diff --git a/CHANGELOG.md b/CHANGELOG.md index c19464bf..bb4ee961 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -36,6 +36,11 @@ will consitute of a breaking change warranting a new major release: - Changed PTG Strat priorities to favor STR before MEKF. - Increased message queue depth and maximum number of handled messages per cycle for `PusServiceBase` based classes (especially PUS scheduler). +- `MathOperations` functions were moved to their appropriate classes within the `eive-fsfw` +- Changed pointing strategy for target groundstation mode to prevent blinding of the STR. This + also limits the rotation for the reference target quaternion to prevent spikes in required + rotation rates. +- Updated QUEST and Sun Vector Params to new values. # [v7.6.1] 2024-02-05 diff --git a/fsfw b/fsfw index 0d4a862c..516357d8 160000 --- a/fsfw +++ b/fsfw @@ -1 +1 @@ -Subproject commit 0d4a862c1af78ee5568b3268afc526be70fa055b +Subproject commit 516357d855c07786b492e981230988186376d301 diff --git a/mission/controller/acs/AcsParameters.cpp b/mission/controller/acs/AcsParameters.cpp index 8816eed9..f8fb759b 100644 --- a/mission/controller/acs/AcsParameters.cpp +++ b/mission/controller/acs/AcsParameters.cpp @@ -717,22 +717,22 @@ ReturnValue_t AcsParameters::getParameter(uint8_t domainId, uint8_t parameterId, case (0x11): // KalmanFilterParameters switch (parameterId) { case 0x0: - parameterWrapper->set(kalmanFilterParameters.sensorNoiseSTR); + parameterWrapper->set(kalmanFilterParameters.sensorNoiseStr); break; case 0x1: - parameterWrapper->set(kalmanFilterParameters.sensorNoiseSS); + parameterWrapper->set(kalmanFilterParameters.sensorNoiseSus); break; case 0x2: - parameterWrapper->set(kalmanFilterParameters.sensorNoiseMAG); + parameterWrapper->set(kalmanFilterParameters.sensorNoiseMgm); break; case 0x3: - parameterWrapper->set(kalmanFilterParameters.sensorNoiseGYR); + parameterWrapper->set(kalmanFilterParameters.sensorNoiseGyr); break; case 0x4: - parameterWrapper->set(kalmanFilterParameters.sensorNoiseArwGYR); + parameterWrapper->set(kalmanFilterParameters.sensorNoiseGyrArw); break; case 0x5: - parameterWrapper->set(kalmanFilterParameters.sensorNoiseBsGYR); + parameterWrapper->set(kalmanFilterParameters.sensorNoiseGyrBs); break; default: return INVALID_IDENTIFIER_ID; diff --git a/mission/controller/acs/AcsParameters.h b/mission/controller/acs/AcsParameters.h index 5c4513ff..467c0740 100644 --- a/mission/controller/acs/AcsParameters.h +++ b/mission/controller/acs/AcsParameters.h @@ -8,6 +8,9 @@ typedef unsigned char uint8_t; class AcsParameters : public HasParametersIF { + private: + static constexpr double DEG2RAD = M_PI / 180.; + public: AcsParameters(); virtual ~AcsParameters(); @@ -22,7 +25,7 @@ class AcsParameters : public HasParametersIF { uint8_t fusedRateSafeDuringEclipse = true; uint8_t fusedRateFromStr = true; uint8_t fusedRateFromQuest = true; - double questFilterWeight = 0.0; + double questFilterWeight = 0.9; } onBoardParams; struct InertiaEIVE { @@ -773,7 +776,7 @@ class AcsParameters : public HasParametersIF { 0.167666815691513, 0.163137400730063, -0.000609874123906977, -0.00205336098697513, -0.000889232196185857, -0.00168429567131815}}; float susBrightnessThreshold = 0.7; - float susVectorFilterWeight = .85; + float susVectorFilterWeight = .95; float susRateFilterWeight = .99; } susHandlingParameters; @@ -854,7 +857,7 @@ class AcsParameters : public HasParametersIF { struct PointingLawParameters { double zeta = 0.3; double om = 0.3; - double omMax = 1 * M_PI / 180; + double omMax = 1 * DEG2RAD; double qiMin = 0.1; double gainNullspace = 0.01; @@ -876,15 +879,15 @@ class AcsParameters : public HasParametersIF { uint8_t timeElapsedMax = 10; // rot rate calculations // Default is Stuttgart GS - double latitudeTgt = 48.7495 * M_PI / 180.; // [rad] Latitude - double longitudeTgt = 9.10384 * M_PI / 180.; // [rad] Longitude - double altitudeTgt = 500; // [m] + double latitudeTgt = 48.7495 * DEG2RAD; // [rad] Latitude + double longitudeTgt = 9.10384 * DEG2RAD; // [rad] Longitude + double altitudeTgt = 500; // [m] // For one-axis control: uint8_t avoidBlindStr = true; double blindAvoidStart = 1.5; double blindAvoidStop = 2.5; - double blindRotRate = 1 * M_PI / 180; + double blindRotRate = 1. * DEG2RAD; } targetModeControllerParameters; struct GsTargetModeControllerParameters : PointingLawParameters { @@ -892,9 +895,9 @@ class AcsParameters : public HasParametersIF { uint8_t timeElapsedMax = 10; // rot rate calculations // Default is Stuttgart GS - double latitudeTgt = 48.7495 * M_PI / 180.; // [rad] Latitude - double longitudeTgt = 9.10384 * M_PI / 180.; // [rad] Longitude - double altitudeTgt = 500; // [m] + double latitudeTgt = 48.7495 * DEG2RAD; // [rad] Latitude + double longitudeTgt = 9.10384 * DEG2RAD; // [rad] Longitude + double altitudeTgt = 500; // [m] } gsTargetModeControllerParameters; struct NadirModeControllerParameters : PointingLawParameters { @@ -911,8 +914,8 @@ class AcsParameters : public HasParametersIF { } inertialModeControllerParameters; struct StrParameters { - double exclusionAngle = 20 * M_PI / 180; - double boresightAxis[3] = {0.7593, 0.0000, -0.6508}; // geometry frame + double exclusionAngle = 20. * DEG2RAD; + double boresightAxis[3] = {0.7593, 0.0000, -0.6508}; // body rf } strParameters; struct GpsParameters { @@ -925,25 +928,25 @@ class AcsParameters : public HasParametersIF { struct SunModelParameters { float domega = 36000.771; - float omega_0 = 280.46 * M_PI / 180.; // RAAN plus argument of - // perigee - float m_0 = 357.5277; // coefficients for mean anomaly - float dm = 35999.049; // coefficients for mean anomaly - float e = 23.4392911 * M_PI / 180.; // angle of earth's rotation axis - float e1 = 0.74508 * M_PI / 180.; + float omega_0 = 280.46 * DEG2RAD; // RAAN plus argument of + // perigee + float m_0 = 357.5277; // coefficients for mean anomaly + float dm = 35999.049; // coefficients for mean anomaly + float e = 23.4392911 * DEG2RAD; // angle of earth's rotation axis + float e1 = 0.74508 * DEG2RAD; - float p1 = 6892. / 3600. * M_PI / 180.; // some parameter - float p2 = 72. / 3600. * M_PI / 180.; // some parameter + float p1 = 6892. / 3600. * DEG2RAD; // some parameter + float p2 = 72. / 3600. * DEG2RAD; // some parameter } sunModelParameters; struct KalmanFilterParameters { - double sensorNoiseSTR = 0.1 * M_PI / 180; - double sensorNoiseSS = 8 * M_PI / 180; - double sensorNoiseMAG = 4 * M_PI / 180; - double sensorNoiseGYR = 0.1 * M_PI / 180; + double sensorNoiseStr = 0.1 * DEG2RAD; + double sensorNoiseSus = 8. * DEG2RAD; + double sensorNoiseMgm = 4. * DEG2RAD; + double sensorNoiseGyr = 0.1 * DEG2RAD; - double sensorNoiseArwGYR = 3 * 0.0043 * M_PI / sqrt(10) / 180; // Angular Random Walk - double sensorNoiseBsGYR = 3 * M_PI / 180 / 3600; // Bias Stability + double sensorNoiseGyrArw = 3. * 0.0043 / sqrt(10) * DEG2RAD; // Angular Random Walk + double sensorNoiseGyrBs = 3. / 3600. * DEG2RAD; // Bias Stability } kalmanFilterParameters; struct MagnetorquerParameter { @@ -959,8 +962,8 @@ class AcsParameters : public HasParametersIF { struct DetumbleParameter { uint8_t detumblecounter = 75; // 30 s - double omegaDetumbleStart = 2 * M_PI / 180; - double omegaDetumbleEnd = 1 * M_PI / 180; + double omegaDetumbleStart = 2 * DEG2RAD; + double omegaDetumbleEnd = 1 * DEG2RAD; double gainBdot = pow(10.0, -3.3); double gainFull = pow(10.0, -2.3); uint8_t useFullDetumbleLaw = false; diff --git a/mission/controller/acs/AttitudeEstimation.cpp b/mission/controller/acs/AttitudeEstimation.cpp index 3e4a22c4..3b6bf181 100644 --- a/mission/controller/acs/AttitudeEstimation.cpp +++ b/mission/controller/acs/AttitudeEstimation.cpp @@ -41,8 +41,8 @@ void AttitudeEstimation::quest(acsctrl::SusDataProcessed *susData, // Sensor Weights double kSus = 0, kMgm = 0; - kSus = std::pow(acsParameters->kalmanFilterParameters.sensorNoiseSS, -2); - kMgm = std::pow(acsParameters->kalmanFilterParameters.sensorNoiseMAG, -2); + kSus = std::pow(acsParameters->kalmanFilterParameters.sensorNoiseSus, -2); + kMgm = std::pow(acsParameters->kalmanFilterParameters.sensorNoiseMgm, -2); // Weighted Vectors double weightedSusB[3] = {0, 0, 0}, weightedMgmB[3] = {0, 0, 0}, kSusVec[3] = {0, 0, 0}, diff --git a/mission/controller/acs/Guidance.cpp b/mission/controller/acs/Guidance.cpp index 3641e41e..4f7727f2 100644 --- a/mission/controller/acs/Guidance.cpp +++ b/mission/controller/acs/Guidance.cpp @@ -8,8 +8,8 @@ void Guidance::targetQuatPtgIdle(timeval timeAbsolute, const double timeDelta, const double sunDirI[3], const double posSatF[4], double targetQuat[4], double targetSatRotRate[3]) { // positive z-Axis of EIVE in direction of sun - double zAxisXI[3] = {0, 0, 0}; - VectorOperations::normalize(sunDirI, zAxisXI, 3); + double zAxisIX[3] = {0, 0, 0}; + VectorOperations::normalize(sunDirI, zAxisIX, 3); // determine helper vector to point x-Axis and therefore the STR away from Earth double helperXI[3] = {0, 0, 0}, posSatI[3] = {0, 0, 0}; @@ -17,39 +17,37 @@ void Guidance::targetQuatPtgIdle(timeval timeAbsolute, const double timeDelta, VectorOperations::normalize(posSatI, helperXI, 3); // construct y-axis from helper vector and z-axis - double yAxisXI[3] = {0, 0, 0}; - VectorOperations::cross(zAxisXI, helperXI, yAxisXI); - VectorOperations::normalize(yAxisXI, yAxisXI, 3); + double yAxisIX[3] = {0, 0, 0}; + VectorOperations::cross(zAxisIX, helperXI, yAxisIX); + VectorOperations::normalize(yAxisIX, yAxisIX, 3); // x-axis completes RHS - double xAxisXI[3] = {0, 0, 0}; - VectorOperations::cross(yAxisXI, zAxisXI, xAxisXI); - VectorOperations::normalize(xAxisXI, xAxisXI, 3); + double xAxisIX[3] = {0, 0, 0}; + VectorOperations::cross(yAxisIX, zAxisIX, xAxisIX); + VectorOperations::normalize(xAxisIX, xAxisIX, 3); // join transformation matrix - double dcmXI[3][3] = {{xAxisXI[0], yAxisXI[0], zAxisXI[0]}, - {xAxisXI[1], yAxisXI[1], zAxisXI[1]}, - {xAxisXI[2], yAxisXI[2], zAxisXI[2]}}; - QuaternionOperations::fromDcm(dcmXI, targetQuat); + double dcmIX[3][3] = {{xAxisIX[0], yAxisIX[0], zAxisIX[0]}, + {xAxisIX[1], yAxisIX[1], zAxisIX[1]}, + {xAxisIX[2], yAxisIX[2], zAxisIX[2]}}; + QuaternionOperations::fromDcm(dcmIX, targetQuat); // calculate of reference rotation rate targetRotationRate(timeDelta, targetQuat, targetSatRotRate); } -void Guidance::targetQuatPtgTarget(timeval timeAbsolute, const double timeDelta, double posSatF[3], - double velSatF[3], double targetQuat[4], - double targetSatRotRate[3]) { +void Guidance::targetQuatPtgTarget(timeval timeAbsolute, const double timeDelta, + const double posSatF[3], const double velSatF[3], + double targetQuat[4], double targetSatRotRate[3]) { //------------------------------------------------------------------------------------- // Calculation of target quaternion for target pointing //------------------------------------------------------------------------------------- // transform longitude, latitude and altitude to cartesian coordiantes (ECEF) double targetF[3] = {0, 0, 0}; - MathOperations::cartesianFromLatLongAlt( + CoordinateTransformations::cartesianFromLatLongAlt( acsParameters->targetModeControllerParameters.latitudeTgt, acsParameters->targetModeControllerParameters.longitudeTgt, acsParameters->targetModeControllerParameters.altitudeTgt, targetF); - double targetDirF[3] = {0, 0, 0}; - VectorOperations::subtract(targetF, posSatF, targetDirF, 3); // target direction in the ECI frame double posSatI[3] = {0, 0, 0}, targetI[3] = {0, 0, 0}, targetDirI[3] = {0, 0, 0}; @@ -59,8 +57,8 @@ void Guidance::targetQuatPtgTarget(timeval timeAbsolute, const double timeDelta, // x-axis aligned with target direction // this aligns with the camera, E- and S-band antennas - double xAxisXI[3] = {0, 0, 0}; - VectorOperations::normalize(targetDirI, xAxisXI, 3); + double xAxisIX[3] = {0, 0, 0}; + VectorOperations::normalize(targetDirI, xAxisIX, 3); // transform velocity into inertial frame double velSatI[3] = {0, 0, 0}; @@ -73,32 +71,32 @@ void Guidance::targetQuatPtgTarget(timeval timeAbsolute, const double timeDelta, // y-axis of satellite in orbit plane so that z-axis is parallel to long side of picture // resolution - double yAxisXI[3] = {0, 0, 0}; - VectorOperations::cross(orbitalNormalI, xAxisXI, yAxisXI); - VectorOperations::normalize(yAxisXI, yAxisXI, 3); + double yAxisIX[3] = {0, 0, 0}; + VectorOperations::cross(orbitalNormalI, xAxisIX, yAxisIX); + VectorOperations::normalize(yAxisIX, yAxisIX, 3); // z-axis completes RHS - double zAxisXI[3] = {0, 0, 0}; - VectorOperations::cross(xAxisXI, yAxisXI, zAxisXI); + double zAxisIX[3] = {0, 0, 0}; + VectorOperations::cross(xAxisIX, yAxisIX, zAxisIX); // join transformation matrix - double dcmIX[3][3] = {{xAxisXI[0], yAxisXI[0], zAxisXI[0]}, - {xAxisXI[1], yAxisXI[1], zAxisXI[1]}, - {xAxisXI[2], yAxisXI[2], zAxisXI[2]}}; + double dcmIX[3][3] = {{xAxisIX[0], yAxisIX[0], zAxisIX[0]}, + {xAxisIX[1], yAxisIX[1], zAxisIX[1]}, + {xAxisIX[2], yAxisIX[2], zAxisIX[2]}}; QuaternionOperations::fromDcm(dcmIX, targetQuat); targetRotationRate(timeDelta, targetQuat, targetSatRotRate); } -void Guidance::targetQuatPtgGs(timeval timeAbsolute, const double timeDelta, double posSatF[3], - double sunDirI[3], double targetQuat[4], - double targetSatRotRate[3]) { +void Guidance::targetQuatPtgGs(timeval timeAbsolute, const double timeDelta, + const double posSatF[3], const double sunDirI[3], + double targetQuat[4], double targetSatRotRate[3]) { //------------------------------------------------------------------------------------- // Calculation of target quaternion for ground station pointing //------------------------------------------------------------------------------------- // transform longitude, latitude and altitude to cartesian coordiantes (ECEF) double posGroundStationF[3] = {0, 0, 0}; - MathOperations::cartesianFromLatLongAlt( + CoordinateTransformations::cartesianFromLatLongAlt( acsParameters->gsTargetModeControllerParameters.latitudeTgt, acsParameters->gsTargetModeControllerParameters.longitudeTgt, acsParameters->gsTargetModeControllerParameters.altitudeTgt, posGroundStationF); @@ -106,43 +104,93 @@ void Guidance::targetQuatPtgGs(timeval timeAbsolute, const double timeDelta, dou // target direction in the ECI frame double posSatI[3] = {0, 0, 0}, posGroundStationI[3] = {0, 0, 