the `eive_obsw` folder first. + + ```sh + cd cmake/scripts/Q7S + ./create_cmake_debug.sh + cd ../../.. + ``` + + This will invoke a Python script which in turn invokes CMake with the correct + arguments to configure CMake for Q7S cross-compilation. + +5. Build the software with + ```sh + cd Debug + cmake --build . -j + ``` + +## Setting up default Eclipse for Q7S projects - TCF agent + +The [TCF agent](https://wiki.eclipse.org/TCF) can be used to perform remote debugging on the Q7S. + +1. Install the TCF agent plugin in Eclipse from the [releases](https://www.eclipse.org/tcf/downloads.php). Go to Help → Install New Software and use the download page, for example https://download.eclipse.org/tools/tcf/releases/1.6/1.6.2/ to search for the plugin and install it. + +2. Go to Window → Perspective → Open Perspective and open the **Target Explorer Perspective**. + Here, the Q7S should show up if the local port forwarding was set up as explained previously. + +3. A launch configuration was provided, but it might be necessary to adapt it for your own needs. Alternatively: + + - Create a new **TCF Remote Application** by pressing the cogs button at the top or going to Run → Debug Configurations → Remote Application and creating a new one there. + + - Set up the correct image in the main tab (it might be necessary to send the image to the Q7S manually once) and file transfer properties + + - It is also recommended to link the correct Eclipse project. + +After that, comfortable remote debugging should be possible with the Debug button. + +A build configuration and a shell helper script has been provided to set up the path variables and build the Q7S binary +on Windows, but a launch configuration needs to be newly created because the IP address and path settings differ +from machine to machine. + +## Building in Xilinx SDK 2018.2 + +1. Open Xilinx SDK 2018.2 +2. Import project * File → Import → C/C++ → Existing Code as Makefile Project -5. Set build command. Replace \ with either debug or release. +3. Set build command. Replace \ with either debug or release. * When on Linux right click project → Properties → C/C++ Build → Set build command to `make -j` * -j causes the compiler to use all available cores * The target is used to either compile the debug or the optimized release build. @@ -73,79 +167,53 @@ git submodule update * Target name: all * Uncheck "Same as the target name" * Uncheck "Use builder settings" - * As build command type: `make -j WINDOWS=1` -6. Run build command by double clicking the created target or by right clicking + * As build command type: `cmake --build .` + * In the Behaviour tab, you can enable build acceleration +4. Run build command by double clicking the created target or by right clicking the project folder and selecting Build Project. -## Debugging the software (when workstation is directly conncected to Q7S) -1. Assign static IP address to Q7S - * Open serial console of Q7S (Accessible via the micro-USB of the PIM, see also Q7S user maunal chapter 10.3) - * Baudrate 115200 - * Login to Q7S: - * user: root - * pw: root - * Set IP address and netmask with - - ```sh +## TCF-Agent + +1. On reboot, some steps have to be taken on the Q7S. Set static IP address and netmask + + ```sh ifconfig eth0 192.168.133.10 ifconfig eth0 netmask 255.255.255.0 ``` -2. Connect Q7S to workstation via ethernet -3. Make sure the netmask of the ehternet interface of the workstation matches the netmask of the Q7S - * When IP address is set to 192.168.133.10 and the netmask is 255.255.255.0, an example IP address for the workstation - is 192.168.133.2 -4. Run tcf-agent on Q7S - * Tcf-agent is not yet integrated in the rootfs of the