#include "PtgCtrl.h"

#include <fsfw/globalfunctions/constants.h>
#include <fsfw/globalfunctions/math/MatrixOperations.h>
#include <fsfw/globalfunctions/math/QuaternionOperations.h>
#include <fsfw/globalfunctions/math/VectorOperations.h>
#include <fsfw/globalfunctions/sign.h>
#include <math.h>

#include "../util/MathOperations.h"

PtgCtrl::PtgCtrl(AcsParameters *acsParameters_) { acsParameters = acsParameters_; }

PtgCtrl::~PtgCtrl() {}

void PtgCtrl::ptgLaw(AcsParameters::PointingLawParameters *pointingLawParameters,
                     const double *errorQuat, const double *deltaRate, const double *rwPseudoInv,
                     double *torqueRws) {
  //------------------------------------------------------------------------------------------------
  // Compute gain matrix K and P matrix
  //------------------------------------------------------------------------------------------------
  double om = pointingLawParameters->om;
  double zeta = pointingLawParameters->zeta;
  double qErrorMin = pointingLawParameters->qiMin;
  double omMax = pointingLawParameters->omMax;

  double qError[3] = {errorQuat[0], errorQuat[1], errorQuat[2]};

  double cInt = 2 * om * zeta;
  double kInt = 2 * pow(om, 2);

  double qErrorLaw[3] = {0, 0, 0};

  for (int i = 0; i < 3; i++) {
    if (abs(qError[i]) < qErrorMin) {
      qErrorLaw[i] = qErrorMin;
    } else {
      qErrorLaw[i] = abs(qError[i]);
    }
  }
  double qErrorLawNorm = VectorOperations<double>::norm(qErrorLaw, 3);

  double gain1 = cInt * omMax / qErrorLawNorm;
  double gainVector[3] = {0, 0, 0};
  VectorOperations<double>::mulScalar(qErrorLaw, gain1, gainVector, 3);

  double gainMatrixDiagonal[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
  double gainMatrix[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
  gainMatrixDiagonal[0][0] = gainVector[0];
  gainMatrixDiagonal[1][1] = gainVector[1];
  gainMatrixDiagonal[2][2] = gainVector[2];
  MatrixOperations<double>::multiply(
      *gainMatrixDiagonal, *(acsParameters->inertiaEIVE.inertiaMatrix), *gainMatrix, 3, 3, 3);

  // Inverse of gainMatrix
  double gainMatrixInverse[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
  gainMatrixInverse[0][0] = 1 / gainMatrix[0][0];
  gainMatrixInverse[1][1] = 1 / gainMatrix[1][1];
  gainMatrixInverse[2][2] = 1 / gainMatrix[2][2];

  double pMatrix[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
  MatrixOperations<double>::multiply(
      *gainMatrixInverse, *(acsParameters->inertiaEIVE.inertiaMatrix), *pMatrix, 3, 3, 3);
  MatrixOperations<double>::multiplyScalar(*pMatrix, kInt, *pMatrix, 3, 3);

  //------------------------------------------------------------------------------------------------
  // Torque Calculations for the reaction wheels
  //------------------------------------------------------------------------------------------------

  double pError[3] = {0, 0, 0};
  MatrixOperations<double>::multiply(*pMatrix, qError, pError, 3, 3, 1);
  double pErrorSign[3] = {0, 0, 0};

  for (int i = 0; i < 3; i++) {
    if (abs(pError[i]) > 1) {
      pErrorSign[i] = sign(pError[i]);
    } else {
      pErrorSign[i] = pError[i];
    }
  }
  // torque for quaternion error
  double torqueQuat[3] = {0, 0, 0};
  MatrixOperations<double>::multiply(*gainMatrix, pErrorSign, torqueQuat, 3, 3, 1);
  VectorOperations<double>::mulScalar(torqueQuat, -1, torqueQuat, 3);

  // torque for rate error
  double torqueRate[3] = {0, 0, 0};
  MatrixOperations<double>::multiply(*(acsParameters->inertiaEIVE.inertiaMatrix), deltaRate,
                                     torqueRate, 3, 3, 1);
  VectorOperations<double>::mulScalar(torqueRate, cInt, torqueRate, 3);
  VectorOperations<double>::mulScalar(torqueRate, -1, torqueRate, 3);

  // final commanded Torque for every reaction wheel
  double torque[3] = {0, 0, 0};
  VectorOperations<double>::add(torqueRate, torqueQuat, torque, 3);
  MatrixOperations<double>::multiply(rwPseudoInv, torque, torqueRws, 4, 3, 1);
  VectorOperations<double>::mulScalar(torqueRws, -1, torqueRws, 4);
}

void PtgCtrl::ptgDesaturation(AcsParameters::PointingLawParameters *pointingLawParameters,
                              double *magFieldEst, bool magFieldEstValid, double *satRate,
                              int32_t *speedRw0, int32_t *speedRw1, int32_t *speedRw2,
                              int32_t *speedRw3, double *mgtDpDes) {
  if (!(magFieldEstValid) || !(pointingLawParameters->desatOn)) {
    mgtDpDes[0] = 0;
    mgtDpDes[1] = 0;
    mgtDpDes[2] = 0;
    return;
  }