0}, groundStationDirI[3] = {0, 0, 0}; CoordinateTransformations::positionEcfToEci(posSatF, posSatI, &timeAbsolute); - CoordinateTransformations::positionEcfToEci(posGroundStationI, posGroundStationI, &timeAbsolute); + CoordinateTransformations::positionEcfToEci(posGroundStationF, posGroundStationI, &timeAbsolute); VectorOperations::subtract(posGroundStationI, posSatI, groundStationDirI, 3); // negative x-axis aligned with target direction // this aligns with the camera, E- and S-band antennas - double xAxisXI[3] = {0, 0, 0}; - VectorOperations::normalize(groundStationDirI, xAxisXI, 3); - VectorOperations::mulScalar(xAxisXI, -1, xAxisXI, 3); + double xAxisIX[3] = {0, 0, 0}; + VectorOperations::normalize(groundStationDirI, xAxisIX, 3); + VectorOperations::mulScalar(xAxisIX, -1, xAxisIX, 3); - // get sun vector model in ECI - VectorOperations::normalize(sunDirI, sunDirI, 3); + // get earth vector in ECI + double earthDirI[3] = {0, 0, 0}; + VectorOperations::normalize(posSatI, earthDirI, 3); + VectorOperations::mulScalar(earthDirI, -1, earthDirI, 3); - // calculate z-axis as projection of sun vector into plane defined by x-axis as normal vector - // z = sPerpenticular = s - sParallel = s - (x*s)/norm(x)^2 * x - double xDotS = VectorOperations::dot(xAxisXI, sunDirI); - xDotS /= pow(VectorOperations::norm(xAxisXI, 3), 2); - double sunParallel[3], zAxisXI[3]; - VectorOperations::mulScalar(xAxisXI, xDotS, sunParallel, 3); - VectorOperations::subtract(sunDirI, sunParallel, zAxisXI, 3); - VectorOperations::normalize(zAxisXI, zAxisXI, 3); + // sun avoidance calculations + double sunPerpendicularX[3] = {0, 0, 0}, sunFloorYZ[3] = {0, 0, 0}, zAxisSun[3] = {0, 0, 0}; + VectorOperations::mulScalar(xAxisIX, VectorOperations::dot(xAxisIX, sunDirI), + sunPerpendicularX, 3); + VectorOperations::subtract(sunDirI, sunPerpendicularX, sunFloorYZ, 3); + VectorOperations::normalize(sunFloorYZ, sunFloorYZ, 3); + VectorOperations::mulScalar(sunFloorYZ, -1, zAxisSun, 3); + double sunWeight = 0, strVecSun[3] = {0, 0, 0}, strVecSunX[3] = {0, 0, 0}, + strVecSunZ[3] = {0, 0, 0}; + VectorOperations::mulScalar(xAxisIX, acsParameters->strParameters.boresightAxis[0], + strVecSunX, 3); + VectorOperations::mulScalar(zAxisSun, acsParameters->strParameters.boresightAxis[2], + strVecSunZ, 3); + VectorOperations::add(strVecSunX, strVecSunZ, strVecSun, 3); + VectorOperations::normalize(strVecSun, strVecSun, 3); + sunWeight = VectorOperations::dot(strVecSun, sunDirI); - // y-axis completes RHS - double yAxisXI[3]; - VectorOperations::cross(zAxisXI, xAxisXI, yAxisXI); - VectorOperations::normalize(yAxisXI, yAxisXI, 3); + // earth avoidance calculations + double earthPerpendicularX[3] = {0, 0, 0}, earthFloorYZ[3] = {0, 0, 0}, zAxisEarth[3] = {0, 0, 0}; + VectorOperations::mulScalar(xAxisIX, VectorOperations::dot(xAxisIX, earthDirI), + earthPerpendicularX, 3); + VectorOperations::subtract(earthDirI, earthPerpendicularX, earthFloorYZ, 3); + VectorOperations::normalize(earthFloorYZ, earthFloorYZ, 3); + VectorOperations::mulScalar(earthFloorYZ, -1, zAxisEarth, 3); + double earthWeight = 0, strVecEarth[3] = {0, 0, 0}, strVecEarthX[3] = {0, 0, 0}, + strVecEarthZ[3] = {0, 0, 0}; + VectorOperations::mulScalar(xAxisIX, acsParameters->strParameters.boresightAxis[0], + strVecEarthX, 3); + VectorOperations::mulScalar(zAxisEarth, acsParameters->strParameters.boresightAxis[2], + strVecEarthZ, 3); + VectorOperations::add(strVecEarthX, strVecEarthZ, strVecEarth, 3); + VectorOperations::normalize(strVecEarth, strVecEarth, 3); + earthWeight = VectorOperations::dot(strVecEarth, earthDirI); + + if ((sunWeight == 0.0) and (earthWeight == 0.0)) { + // if this actually ever happens i will eat a broom + sunWeight = 0.5; + earthWeight = 0.5; + } + + // normalize weights for convenience + double normFactor = 1. / (std::abs(sunWeight) + std::abs(earthWeight)); + sunWeight *= normFactor; + earthWeight *= normFactor; + + // calculate z-axis for str blinding avoidance + double zAxisIX[3] = {0, 0, 0}; + VectorOperations::mulScalar(zAxisSun, sunWeight, zAxisSun, 3); + VectorOperations::mulScalar(zAxisEarth, earthWeight, zAxisEarth, 3); + VectorOperations::add(zAxisSun, zAxisEarth, zAxisIX, 3); + VectorOperations::mulScalar(zAxisIX, -1, zAxisIX, 3); + VectorOperations::normalize(zAxisIX, zAxisIX, 3); + + // calculate y-axis + double yAxisIX[3] = {0, 0, 0}; + VectorOperations::cross(zAxisIX, xAxisIX, yAxisIX); + VectorOperations::normalize(yAxisIX, yAxisIX, 3); // join transformation matrix - double dcmXI[3][3] = {{xAxisXI[0], yAxisXI[0], zAxisXI[0]}, - {xAxisXI[1], yAxisXI[1], zAxisXI[1]}, - {xAxisXI[2], yAxisXI[2], zAxisXI[2]}}; - QuaternionOperations::fromDcm(dcmXI, targetQuat); + double dcmIX[3][3] = {{xAxisIX[0], yAxisIX[0], zAxisIX[0]}, + {xAxisIX[1], yAxisIX[1], zAxisIX[1]}, + {xAxisIX[2], yAxisIX[2], zAxisIX[2]}}; + QuaternionOperations::fromDcm(dcmIX, targetQuat); + limitReferenceRotation(xAxisIX, targetQuat); targetRotationRate(timeDelta, targetQuat, targetSatRotRate); + + std::memcpy(xAxisIXprev, xAxisIX, sizeof(xAxisIXprev)); } -void Guidance::targetQuatPtgNadir(timeval timeAbsolute, const double timeDelta, double posSatE[3], - double velSatE[3], double targetQuat[4], double refSatRate[3]) { +void Guidance::targetQuatPtgNadir(timeval timeAbsolute, const double timeDelta, + const double posSatE[3], const double velSatE[3], + double targetQuat[4], double refSatRate[3]) { //------------------------------------------------------------------------------------- // Calculation of target quaternion for Nadir pointing //------------------------------------------------------------------------------------- @@ -153,26 +201,26 @@ void Guidance::targetQuatPtgNadir(timeval timeAbsolute, const double timeDelta, // negative x-axis aligned with position vector // this aligns with the camera, E- and S-band antennas - double xAxisXI[3] = {0, 0, 0}; - VectorOperations::normalize(posSatI, xAxisXI, 3); - VectorOperations::mulScalar(xAxisXI, -1, xAxisXI, 3); + double xAxisIX[3] = {0, 0, 0}; + VectorOperations::normalize(posSatI, xAxisIX, 3); + VectorOperations::mulScalar(xAxisIX, -1, xAxisIX, 3); // make z-Axis parallel to major part of camera resolution - double zAxisXI[3] = {0, 0, 0}; + double zAxisIX[3] = {0, 0, 0}; double velSatI[3] = {0, 0, 0}; CoordinateTransformations::velocityEcfToEci(velSatE, posSatE, velSatI, &timeAbsolute); - VectorOperations::cross(xAxisXI, velSatI, zAxisXI); - VectorOperations::normalize(zAxisXI, zAxisXI, 3); + VectorOperations::cross(xAxisIX, velSatI, zAxisIX); + VectorOperations::normalize(zAxisIX, zAxisIX, 3); // y-Axis completes RHS - double yAxisXI[3] = {0, 0, 0}; - VectorOperations::cross(zAxisXI, xAxisXI, yAxisXI); + double yAxisIX[3] = {0, 0, 0}; + VectorOperations::cross(zAxisIX, xAxisIX, yAxisIX); // join transformation matrix - double dcmXI[3][3] = {{xAxisXI[0], yAxisXI[0], zAxisXI[0]}, - {xAxisXI[1], yAxisXI[1], zAxisXI[1]}, - {xAxisXI[2], yAxisXI[2], zAxisXI[2]}}; - QuaternionOperations::fromDcm(dcmXI, targetQuat); + double dcmIX[3][3] = {{xAxisIX[0], yAxisIX[0], zAxisIX[0]}, + {xAxisIX[1], yAxisIX[1], zAxisIX[1]}, + {xAxisIX[2], yAxisIX[2], zAxisIX[2]}}; + QuaternionOperations::fromDcm(dcmIX, targetQuat); targetRotationRate(timeDelta, targetQuat, refSatRate); } @@ -189,6 +237,59 @@ void Guidance::targetRotationRate(const double timeDelta, double quatIX[4], doub std::memcpy(quatIXprev, quatIX, sizeof(quatIXprev)); } +void Guidance::limitReferenceRotation(const double xAxisIX[3], double quatIX[4]) { + if ((VectorOperations::norm(quatIXprev, 4) == 0) or + (VectorOperations::norm(xAxisIXprev, 3) == 0)) { + return; + } + + // check required rotation and return if below limit + double quatXprevX[4] = {0, 0, 0, 0}, quatXprevI[4] = {0, 0, 0, 0}; + QuaternionOperations::inverse(quatIXprev, quatXprevI); + QuaternionOperations::multiply(quatIX, quatXprevI, quatXprevX); + QuaternionOperations::normalize(quatXprevX); + double phiMax = acsParameters->gsTargetModeControllerParameters.omMax * + acsParameters->onBoardParams.sampleTime; + if (2 * std::acos(quatXprevX[3]) < phiMax) { + return; + } + + // x-axis always needs full rotation + double phiX = 0, phiXvec[3] = {0, 0, 0}; + phiX = std::acos(VectorOperations::dot(xAxisIXprev, xAxisIX)); + VectorOperations::cross(xAxisIXprev, xAxisIX, phiXvec); + VectorOperations::normalize(phiXvec, phiXvec, 3); + + double quatXprevXtilde[4] = {0, 0, 0, 0}, quatIXtilde[4] = {0, 0, 0, 0}; + VectorOperations::mulScalar(phiXvec, -std::sin(phiX / 2.), phiXvec, 3); + std::memcpy(quatXprevXtilde, phiXvec, sizeof(phiXvec)); + quatXprevXtilde[3] = cos(phiX / 2.); + QuaternionOperations::normalize(quatXprevXtilde); + QuaternionOperations::multiply(quatXprevXtilde, quatIXprev, quatIXtilde); + + // use the residual rotation up to the maximum + double quatXXtilde[4] = {0, 0, 0, 0}, quatXI[4] = {0, 0, 0, 0}; + QuaternionOperations::inverse(quatIX, quatXI); + QuaternionOperations::multiply(quatIXtilde, quatXI, quatXXtilde); + + double phiResidual = 0, phiResidualVec[3] = {0, 0, 0}; + phiResidual = std::sqrt((phiMax * phiMax) - (phiX * phiX)); + std::memcpy(phiResidualVec, quatXXtilde, sizeof(phiResidualVec)); + VectorOperations::normalize(phiResidualVec, phiResidualVec, 3); + + double quatXhatXTilde[4] = {0, 0, 0, 0}, quatXTildeXhat[4] = {0, 0, 0, 0}; + VectorOperations::mulScalar(phiResidualVec, std::sin(phiResidual / 2.), phiResidualVec, + 3); + std::memcpy(quatXhatXTilde, phiResidualVec, sizeof(phiResidualVec)); + quatXhatXTilde[3] = std::cos(phiResidual / 2.); + QuaternionOperations::normalize(quatXhatXTilde); + + // calculate final quaternion + QuaternionOperations::inverse(quatXhatXTilde, quatXTildeXhat); + QuaternionOperations::multiply(quatXTildeXhat, quatIXtilde, quatIX); + QuaternionOperations::normalize(quatIX); +} + void Guidance::comparePtg(double currentQuat[4], double currentSatRotRate[3], double targetQuat[4], double targetSatRotRate[3], double refQuat[4], double refSatRotRate[3], double errorQuat[4], double errorSatRotRate[3], double &errorAngle) { @@ -255,7 +356,10 @@ ReturnValue_t Guidance::getDistributionMatrixRw(ACS::SensorValues *sensorValues, return acsctrl::MULTIPLE_RW_UNAVAILABLE; } -void Guidance::resetValues() { std::memcpy(quatIXprev, ZERO_VEC4, sizeof(quatIXprev)); } +void Guidance::resetValues() { + std::memcpy(quatIXprev, ZERO_VEC4, sizeof(quatIXprev)); + std::memcpy(xAxisIXprev, ZERO_VEC3, sizeof(xAxisIXprev)); +} void Guidance::getTargetParamsSafe(double sunTargetSafe[3]) { std::error_code e; diff --git a/mission/controller/acs/Guidance.h b/mission/controller/acs/Guidance.h index 9835b762..a914ecfe 100644 --- a/mission/controller/acs/Guidance.h +++ b/mission/controller/acs/Guidance.h @@ -8,9 +8,7 @@ #include #include #include -#include #include -#include #include #include @@ -27,16 +25,18 @@ class Guidance { void targetQuatPtgIdle(timeval timeAbsolute, const double timeDelta, const double sunDirI[3], const double posSatF[4], double targetQuat[4], double targetSatRotRate[3]); - void targetQuatPtgTarget(timeval timeAbsolute, const double timeDelta, double posSatF[3], - double velSatE[3], double quatIX[4], double targetSatRotRate[3]); - void targetQuatPtgGs(timeval timeAbsolute, const double timeDelta, double posSatF[3], - double sunDirI[3], double quatIX[4], double targetSatRotRate[3]); - void targetQuatPtgNadir(timeval timeAbsolute, const double timeDelta, double posSatF[3], - double velSatF[3], double targetQuat[4], double refSatRate[3]); + void targetQuatPtgTarget(timeval timeAbsolute, const double timeDelta, const double posSatF[3], + const double velSatE[3], double quatIX[4], double targetSatRotRate[3]); + void targetQuatPtgGs(timeval timeAbsolute, const double timeDelta, const double posSatF[3], + const double sunDirI[3], double quatIX[4], double targetSatRotRate[3]); + void targetQuatPtgNadir(timeval timeAbsolute, const double timeDelta, const double posSatF[3], + const double velSatF[3], double targetQuat[4], double refSatRate[3]); void targetRotationRate(const double timeDelta, double quatInertialTarget[4], double *targetSatRotRate); + void limitReferenceRotation(const double xAxisIX[3], double quatIX[4]); + void comparePtg(double currentQuat[4], double currentSatRotRate[3], double targetQuat[4], double targetSatRotRate[3], double refQuat[4], double refSatRotRate[3], double errorQuat[4], double errorSatRotRate[3], double &errorAngle); @@ -54,6 +54,7 @@ class Guidance { bool strBlindAvoidFlag = false; double quatIXprev[4] = {0, 0, 0, 0}; + double xAxisIXprev[3] = {0, 0, 0}; static constexpr char SD_0_SKEWED_PTG_FILE[] = "/mnt/sd0/conf/acsDeploymentConfirm"; static constexpr char SD_1_SKEWED_PTG_FILE[] = "/mnt/sd1/conf/acsDeploymentConfirm"; diff --git a/mission/controller/acs/Igrf13Model.cpp b/mission/controller/acs/Igrf13Model.cpp index 3f844434..4ae7c93a 100644 --- a/mission/controller/acs/Igrf13Model.cpp +++ b/mission/controller/acs/Igrf13Model.cpp @@ -1,19 +1,5 @@ #include "Igrf13Model.h" -#include -#include -#include -#include -#include -#include -#include - -#include - -#include "util/MathOperations.h" - -using namespace Math; - Igrf13Model::Igrf13Model() {} Igrf13Model::~Igrf13Model() {} @@ -23,7 +9,7 @@ void Igrf13Model::magFieldComp(const double longitude, const double gcLatitude, double magFieldModel[3] = {0, 0, 0}; double phi = longitude, theta = gcLatitude; // geocentric /* Here is the co-latitude needed*/ - theta -= 90 * PI / 180; + theta -= 90. * M_PI / 180.; theta *= (-1); double rE = 6371200.0; // radius earth [m] @@ -83,13 +69,13 @@ void Igrf13Model::magFieldComp(const double longitude, const double gcLatitude, magFieldModel[1] *= -1; magFieldModel[2] *= (-1 / sin(theta)); - double JD2000 = MathOperations::convertUnixToJD2000(timeOfMagMeasurement); + double JD2000 = TimeSystems::convertUnixToJD2000(timeOfMagMeasurement); double UT1 = JD2000 / 36525.; double gst = 280.46061837 + 360.98564736629 * JD2000 + 0.0003875 * pow(UT1, 2) - 2.6e-8 * pow(UT1, 3); gst = std::fmod(gst, 360.); - gst *= PI / 180.; + gst *= M_PI / 180.; double lst = gst + longitude; // local sidereal time [rad] magFieldModelInertial[0] = @@ -107,7 +93,7 @@ void Igrf13Model::magFieldComp(const double longitude, const double gcLatitude, void Igrf13Model::updateCoeffGH(timeval timeOfMagMeasurement) { double JD2000Igrf = (2458850.0 - 