Q7S. Therefore build tcf-agent manually - - ```sh - git clone git://git.eclipse.org/gitroot/tcf/org.eclipse.tcf.agent.git - cd org.eclipse.tcf.agent/agent - make CC=arm-linux-gnueabihf-gcc LD=arm-linux-gnueabihf-ld MACHINE=arm NO_SSL=1 NO_UUID=1 - ``` +2. `tcfagent` application should run automatically but this can be checked with + ```sh + systemctl status tcfagent + ``` - * Transfer executable agent from org.eclipse.tcf.agent/agent/obj/GNU/Linux/arm/Debug to /tmp of Q7S - - ```sh - cd obj/GNU/Linux/arm/Debug - scp agent root@192.168.133.10:/tmp - ``` - - * On Q7S - ```sh - cd /tmp - chmod +x agent - ``` - - * Run agent - ```sh - ./agent - ``` - -5. In Xilinx SDK 2018.2 right click on project → Debug As → Debug Configurations -6. Right click Xilinx C/C++ applicaton (System Debugger) → New → -7. Set Debug Type to Linux Application Debug and Connectin to Linux Agent -8. Click New -9. Give connection a name -10. Set Host to static IP address of Q7S. e.g. 192.168.133.10 -11. Test connection (This ensures the TCF Agent is running on the Q7S) -12. Select Application tab - * Project Name: eive_obsw - * Local File Path: Path to eiveobsw-linux.elf (in _bin\linux\devel) - * Remote File Path: /tmp/eive_obsw.elf +3. If the agent is not running, check whether `agent` is located inside `usr/bin`. + You can run it manually there. To perform auto-start on boot, have a look at the start-up + application section. ## Debugging the software via Flatsat PC + Open SSH connection to flatsat PC: ```sh ssh eive@2001:7c0:2018:1099:babe:0:e1fe:f1a5 ``` +or + +```sh +ssh eive@192.168.199.227 +``` + To access the console of the Q7S run the following: ```sh picocom -b 115200 /dev/ttyUSB0 ``` +If the serial port is blocked for some reason, you can kill +the process using it with `q7s_kill`. + +You can use `AltGr` + `X` to exit the picocom session. + To debug an application, first make sure a static IP address is assigned to the Q7S. Run ifconfig on the Q7S serial console. ```sh @@ -159,19 +227,38 @@ ifconfig eth0 192.168.133.10 ifconfig eth0 netmask 255.255.255.0 ``` -To launch application from Xilinx SDK setup port fowarding on the localhost. +To launch application from Xilinx SDK setup port fowarding on the development machine +(not on the flatsat!) ```sh ssh -L 1534:192.168.133.10:1534 eive@2001:7c0:2018:1099:babe:0:e1fe:f1a5 ``` This forwards any requests to localhost:1534 to the port 1534 of the Q7S with the IP address 192.168.133.10. +This needs to be done every time, so it is recommended to create an alias to do this quickly. Note: When now setting up a debug session in the Xilinx SDK, the host must be set to localhost instead of the IP address of the Q7S. -## Launching an application after boot +## Transfering files via SCP + +To transfer files from the local machine to the Q7S, use port forwarding + +```sh +ssh -L 1535:192.168.133.10:22 eive@2001:7c0:2018:1099:babe:0:e1fe:f1a5 +``` + +Then you can copy an `example` file like this + +```sh +scp -P 1535 example root@localhost:/tmp +``` + +## Launching an application at start-up + Load the root partiton from the flash memory (there are to nor-flash memories and each flash holds two xdi images). -Note: It is not possible to modify the current loaded root partition. +Note: It is not possible to modify the currently loaded root partition, e.g. creating directories. To do this, +the parition needs to be mounted. + 1. Disable write protection of the desired root partition ```sh @@ -183,7 +270,10 @@ Note: It is not possible to modify the current loaded root partition. ```sh xsc_mount_copy 0 0 # Mounts the nominal image from nor-flash 0 ``` -3. Copy the executable to /bin/usr + The mounted partition will be