  // calculating momentum of satellite and momentum of reaction wheels
  double speedRws[4] = {(double)*speedRw0, (double)*speedRw1, (double)*speedRw2, (double)*speedRw3};
  double momentumRwU[4] = {0, 0, 0, 0}, momentumRw[3] = {0, 0, 0};
  VectorOperations<double>::mulScalar(speedRws, acsParameters->rwHandlingParameters.inertiaWheel,
                                      momentumRwU, 4);
  MatrixOperations<double>::multiply(*(acsParameters->rwMatrices.alignmentMatrix), momentumRwU,
                                     momentumRw, 3, 4, 1);
  double momentumSat[3] = {0, 0, 0}, momentumTotal[3] = {0, 0, 0};
  MatrixOperations<double>::multiply(*(acsParameters->inertiaEIVE.inertiaMatrix), satRate,
                                     momentumSat, 3, 3, 1);
  VectorOperations<double>::add(momentumSat, momentumRw, momentumTotal, 3);
  // calculating momentum error
  double deltaMomentum[3] = {0, 0, 0};
  VectorOperations<double>::subtract(momentumTotal, pointingLawParameters->desatMomentumRef,
                                     deltaMomentum, 3);
  // resulting magnetic dipole command
  double crossMomentumMagField[3] = {0, 0, 0};
  VectorOperations<double>::cross(deltaMomentum, magFieldEst, crossMomentumMagField);
  double normMag = VectorOperations<double>::norm(magFieldEst, 3), factor = 0;
  factor = (pointingLawParameters->deSatGainFactor) / normMag;
  VectorOperations<double>::mulScalar(crossMomentumMagField, factor, mgtDpDes, 3);
}

void PtgCtrl::ptgNullspace(AcsParameters::PointingLawParameters *pointingLawParameters,
                           const int32_t *speedRw0, const int32_t *speedRw1,
                           const int32_t *speedRw2, const int32_t *speedRw3, double *rwTrqNs) {
  double speedRws[4] = {(double)*speedRw0, (double)*speedRw1, (double)*speedRw2, (double)*speedRw3};
  double wheelMomentum[4] = {0, 0, 0, 0};
  double rpmOffset[4] = {1, 1, 1, -1}, factor = 350 * 2 * Math::PI / 60;
  // conversion to [rad/s] for further calculations
  VectorOperations<double>::mulScalar(rpmOffset, factor, rpmOffset, 4);
  VectorOperations<double>::mulScalar(speedRws, 2 * Math::PI / 60, speedRws, 4);
  double diffRwSpeed[4] = {0, 0, 0, 0};
  VectorOperations<double>::subtract(speedRws, rpmOffset, diffRwSpeed, 4);
  VectorOperations<double>::mulScalar(diffRwSpeed, acsParameters->rwHandlingParameters.inertiaWheel,
                                      wheelMomentum, 4);
  double gainNs = pointingLawParameters->gainNullspace;
  double nullSpaceMatrix[4][4] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
  MathOperations<double>::vecTransposeVecMatrix(acsParameters->rwMatrices.nullspace,
                                                acsParameters->rwMatrices.nullspace,
                                                *nullSpaceMatrix, 4);
  MatrixOperations<double>::multiply(*nullSpaceMatrix, wheelMomentum, rwTrqNs, 4, 4, 1);
  VectorOperations<double>::mulScalar(rwTrqNs, gainNs, rwTrqNs, 4);
  VectorOperations<double>::mulScalar(rwTrqNs, -1, rwTrqNs, 4);
}

void PtgCtrl::rwAntistiction(ACS::SensorValues *sensorValues, int32_t *rwCmdSpeeds) {
  bool rwAvailable[4] = {
      (sensorValues->rw1Set.state.value && sensorValues->rw1Set.state.isValid()),
      (sensorValues->rw2Set.state.value && sensorValues->rw2Set.state.isValid()),
      (sensorValues->rw3Set.state.value && sensorValues->rw3Set.state.isValid()),
      (sensorValues->rw4Set.state.value && sensorValues->rw4Set.state.isValid())};
  int32_t currRwSpeed[4] = {
      sensorValues->rw1Set.currSpeed.value, sensorValues->rw2Set.currSpeed.value,
      sensorValues->rw3Set.currSpeed.value, sensorValues->rw4Set.currSpeed.value};
  for (uint8_t i = 0; i < 4; i++) {
    if (rwAvailable[i]) {
      if (rwCmdSpeeds[i] != 0) {
        if (rwCmdSpeeds[i] > -acsParameters->rwHandlingParameters.stictionSpeed &&
            rwCmdSpeeds[i] < acsParameters->rwHandlingParameters.stictionSpeed) {
          if (currRwSpeed[i] == 0) {
            if (rwCmdSpeeds[i] > 0) {
              rwCmdSpeeds[i] = acsParameters->rwHandlingParameters.stictionSpeed;
            } else if (rwCmdSpeeds[i] < 0) {
              rwCmdSpeeds[i] = -acsParameters->rwHandlingParameters.stictionSpeed;
            }
          } else if (currRwSpeed[i] < -acsParameters->rwHandlingParameters.stictionSpeed) {
            rwCmdSpeeds[i] = acsParameters->rwHandlingParameters.stictionSpeed;
          } else if (currRwSpeed[i] > acsParameters->rwHandlingParameters.stictionSpeed) {
            rwCmdSpeeds[i] = -acsParameters->rwHandlingParameters.stictionSpeed;
          }
        }
      }
    }
  }
}