2451545); // Begin of IGRF-13 (2020-01-01,00:00:00) in JD2000 - double JD2000 = MathOperations::convertUnixToJD2000(timeOfMagMeasurement); + double JD2000 = TimeSystems::convertUnixToJD2000(timeOfMagMeasurement); double days = ceil(JD2000 - JD2000Igrf); for (int i = 0; i <= igrfOrder; i++) { for (int j = 0; j <= (igrfOrder - 1); j++) { diff --git a/mission/controller/acs/Igrf13Model.h b/mission/controller/acs/Igrf13Model.h index 187adde7..9a7feb34 100644 --- a/mission/controller/acs/Igrf13Model.h +++ b/mission/controller/acs/Igrf13Model.h @@ -16,10 +16,11 @@ #ifndef IGRF13MODEL_H_ #define IGRF13MODEL_H_ -#include -#include -#include -#include +#include +#include +#include +#include +#include #include diff --git a/mission/controller/acs/MultiplicativeKalmanFilter.cpp b/mission/controller/acs/MultiplicativeKalmanFilter.cpp index ba878034..647e2141 100644 --- a/mission/controller/acs/MultiplicativeKalmanFilter.cpp +++ b/mission/controller/acs/MultiplicativeKalmanFilter.cpp @@ -9,9 +9,6 @@ #include -#include "util/CholeskyDecomposition.h" -#include "util/MathOperations.h" - MultiplicativeKalmanFilter::MultiplicativeKalmanFilter() {} MultiplicativeKalmanFilter::~MultiplicativeKalmanFilter() {} @@ -25,9 +22,9 @@ ReturnValue_t MultiplicativeKalmanFilter::init( if (validMagField_ && validSS && validSSModel && validMagModel) { // QUEST ALGO ----------------------------------------------------------------------- double sigmaSun = 0, sigmaMag = 0, sigmaGyro = 0; - sigmaSun = acsParameters->kalmanFilterParameters.sensorNoiseSS; - sigmaMag = acsParameters->kalmanFilterParameters.sensorNoiseMAG; - sigmaGyro = acsParameters->kalmanFilterParameters.sensorNoiseGYR; + sigmaSun = acsParameters->kalmanFilterParameters.sensorNoiseSus; + sigmaMag = acsParameters->kalmanFilterParameters.sensorNoiseMgm; + sigmaGyro = acsParameters->kalmanFilterParameters.sensorNoiseGyr; double normMagB[3] = {0, 0, 0}, normSunB[3] = {0, 0, 0}, normMagJ[3] = {0, 0, 0}, normSunJ[3] = {0, 0, 0}; @@ -234,9 +231,9 @@ ReturnValue_t MultiplicativeKalmanFilter::mekfEst( // If we are here, MEKF will perform double sigmaSun = 0, sigmaMag = 0, sigmaStr = 0; - sigmaSun = acsParameters->kalmanFilterParameters.sensorNoiseSS; - sigmaMag = acsParameters->kalmanFilterParameters.sensorNoiseMAG; - sigmaStr = acsParameters->kalmanFilterParameters.sensorNoiseSTR; + sigmaSun = acsParameters->kalmanFilterParameters.sensorNoiseSus; + sigmaMag = acsParameters->kalmanFilterParameters.sensorNoiseMgm; + sigmaStr = acsParameters->kalmanFilterParameters.sensorNoiseStr; double normMagB[3] = {0, 0, 0}, normSunB[3] = {0, 0, 0}, normMagJ[3] = {0, 0, 0}, normSunJ[3] = {0, 0, 0}; @@ -264,8 +261,8 @@ ReturnValue_t MultiplicativeKalmanFilter::mekfEst( double measSensMatrix11[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}}; // ss double measSensMatrix22[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}}; // mag double measSensMatrix33[3][3] = {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}}; // str - MathOperations::skewMatrix(sunEstB, *measSensMatrix11); - MathOperations::skewMatrix(magEstB, *measSensMatrix22); + MatrixOperations::skewMatrix(sunEstB, *measSensMatrix11); + MatrixOperations::skewMatrix(magEstB, *measSensMatrix22); double measVecQuat[3] = {0, 0, 0}; if (validSTR_) { @@ -837,8 +834,9 @@ ReturnValue_t MultiplicativeKalmanFilter::mekfEst( MatrixOperations::add(*residualCov, *measCovMatrix, *residualCov, MDF, MDF); // <> double invResidualCov[MDF][MDF] = {{0}}; - int inversionFailed = MathOperations::inverseMatrix(*residualCov, *invResidualCov, MDF); - if (inversionFailed) { + ReturnValue_t result = + MatrixOperations::inverseMatrix(*residualCov, *invResidualCov, MDF); + if (result != returnvalue::OK) { updateDataSetWithoutData(mekfData, MekfStatus::COVARIANCE_INVERSION_FAILED); return MEKF_COVARIANCE_INVERSION_FAILED; // RETURN VALUE ? -- Like: Kalman Inversion Failed } @@ -874,7 +872,7 @@ ReturnValue_t MultiplicativeKalmanFilter::mekfEst( // State Vector Elements double xi1[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}}, xi2[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}}; - MathOperations::skewMatrix(propagatedQuaternion, *xi2); + MatrixOperations::skewMatrix(propagatedQuaternion, *xi2); double identityMatrix3[3][3] = {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}}; MatrixOperations::multiplyScalar(*identityMatrix3, propagatedQuaternion[3], *xi1, 3, 3); MatrixOperations::add(*xi1, *xi2, *xi1, 3, 3); @@ -898,8 +896,8 @@ ReturnValue_t MultiplicativeKalmanFilter::mekfEst( biasGYR[2] = updatedGyroBias[2]; /* ----------- PROPAGATION ----------*/ - double sigmaU = acsParameters->kalmanFilterParameters.sensorNoiseBsGYR; - double sigmaV = acsParameters->kalmanFilterParameters.sensorNoiseArwGYR; + double sigmaU = acsParameters->kalmanFilterParameters.sensorNoiseGyrBs; + double sigmaV = acsParameters->kalmanFilterParameters.sensorNoiseGyrArw; double discTimeMatrix[6][6] = {{-1, 0, 0, 0, 0, 0}, {0, -1, 0, 0, 0, 0}, {0, 0, -1, 0, 0, 0}, {0, 0, 0, 1, 0, 0}, {0, 0, 0, 0, 1, 0}, {0, 0, 0, 0, 0, 1}}; @@ -1057,7 +1055,7 @@ ReturnValue_t MultiplicativeKalmanFilter::mekfEst( VectorOperations::mulScalar(rotRateEst, sinFac, rotSin, 3); double skewSin[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}}; - MathOperations::skewMatrix(rotSin, *skewSin); + MatrixOperations::skewMatrix(rotSin, *skewSin); MatrixOperations::multiplyScalar(*identityMatrix3, rotCos, *rotCosMat, 3, 3); double subMatUL[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}}; @@ -1080,8 +1078,8 @@ ReturnValue_t MultiplicativeKalmanFilter::mekfEst( MatrixOperations::add(*cov0, *cov1, *initialCovarianceMatrix, 6, 6); - if (not(MathOperations::checkVectorIsFinite(propagatedQuaternion, 4)) || - not(MathOperations::checkMatrixIsFinite(initialQuaternion, 6, 6))) { + if (not(VectorOperations::isFinite(propagatedQuaternion, 4)) || + not(MatrixOperations::isFinite(*initialCovarianceMatrix, 6, 6))) { updateDataSetWithoutData(mekfData, MekfStatus::NOT_FINITE); return MEKF_NOT_FINITE; } diff --git a/mission/controller/acs/Navigation.cpp b/mission/controller/acs/Navigation.cpp index 624f4cea..5990eca1 100644 --- a/mission/controller/acs/Navigation.cpp +++ b/mission/controller/acs/Navigation.cpp @@ -5,9 +5,6 @@ #include #include -#include "util/CholeskyDecomposition.h" -#include "util/MathOperations.h" - Navigation::Navigation() {} Navigation::~Navigation() {} diff --git a/mission/controller/acs/SensorProcessing.cpp b/mission/controller/acs/SensorProcessing.cpp index 43582f18..ac82e891 100644 --- a/mission/controller/acs/SensorProcessing.cpp +++ b/mission/controller/acs/SensorProcessing.cpp @@ -180,7 +180,7 @@ void SensorProcessing::processSus( const AcsParameters::SunModelParameters *sunModelParameters, acsctrl::SusDataProcessed *susDataProcessed) { /* -------- Sun Model Direction (IJK frame) ------- */ - double JD2000 = MathOperations::convertUnixToJD2000(timeAbsolute); + double JD2000 = TimeSystems::convertUnixToJD2000(timeAbsolute); // Julean Centuries double sunIjkModel[3] = {0.0, 0.0, 0.0}; @@ -198,6 +198,7 @@ void