located inside the `/tmp` folder + +3. Copy the executable to `/usr/bin` + 4. Make sure the permissions to execute the application are set ```sh chmod +x application @@ -208,29 +298,33 @@ Note: It is not possible to modify the current loaded root partition. ``` 6. Enable the service. This is normally done with systemctl enable. However, this is not possible when the service is created for a mounted root partition. Therefore create a symlink as follows. -```` -ln -s '/tmp/the-mounted-xdi-image/lib/systemd/system/example.service' '/tmp/the-mounted-xdi-image/etc/systemd/system/multi-user.target.wants/example.service' -```` + ```sh + ln -s '/tmp/the-mounted-xdi-image/lib/systemd/system/example.service' '/tmp/the-mounted-xdi-image/etc/systemd/system/multi-user.target.wants/example.service' + ``` + 7. The modified root partition is written back when the partion is locked again. -```` -writeprotect 0 0 1 -```` + ```sh + writeprotect 0 0 1 + ``` 8. Now verify the application start by booting from the modified image -```` -xsc_boot_copy 0 0 -```` + ```sh + xsc_boot_copy 0 0 + ```` + 9. After booting verify if the service is running -```` -systemctl status example -```` + ```sh + systemctl status example + ``` More detailed information about the used q7s commands can be found in the Q7S user manual. ### Bringing up CAN -```` -ip link set can0 down -ip link set can0 type can loopback off -ip link set can0 up type can bitrate 1000000 -```` + + ```sh + ip link set can0 down + ip link set can0 type can loopback off + ip link set can0 up type can bitrate 1000000 + ``` + Following command sends 8 bytes to device with id 99 (for petalinux) ```` cansend can0 -i99 99 88 77 11 33 11 22 99 @@ -307,17 +401,6 @@ a permanent solution). If running the script before executing the binary does not help or an warning is issue that the soft real time value is invalid, the hard real-time limit of the system might not be high enough (see step 1). -## Building and running the software on a host system - -The host build can be built with following command - -```sh -make -f Makefile-Hosted all -j -``` - -If compiling on Windows, it is recommended to supply `WINDOWS=1` . -A release build can be built by using the `mission` target. - ## Flight Software Framework (FSFW) An EIVE fork of the FSFW is submodules into this repository. @@ -339,6 +422,7 @@ Alternatively, changes from other upstreams (forks) and branches can be merged l the same way. ## PCDU + Connect to serial console of P60 Dock ```` picocom -b 500000 /dev/ttyUSBx @@ -362,3 +446,57 @@ p60-dock # param get out_en[0] GET out_en[0] = 1 ```` +## Debugging the software (when workstation is directly conncected to Q7S) + +1. Assign static IP address to Q7S + * Open serial console of Q7S (Accessible via the micro-USB of the PIM, see also Q7S user maunal chapter 10.3) + * Baudrate 115200 + * Login to Q7S: + * user: root + * pw: root + +2. Connect Q7S to workstation via ethernet +3. Make sure the netmask of the ehternet interface of the workstation matches the netmask of the Q7S + * When IP address is set to 192.168.133.10 and the netmask is 255.255.255.0, an example IP address for the workstation + is 192.168.133.2 + +4. Run tcf-agent on Q7S + + * Tcf-agent is not yet integrated in the rootfs of the Q7S. Therefore build tcf-agent manually + + ```sh + git clone git://git.eclipse.org/gitroot/tcf/org.eclipse.tcf.agent.git + cd org.eclipse.tcf.agent/agent + make CC=arm-linux-gnueabihf-gcc LD=arm-linux-gnueabihf-ld MACHINE=arm NO_SSL=1 NO_UUID=1 + ``` + + * Transfer executable agent from org.eclipse.tcf.agent/agent/obj/GNU/Linux/arm/Debug to /tmp of Q7S + + ```sh + cd obj/GNU/Linux/arm/Debug + scp agent