SensorProcessing::processSus( sunIjkModel[0] = cos(eclipticLongitude); sunIjkModel[1] = sin(eclipticLongitude) * cos(epsilon); sunIjkModel[2] = sin(eclipticLongitude) * sin(epsilon); + VectorOperations::normalize(sunIjkModel, sunIjkModel, 3); uint64_t susBrightness[12] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; if (sus0valid) { @@ -528,8 +529,8 @@ void SensorProcessing::processGps(const double gpsLatitude, const double gpsLong uint8_t gpsSource = acs::gps::Source::NONE; // We do not trust the GPS and therefore it shall die here if SPG4 is running if (gpsDataProcessed->source.value == acs::gps::Source::SPG4 and gpsParameters->useSpg4) { - MathOperations::latLongAltFromCartesian(gpsDataProcessed->gpsPosition.value, gdLatitude, - gdLongitude, altitude); + CoordinateTransformations::latLongAltFromCartesian(gpsDataProcessed->gpsPosition.value, + gdLatitude, gdLongitude, altitude); double factor = 1 - pow(ECCENTRICITY_WGS84, 2); gcLatitude = atan(factor * tan(gdLatitude)); { @@ -559,7 +560,7 @@ void SensorProcessing::processGps(const double gpsLatitude, const double gpsLong // Calculation of the satellite velocity in earth fixed frame double deltaDistance[3] = {0, 0, 0}; - MathOperations::cartesianFromLatLongAlt(latitudeRad, gdLongitude, altitude, posSatE); + CoordinateTransformations::cartesianFromLatLongAlt(latitudeRad, gdLongitude, altitude, posSatE); if (validSavedPosSatE and timeDelta < (gpsParameters->timeDiffVelocityMax) and timeDelta > 0) { VectorOperations::subtract(posSatE, savedPosSatE, deltaDistance, 3); VectorOperations::mulScalar(deltaDistance, 1. / timeDelta, gpsVelocityE, 3); diff --git a/mission/controller/acs/SensorProcessing.h b/mission/controller/acs/SensorProcessing.h index fea0fd01..e5efba71 100644 --- a/mission/controller/acs/SensorProcessing.h +++ b/mission/controller/acs/SensorProcessing.h @@ -2,7 +2,9 @@ #define SENSORPROCESSING_H_ #include +#include #include +#include #include #include #include @@ -14,7 +16,6 @@ #include #include #include -#include #include #include diff --git a/mission/controller/acs/util/CholeskyDecomposition.h b/mission/controller/acs/util/CholeskyDecomposition.h deleted file mode 100644 index 667f9f63..00000000 --- a/mission/controller/acs/util/CholeskyDecomposition.h +++ /dev/null @@ -1,98 +0,0 @@ -/* - * TinyEKF: Extended Kalman Filter for embedded processors - * - * Copyright (C) 2015 Simon D. Levy - * - * MIT License - */ -#ifndef CHOLESKYDECOMPOSITION_H_ -#define CHOLESKYDECOMPOSITION_H_ -#include -// typedef unsigned int uint8_t; - -template -class CholeskyDecomposition { - public: - static int invertCholesky(T1 *matrix, T2 *result, T3 *tempMatrix, const uint8_t dimension) { - // https://github.com/simondlevy/TinyEKF/blob/master/tiny_ekf.c - return cholsl(matrix, result, tempMatrix, dimension); - } - - private: - // https://github.com/simondlevy/TinyEKF/blob/master/tiny_ekf.c - static uint8_t choldc1(double *a, double *p, uint8_t n) { - int8_t i, j, k; - double sum; - - for (i = 0; i < n; i++) { - for (j = i; j < n; j++) { - sum = a[i * n + j]; - for (k = i - 1; k >= 0; k--) { - sum -= a[i * n + k] * a[j * n + k]; - } - if (i == j) { - if (sum <= 0) { - return 1; /* error */ - } - p[i] = sqrt(sum); - } else { - a[j * n + i] = sum / p[i]; - } - } - } - - return 0; /* success */ - } - - // https://github.com/simondlevy/TinyEKF/blob/master/tiny_ekf.c - static uint8_t choldcsl(double *A, double *a, double *p, uint8_t n) { - uint8_t i, j, k; - double sum; - for (i = 0; i < n; i++) - for (j = 0; j < n; j++) a[i * n + j] = A[i * n + j]; - if (choldc1(a, p, n)) return 1; - for (i = 0; i < n; i++) { - a[i * n + i] = 1 / p[i]; - for (j = i + 1; j < n; j++) { - sum = 0; - for (k = i; k < j; k++) { - sum -= a[j * n + k] * a[k * n + i]; - } - a[j * n + i] = sum / p[j]; - } - } - - return 0; /* success */ - } - - // https://github.com/simondlevy/TinyEKF/blob/master/tiny_ekf.c - static uint8_t cholsl(double *A, double *a, double *p, uint8_t n) { - uint8_t i, j, k; - if (choldcsl(A, a, p, n)) return 1; - for (i = 0; i < n; i++) { - for (j = i + 1; j < n; j++) { - a[i * n + j] = 0.0; - } - } - for (i = 0; i < n; i++) { - a[i * n + i] *= a[i * n + i]; - for (k = i + 1; k < n; k++) { - a[i * n + i] += a[k * n + i] * a[k * n + i]; - } - for (j = i + 1; j < n; j++) { - for (k = j; k < n; k++) { - a[i * n + j] += a[k * n + i] * a[k * n + j]; - } - } - } - for (i = 0; i < n; i++) { - for (j = 0; j < i; j++) { - a[i * n + j] = a[j * n + i]; - } - } - - return 0; /* success */ - } -}; - -#endif /* CONTRIB_MATH_CHOLESKYDECOMPOSITION_H_ */ diff --git a/mission/controller/acs/util/MathOperations.h b/mission/controller/acs/util/MathOperations.h deleted file mode 100644 index 023e9379..00000000 --- a/mission/controller/acs/util/MathOperations.h +++ /dev/null @@ -1,465 +0,0 @@ -#ifndef MATH_MATHOPERATIONS_H_ -#define MATH_MATHOPERATIONS_H_ - -#include -#include -#include -#include - -#include -#include -#include - -template -class MathOperations { - public: - static void skewMatrix(const T1 vector[], T2 *result) { - // Input Dimension [3], Output [3][3] - result[0] = 0; - result[1] = -vector[2]; - result[2] = vector[1]; - result[3] = vector[2]; - result[4] = 0; - result[5] = -vector[0]; - result[6] = -vector[1]; - result[7] = vector[0]; - result[8] = 0; - } - static void vecTransposeVecMatrix(const T1 vector1[], const T1 transposeVector2[], T2 *result, - uint8_t size = 3) { - // Looks like MatrixOpertions::multiply is able to do the same thing - for (uint8_t resultColumn = 0; resultColumn < size; resultColumn++) { - for (uint8_t resultRow = 0; resultRow < size; resultRow++) { - result[resultColumn + size * resultRow] = - vector1[resultRow] * transposeVector2[resultColumn]; - } - } - /*matrixSun[i][j] = sunEstB[i] * sunEstB[j]; - matrixMag[i][j] = magEstB[i] * magEstB[j]; - matrixSunMag[i][j] = sunEstB[i] * magEstB[j]; - matrixMagSun[i][j] = magEstB[i] * sunEstB[j];*/ - } - - static void selectionSort(const T1 *matrix, T1 *result, uint8_t rowSize, uint8_t colSize) { - int min_idx; - T1 temp; - std::memcpy(result, matrix, rowSize * colSize * sizeof(*result)); - // One by one move boundary of unsorted subarray - for (int k = 0; k < rowSize; k++) { - for (int i = 0; i < colSize - 1; i++) { - // Find the minimum element in unsorted array - min_idx = i; - for (int j = i + 1; j < colSize; j++) { - if (result[j + k * colSize] < result[min_idx + k * colSize]) { - min_idx = j; - } - } - // Swap the found minimum element with the first element - temp = result[i + k * colSize]; - result[i + k * colSize] = result[min_idx + k * colSize]; - result[min_idx + k * colSize] = temp; - } - } - } - - static void convertDateToJD2000(const T1 time, T2 julianDate) { - // time = { Y, M, D, h, m,s} - // time in sec and microsec -> The Epoch (unixtime) - julianDate = 1721013.5 + 367 * time[0] - floor(7 / 4 * (time[0] + (time[1] + 9) / 12)) + - floor(275 * time[1] / 9) + time[2] + - (60 * time[3] + time[4] + (time(5) / 60)) / 1440; - } - - static T1 convertUnixToJD2000(timeval time) { - // time = {{s},{us}} - T1 julianDate2000; - julianDate2000 = (time.tv_sec / 86400.0) + 2440587.5 - 2451545; - return julianDate2000; - } - - static void dcmFromQuat(const T1 vector[], T1 *outputDcm) { - // convention q = [qx,qy,qz, qw] - outputDcm[0] = pow(vector[0], 2) - pow(vector[1], 2) - pow(vector[2], 2) + pow(vector[3], 2); - outputDcm[1] = 2 * (vector[0] * vector[1] + vector[2] * vector[3]); - outputDcm[2] = 2 * (vector[0] * vector[2] - vector[1] * vector[3]); - - outputDcm[3] = 2 * (vector[1] * vector[0] - vector[2] * vector[3]); - outputDcm[4] = -pow(vector[0], 2) + pow(vector[1], 2) - pow(vector[2], 2) + pow(vector[3], 2); - outputDcm[5] = 2 * (vector[1] * vector[2] + vector[0] * vector[3]); - - outputDcm[6] = 2 * (vector[2] * vector[0] + vector[1] * vector[3]); - outputDcm[7] = 2 * (vector[2] * vector[1] - vector[0] * vector[3]); - outputDcm[8] = -pow(vector[0], 2) - pow(vector[1], 2) + pow(vector[2], 2) + pow(vector[3], 2); - } - - static void cartesianFromLatLongAlt(const T1 lat, const T1 longi, const T1 alt, - T2 *cartesianOutput) { - /* @brief: cartesianFromLatLongAlt() - calculates cartesian coordinates in ECEF from latitude, - * longitude and altitude - * @param: lat geodetic latitude [rad] - * longi longitude [rad] - * alt altitude [m] - * cartesianOutput Cartesian Coordinates in ECEF (3x1) - * @source: Fundamentals of Spacecraft Attitude Determination and Control, P.34ff - * Landis Markley and John L. Crassidis*/ - double radiusPolar = 6356752.314; - double radiusEqua = 6378137; - - double eccentricity = sqrt(1 - pow(radiusPolar, 2) / pow(radiusEqua, 2)); - double auxRadius = radiusEqua / sqrt(1 - pow(eccentricity, 2) * pow(sin(lat), 2)); - - cartesianOutput[0] = (auxRadius + alt) * cos(lat) * cos(longi); - cartesianOutput[1] = (auxRadius + alt) * cos(lat) * sin(longi); - cartesianOutput[2] = ((1 - pow(eccentricity, 2)) * auxRadius + alt) * sin(lat); - } - - static void latLongAltFromCartesian(const T1 *vector, T1 &latitude, T1 &longitude, T1 &altitude) { - /* @brief: latLongAltFromCartesian() - calculates latitude, longitude and altitude from - * cartesian coordinates in ECEF - * @param: x x-value of position vector [m] - * y y-value of position vector [m] - * z z-value of position vector [m] - * latitude geodetic latitude [rad] - * longitude longitude [rad] - * altitude altitude [m] - * @source: Fundamentals of Spacecraft Attitude Determination and Control, P.35 f - * Landis Markley and John L. Crassidis*/ - // From World Geodetic System the Earth Radii - double a = 6378137.0; // semimajor axis [m] - double b = 6356752.3142; // semiminor axis [m] - - // Calculation - double e2 = 1 - pow(b, 2) / pow(a, 2); - double epsilon2 = pow(a, 2) / pow(b, 2) - 1; - double rho = sqrt(pow(vector[0], 2) + pow(vector[1], 2)); - double p = std::abs(vector[2]) / epsilon2; - double s = pow(rho, 2) / (e2 * epsilon2); - double q = pow(p, 2) - pow(b, 2) + s; - double u = p / sqrt(q); - double v = pow(b, 2) * pow(u, 2) / q; - double P = 27 * v * s / q; - double Q = pow(sqrt(P + 1) + sqrt(P), 2. / 3.); - double t = (1 + Q + 1 / Q) / 6; - double c = sqrt(pow(u, 2) - 1 + 2 * t); - double w = (c - u) / 2; - double d = - sign(vector[2]) * sqrt(q) * (w + sqrt(sqrt(pow(t, 2) + v) - u * w - t / 2 - 1. / 4.)); - double N = a * sqrt(1 + epsilon2 * pow(d, 2) / pow(b, 2)); - latitude = asin((epsilon2 + 1) * d / N); - altitude = rho * cos(latitude) + vector[2] * sin(latitude) - pow(a, 2) / N; - longitude = atan2(vector[1], vector[0]); - } - - static void dcmEJ(timeval time, T1 *outputDcmEJ, T1 *outputDotDcmEJ) { - /* @brief: dcmEJ() - calculates the transformation matrix between ECEF and ECI frame - * @param: time Current time - * outputDcmEJ Transformation matrix from ECI (J) to ECEF (E) [3][3] - * outputDotDcmEJ Derivative of transformation matrix [3][3] - * @source: Fundamentals of Spacecraft Attitude Determination and Control, P.32ff - * Landis Markley and John L. Crassidis*/ - double JD2000Floor = 0; - double JD2000 = convertUnixToJD2000(time); - // Getting Julian Century from Day start : JD (Y,M,D,0,0,0) - JD2000Floor = floor(JD2000); - if ((JD2000 - JD2000Floor) < 0.5) { - JD2000Floor -= 0.5; - } else { - JD2000Floor += 0.5; - } - - double JC2000 = JD2000Floor / 36525; - double sec = (JD2000 - JD2000Floor) * 86400; - double gmst = 0; // greenwich mean sidereal time - gmst = 24110.54841 + 8640184.812866 * JC2000 + 0.093104 * pow(JC2000, 2) - - 0.0000062 * pow(JC2000, 3) + 1.002737909350795 * sec; - double rest = gmst / 86400; - double FloorRest = floor(rest); - double secOfDay = rest - FloorRest; - secOfDay *= 86400; - gmst = secOfDay / 240 * M_PI / 180; - - outputDcmEJ[0] = cos(gmst); - outputDcmEJ[1] = sin(gmst); - outputDcmEJ[2] = 0; - outputDcmEJ[3] = -sin(gmst); - outputDcmEJ[4] = cos(gmst); - outputDcmEJ[5] = 0; - outputDcmEJ[6] = 0; - outputDcmEJ[7] = 0; - outputDcmEJ[8] = 1; - - // Derivative of dmcEJ WITHOUT PRECISSION AND NUTATION - double dcmEJCalc[3][3] = {{outputDcmEJ[0], outputDcmEJ[1], outputDcmEJ[2]}, - {outputDcmEJ[3], outputDcmEJ[4], outputDcmEJ[5]}, - {outputDcmEJ[6], outputDcmEJ[7], outputDcmEJ[8]}}; - double dcmDot[3][3] = {{0, 1, 0}, {-1, 0, 0}, {0, 0, 0}}; - double omegaEarth = 0.000072921158553; - double dotDcmEJ[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}}; - MatrixOperations::multiply(*dcmDot, *dcmEJCalc, *dotDcmEJ, 3, 3, 3); - MatrixOperations::multiplyScalar(*dotDcmEJ, omegaEarth, outputDotDcmEJ, 3, 3); - } - - /* @brief: ecfToEciWithNutPre() - calculates the transformation matrix between ECEF and ECI frame - * give also the back the derivative of this matrix - * @param: unixTime Current time in Unix format - * outputDcmEJ Transformation matrix from ECI (J) to ECEF (E) [3][3] - * outputDotDcmEJ Derivative of transformation matrix [3][3] - * @source: Entwicklung einer Simulationsumgebung und robuster Algorithmen für das Lage- und - Orbitkontrollsystem der Kleinsatelliten Flying Laptop und PERSEUS, P.244ff - * Oliver Zeile - * - https://eive-cloud.irs.uni-stuttgart.de/index.php/apps/files/?dir=/EIVE_Studenten/Marquardt_Robin&openfile=896110*/ - static void ecfToEciWithNutPre(timeval unixTime, T1 *outputDcmEJ, T1 *outputDotDcmEJ) { - // TT = UTC/Unix + 32.184s (TAI Difference) + 27 (Leap Seconds in UTC since 1972) + 10 - //(initial Offset) International Atomic Time (TAI) - - double JD2000UTC1 = convertUnixToJD2000(unixTime); - - // Julian Date / century from TT - timeval terestrialTime = unixTime; - terestrialTime.tv_sec = unixTime.tv_sec + 32.184 + 37; - double JD2000TT = convertUnixToJD2000(terestrialTime); - double JC2000TT = JD2000TT / 36525; - - //------------------------------------------------------------------------------------- - // Calculation of Transformation from earth rotation Theta - //------------------------------------------------------------------------------------- - double theta[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}}; - // Earth Rotation angle - double era = 0; - era = 2 * M_PI * (0.779057273264 + 1.00273781191135448 * JD2000UTC1); - // Greenwich Mean Sidereal Time - double gmst2000 = 0.014506 + 4612.15739966 * JC2000TT + 1.39667721 * pow(JC2000TT, 2) - - 0.00009344 * pow(JC2000TT, 3) + 0.00001882 * pow(JC2000TT, 4); - double arcsecFactor = 1 * M_PI / (180 * 3600); - gmst2000 *= arcsecFactor; - gmst2000 += era; - - theta[0][0] = cos(gmst2000); - theta[0][1] = sin(gmst2000); - theta[0][2] = 0; - theta[1][0] = -sin(gmst2000); - theta[1][1] = cos(gmst2000); - theta[1][2] = 0; - theta[2][0] = 0; - theta[2][1] = 0; - theta[2][2] = 1; - - //------------------------------------------------------------------------------------- - // Calculation of Transformation from earth Precession P - //------------------------------------------------------------------------------------- - double precession[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}}; - - double zeta = 2306.2181 * JC2000TT + 0.30188 * pow(JC2000TT, 2) + 0.017998 * pow(JC2000TT, 3); - double theta2 = 2004.3109 * JC2000TT - 0.42665 * pow(JC2000TT, 2) - 0.041833 * pow(JC2000TT, 3); - double ze = zeta + 0.79280 * pow(JC2000TT, 2) + 0.000205 * pow(JC2000TT, 3); - - zeta *= arcsecFactor; - theta2 *= arcsecFactor; - ze *= arcsecFactor; - - precession[0][0] = -sin(ze) * sin(zeta) + cos(ze) * cos(theta2) * cos(zeta); - precession[1][0] = cos(ze) * sin(zeta) + sin(ze) * cos(theta2) * cos(zeta); - precession[2][0] = sin(theta2) * cos(zeta); - precession[0][1] = -sin(ze) * cos(zeta) - cos(ze) * cos(theta2) * sin(zeta); - precession[1][1] = cos(ze) * cos(zeta) - sin(ze) * cos(theta2) * sin(zeta); - precession[2][1] = -sin(theta2) * sin(zeta); - precession[0][2] = -cos(ze) * sin(theta2); - precession[1][2] = -sin(ze) * sin(theta2); - precession[2][2] = cos(theta2); - - //------------------------------------------------------------------------------------- - // Calculation of Transformation from earth Nutation N - //------------------------------------------------------------------------------------- - double nutation[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}}; - // lunar asc node - double Om = 125 * 3600 + 2 * 60 + 40.28 - (1934 * 3600 + 8 * 60 + 10.539) * JC2000TT + - 7.455 * pow(JC2000TT, 2) + 0.008 * pow(JC2000TT, 3); - Om *= arcsecFactor; - // delta psi approx - double dp = -17.2 * arcsecFactor * sin(Om); - - // delta eps approx - double de = 9.203 * arcsecFactor * cos(Om); - - // % true obliquity of the ecliptic eps p.71 (simplified) - double e = 23.43929111 * M_PI / 180 - 46.8150 / 3600 * JC2000TT * M_PI / 180; - - nutation[0][0] = cos(dp); - nutation[1][0] = cos(e + de) * sin(dp); - nutation[2][0] = sin(e + de) * sin(dp); - nutation[0][1] = -cos(e) * sin(dp); - nutation[1][1] = cos(e) * cos(e + de) * cos(dp) + sin(e) * sin(e + de); - nutation[2][1] = cos(e) * sin(e + de) * cos(dp) - sin(e) * cos(e + de); - nutation[0][2] = -sin(e) * sin(dp); - nutation[1][2] = sin(e) * cos(e + de) * cos(dp) - cos(e) * sin(e + de); - nutation[2][2] = sin(e) * sin(e + de) * cos(dp) + cos(e) * cos(e + de); - - //------------------------------------------------------------------------------------- - // Calculation of Derivative of rotation matrix from earth - //------------------------------------------------------------------------------------- - double thetaDot[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}}; - double dotMatrix[3][3] = {{0, 1, 0}, {-1, 0, 0}, {0, 0, 0}}; - double omegaEarth = 0.000072921158553; - MatrixOperations::multiply(*dotMatrix, *theta, *thetaDot, 3, 3, 3); - MatrixOperations::multiplyScalar(*thetaDot, omegaEarth, *thetaDot, 3, 3); - - //------------------------------------------------------------------------------------- - // Calculation of transformation matrix and Derivative of transformation matrix - //------------------------------------------------------------------------------------- - double nutationPrecession[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}}; - MatrixOperations::multiply(*nutation, *precession, *nutationPrecession, 3, 3, 3); - MatrixOperations::multiply(*nutationPrecession, *theta, outputDcmEJ, 3, 3, 3); - - MatrixOperations::multiply(*nutationPrecession, *thetaDot, outputDotDcmEJ, 3, 3, 3); - } - static void inverseMatrixDimThree(const T1 *matrix, T1 *output) { - int i, j; - double determinant = 0; - double mat[3][3] = {{matrix[0], matrix[1], matrix[2]}, - {matrix[3], matrix[4], matrix[5]}, - {matrix[6], matrix[7], matrix[8]}}; - - for (i = 0; i < 3; i++) { - determinant = determinant + (mat[0][i] * (mat[1][(i + 1) % 3] * mat[2][(i + 2) % 3] - - mat[1][(i + 2) % 3] * mat[2][(i + 1) % 3])); - } - // cout<<"\n\ndeterminant: "<::matrixDeterminant(*submatrix, size - 1)); - } - } - return det; - } - - static int inverseMatrix(const T1 *inputMatrix, T1 *inverse, uint8_t size) { - // Stopwatch stopwatch; - T1 matrix[size][size], identity[size][size]; - // reformat array to matrix - for (uint8_t row = 0; row < size; row++) { - for (uint8_t col = 0; col < size; col++) { - matrix[row][col] = inputMatrix[row * size + col]; - } - } - // init identity matrix - std::memset(identity, 0.0, sizeof(identity)); - for (uint8_t diag = 0; diag < size; diag++) { - identity[diag][diag] = 1; - } - // gauss-jordan algo - // sort matrix such as no diag entry shall be 0 - for (uint8_t row = 0; row < size; row++) { - if (matrix[row][row] == 0.0) { - bool swaped = false; - uint8_t rowIndex = 0; - while ((rowIndex < size) && !swaped) { - if ((matrix[rowIndex][row] != 0.0) && (matrix[row][rowIndex] != 0.0)) { - for (uint8_t colIndex = 0; colIndex < size; colIndex++) { - std::swap(matrix[row][colIndex], matrix[rowIndex][colIndex]); - std::swap(identity[row][colIndex], identity[rowIndex][colIndex]); - } - swaped = true; - } - rowIndex++; - } - if (!swaped) { - return 1; // matrix not invertible - } - } - } - - for (int row = 0; row < size; row++) { - if (matrix[row][row] == 0.0) { - uint8_t rowIndex; - if (row == 0) { - rowIndex = size - 1; - } else { - rowIndex = row - 1; - } - for (uint8_t colIndex = 0; colIndex < size; colIndex++) { - std::swap(matrix[row][colIndex], matrix[rowIndex][colIndex]); - std::swap(identity[row][colIndex], identity[rowIndex][colIndex]); - } - row--; - if (row < 0) { - return 1; // Matrix is not invertible - } - } - } - // remove non diag elements in matrix (jordan) - for (int row = 0; row < size; row++) { - for (int rowIndex = 0; rowIndex < size; rowIndex++) { - if (row != rowIndex) { - double ratio = matrix[rowIndex][row] / matrix[row][row]; - for (int colIndex = 0; colIndex < size; colIndex++) { - matrix[rowIndex][colIndex] -= ratio * matrix[row][colIndex]; - identity[rowIndex][colIndex] -= ratio * identity[row][colIndex]; - } - } - } - } - // normalize rows in matrix (gauss) - for (int row = 0; row < size; row++) { - for (int col = 0; col < size; col++) { - identity[row][col] = identity[row][col] / matrix[row][row]; - } - } - std::memcpy(inverse, identity, sizeof(identity)); - return 0; // successful inversion - } - - static bool checkVectorIsFinite(const T1 *inputVector, uint8_t size) { - for (uint8_t i = 0; i < size; i++) { - if (not isfinite(inputVector[i])) { - return false; - } - } - return true; - } - - static bool checkMatrixIsFinite(const T1 *inputMatrix, uint8_t rows, uint8_t cols) { - for (uint8_t col = 0; col < cols; col++) { - for (uint8_t row = 0; row < rows; row++) { - if (not isfinite(inputMatrix[row * cols + cols])) { - return false; - } - } - } - return true; - } -}; - -#endif /* ACS_MATH_MATHOPERATIONS_H_ */