root@192.168.133.10:/tmp + ``` + + * On Q7S + ```sh + cd /tmp + chmod +x agent + ``` + + * Run agent + ```sh + ./agent + ``` + +5. In Xilinx SDK 2018.2 right click on project → Debug As → Debug Configurations +6. Right click Xilinx C/C++ applicaton (System Debugger) → New → +7. Set Debug Type to Linux Application Debug and Connectin to Linux Agent +8. Click New +9. Give connection a name +10. Set Host to static IP address of Q7S. e.g. 192.168.133.10 +11. Test connection (This ensures the TCF Agent is running on the Q7S) +12. Select Application tab + * Project Name: eive_obsw + * Local File Path: Path to eiveobsw-linux.elf (in _bin\linux\devel) + * Remote File Path: /tmp/eive_obsw.elf + diff --git a/bsp_q7s/InitMission.cpp b/bsp_q7s/InitMission.cpp index 94892adf..d6df7fbf 100644 --- a/bsp_q7s/InitMission.cpp +++ b/bsp_q7s/InitMission.cpp @@ -43,7 +43,7 @@ void InitMission::initTasks(){ /* TMTC Distribution */ PeriodicTaskIF* TmTcDistributor = TaskFactory::instance()-> createPeriodicTask("DIST", 40, PeriodicTaskIF::MINIMUM_STACK_SIZE, - 0.100, nullptr); + 0.2, nullptr); ReturnValue_t result = TmTcDistributor->addComponent( objects::CCSDS_PACKET_DISTRIBUTOR); if(result!=HasReturnvaluesIF::RETURN_OK){ @@ -169,6 +169,7 @@ void InitMission::initTasks(){ PusMedPrio->startTask(); PusLowPrio->startTask(); + // P60DockTask->startTask(); #if OBSW_ADD_TEST_CODE == 1 diff --git a/bsp_rpi/CMakeLists.txt b/bsp_rpi/CMakeLists.txt index 8dd8e6f1..7885ca28 100644 --- a/bsp_rpi/CMakeLists.txt +++ b/bsp_rpi/CMakeLists.txt @@ -5,6 +5,7 @@ target_sources(${TARGET_NAME} PUBLIC ) add_subdirectory(boardconfig) +add_subdirectory(boardtest) diff --git a/bsp_rpi/boardtest/CMakeLists.txt b/bsp_rpi/boardtest/CMakeLists.txt new file mode 100644 index 00000000..768fc52f --- /dev/null +++ b/bsp_rpi/boardtest/CMakeLists.txt @@ -0,0 +1,7 @@ +target_sources(${TARGET_NAME} PRIVATE + SpiTest.cpp +) + + + + diff --git a/bsp_rpi/boardtest/SpiTest.cpp b/bsp_rpi/boardtest/SpiTest.cpp new file mode 100644 index 00000000..91939714 --- /dev/null +++ b/bsp_rpi/boardtest/SpiTest.cpp @@ -0,0 +1,43 @@ +#include "SpiTest.h" + +#include + +#include +#include +#include + +SpiTest::SpiTest(object_id_t objectId): SystemObject(objectId) { + wiringPiSetupGpio(); + + int spiFd = open(spiDeviceName.c_str(), O_RDWR); + if (spiFd < 0){ + sif::error << "Could not open SPI device!" << std::endl; + } + + spiMode = SPI_MODE_3; + int ret = ioctl(spiFd, SPI_IOC_WR_MODE, &spiMode); + if(ret < 0) { + sif::error << "Could not set write mode!" << std::endl; + } + + /* Datenrate setzen */ + ret = ioctl(spiFd, SPI_IOC_WR_MAX_SPEED_HZ, &spiSpeed); + if(ret < 0) { + sif::error << "Could not SPI speed!" << std::endl; + } +} + +ReturnValue_t SpiTest::performOperation(uint8_t opCode) { + if(oneShot) { + + } + return HasReturnvaluesIF::RETURN_OK; +} + +ReturnValue_t SpiTest::initialize() { + //transferHandle.rx_buf = reinterpret_cast<__u64>(receiveBuffer); + //transferHandle.tx_buf = reinterpret_cast<__u64>(sendBuffer); + //transferHandle.speed_hz = 976000; + //transferHandle.len = 2; + return HasReturnvaluesIF::RETURN_OK; +} \ No newline at end of file diff --git a/bsp_rpi/boardtest/SpiTest.h b/bsp_rpi/boardtest/SpiTest.h new file mode 100644 index 00000000..9bdb8f25 --- /dev/null +++ b/bsp_rpi/boardtest/SpiTest.h @@ -0,0 +1,31 @@ +#ifndef BSP_LINUX_TEST_SPITEST_H_ +#define BSP_LINUX_TEST_SPITEST_H_ + +#include +#include +#include +#include + +class SpiTest: public ExecutableObjectIF, SystemObject { +public: + SpiTest(object_id_t objectId); + + ReturnValue_t performOperation(uint8_t opCode) override; + ReturnValue_t initialize() override; +private: + const std::string spiDeviceName = "/dev/spidev0.0"; + int spiFd = 0; + + uint8_t spiMode = SPI_MODE_3; + uint32_t spiSpeed = 976000; + + uint8_t sendBuffer[32]; + uint8_t receiveBuffer[32]; + struct spi_ioc_transfer transferHandle; + + bool oneShot = true; + +}; + + +#endif /* BSP_LINUX_TEST_SPITEST_H_ */ diff --git a/cmake/Q7SCrossCompileConfig.cmake b/cmake/Q7SCrossCompileConfig.cmake index 665869f9..2fb8134b 100644 --- a/cmake/Q7SCrossCompileConfig.cmake +++ b/cmake/Q7SCrossCompileConfig.cmake @@ -1,13 +1,13 @@ # CROSS_COMPILE also needs to be set accordingly or passed to the CMake command -#if(NOT DEFINED ENV{Q7S_ROOTFS}) +if(NOT DEFINED ENV{Q7S_SYSROOT}) # message(FATAL_ERROR # "Define the Q7S_ROOTFS variable to " # "point to the raspbian rootfs." # ) -#else() -# set(SYSROOT_PATH "$ENV{Q7S_ROOTFS}") -#endif() +else() + set(SYSROOT_PATH "$ENV{Q7S_SYSROOT}") +endif() if(NOT DEFINED ENV{CROSS_COMPILE}) set(CROSS_COMPILE "arm-linux-gnueabihf") diff --git a/cmake/scripts/Q7S/win_path_helper_xilinx_tools.sh b/cmake/scripts/Q7S/win_path_helper_xilinx_tools.sh new file mode 100644 index 00000000..ac2411b7 --- /dev/null +++ b/cmake/scripts/Q7S/win_path_helper_xilinx_tools.sh @@ -0,0 +1,4 @@ +export PATH=$PATH:"/c/Xilinx/SDK/2018.2/gnu/aarch32/nt/gcc-arm-linux-gnueabi/bin" +export CROSS_COMPILE="arm-linux-gnueabihf" + +export Q7S_SYSROOT="/c/Xilinx/SDK/2018.2/gnu/aarch32/nt/gcc-arm-linux-gnueabi/arm-linux-gnueabihf/libc" diff --git a/doc/Q7S-user-manual.pdf b/doc/Q7S-user-manual.pdf new file mode 100644 index 00000000..70ab7bb4 Binary files /dev/null and b/doc/Q7S-user-manual.pdf differ diff --git a/doc/img/vivado-edition.png b/doc/img/vivado-edition.png new file mode 100644 index 00000000..c34051f3 Binary files /dev/null and b/doc/img/vivado-edition.png differ diff --git a/doc/img/vivado-hl-design.png b/doc/img/vivado-hl-design.png new file mode 100644 index 00000000..3603f8cb Binary files /dev/null and b/doc/img/vivado-hl-design.png differ diff --git a/fsfw b/fsfw index 8ef6283b..1ac2479b 160000 --- a/fsfw +++ b/fsfw @@ -1 +1 @@ -Subproject commit 8ef6283bf4f5cf5d12131c48365a753825fea637 +Subproject commit 1ac2479b28c1114b0876123e0db4155abfbf06fe diff --git a/libcsp/include/CMakeLists.txt b/libcsp/include/CMakeLists.txt index cc80ebb5..196e26f3 100644 --- a/libcsp/include/CMakeLists.txt +++ b/libcsp/include/CMakeLists.txt @@ -1,7 +1,5 @@ target_include_directories(${LIB_CSP_NAME} PRIVATE ${CMAKE_CURRENT_SOURCE_DIR} - ${CMAKE_CURRENT_SOURCE_DIR}/csp - ${CMAKE_CURRENT_SOURCE_DIR}/csp/crypto ) target_include_directories(${LIB_CSP_NAME} INTERFACE diff --git a/libcsp/src/drivers/can/can_socketcan.c b/libcsp/src/drivers/can/can_socketcan.c index 7d12f184..94c6bdde 100644 --- a/libcsp/src/drivers/can/can_socketcan.c +++ b/libcsp/src/drivers/can/can_socketcan.c @@ -142,7 +142,7 @@ csp_iface_t * csp_can_socketcan_init(const char * ifc, int bitrate, int promisc) struct sockaddr_can addr; pthread_t rx_thread; - printf("Init can interface %s\n", ifc); + printf("-I-: Initiating CAN interface %s\n", ifc); #ifdef CSP_HAVE_LIBSOCKETCAN /* Set interface up */ diff --git a/misc/eclipse/.cproject b/misc/eclipse/.cproject index 80fd68eb..3b547d12 100644 --- a/misc/eclipse/.cproject +++ b/misc/eclipse/.cproject @@ -15,7 +15,7 @@ - + @@ -230,7 +230,7 @@ - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + @@ -512,7 +800,11 @@ + + + + @@ -520,29 +812,48 @@ + + + + + + + + + + - + + + + + + + + + + @@ -550,9 +861,4 @@ - - - - - \ No newline at end of file diff --git a/misc/eclipse/.project b/misc/eclipse/.project index 906c567f..059a5c19 100644 --- a/misc/eclipse/.project +++ b/misc/eclipse/.project @@ -7,7 +7,7 @@ org.eclipse.cdt.managedbuilder.core.genmakebuilder - clean,full,incremental, + full,incremental,