#include "SusAssembly.h"

#include <devices/powerSwitcherList.h>
#include <fsfw/power/PowerSwitchIF.h>
#include <fsfw/serviceinterface.h>

SusAssembly::SusAssembly(object_id_t objectId, object_id_t parentId, PowerSwitchIF* pwrSwitcher,
                         SusAssHelper helper)
    : DualLaneAssemblyBase(objectId, parentId, pwrSwitcher, SWITCH_NOM, SWITCH_RED,
                           POWER_STATE_MACHINE_TIMEOUT, SIDE_SWITCH_TRANSITION_NOT_ALLOWED,
                           TRANSITION_OTHER_SIDE_FAILED),
      helper(helper),
      pwrSwitcher(pwrSwitcher) {
  ModeListEntry entry;
  for (uint8_t idx = 0; idx < NUMBER_SUN_SENSORS; idx++) {
    initModeTableEntry(helper.susIds[idx], entry, modeTable);
  }
}

ReturnValue_t SusAssembly::commandChildren(Mode_t mode, Submode_t submode) {
  ReturnValue_t result = returnvalue::OK;
  refreshHelperModes();
  // Initialize the mode table to ensure all devices are in a defined state
  for (uint8_t idx = 0; idx < NUMBER_SUN_SENSORS; idx++) {
    modeTable[idx].setMode(MODE_OFF);
    modeTable[idx].setSubmode(SUBMODE_NONE);
  }
  if (recoveryState != RecoveryState::RECOVERY_STARTED) {
    if (mode == DeviceHandlerIF::MODE_NORMAL or mode == MODE_ON) {
      result = handleNormalOrOnModeCmd(mode, submode);
    }
  }

  HybridIterator<ModeListEntry> tableIter(modeTable.begin(), modeTable.end());
  executeTable(tableIter);
  return result;
}

ReturnValue_t SusAssembly::handleNormalOrOnModeCmd(Mode_t mode, Submode_t submode) {
  using namespace duallane;
  ReturnValue_t result = returnvalue::OK;
  bool needsSecondStep = false;
  auto cmdSeq = [&](object_id_t objectId, Mode_t devMode, uint8_t tableIdx) {
    if (mode == devMode) {
      modeTable[tableIdx].setMode(mode);
    } else if (mode == DeviceHandlerIF::MODE_NORMAL) {
      if (isUseable(objectId, devMode)) {
        if (devMode == MODE_ON) {
          modeTable[tableIdx].setMode(mode);
          modeTable[tableIdx].setSubmode(SUBMODE_NONE);
        } else {
          modeTable[tableIdx].setMode(MODE_ON);
          modeTable[tableIdx].setSubmode(SUBMODE_NONE);
          if (internalState != STATE_SECOND_STEP) {
            needsSecondStep = true;
          }
        }
      }
    } else if (mode == MODE_ON) {
      if (isUseable(objectId, devMode)) {
        modeTable[tableIdx].setMode(MODE_ON);
        modeTable[tableIdx].setSubmode(SUBMODE_NONE);
      }
    }
  };
  switch (submode) {
    case (A_SIDE): {
      for (uint8_t idx = 0; idx < NUMBER_SUN_SENSORS_ONE_SIDE; idx++) {
        cmdSeq(helper.susIds[idx], helper.susModes[idx], idx);
        // Switch off devices on redundant side
        modeTable[idx + NUMBER_SUN_SENSORS_ONE_SIDE].setMode(MODE_OFF);
        modeTable[idx + NUMBER_SUN_SENSORS_ONE_SIDE].setSubmode(SUBMODE_NONE);
      }
      break;
    }
    case (B_SIDE): {
      for (uint8_t idx = NUMBER_SUN_SENSORS_ONE_SIDE; idx < NUMBER_SUN_SENSORS; idx++) {
        cmdSeq(helper.susIds[idx], helper.susModes[idx], idx);
        // Switch devices on nominal side
        modeTable[idx - NUMBER_SUN_SENSORS_ONE_SIDE].setMode(MODE_OFF);
        modeTable[idx - NUMBER_SUN_SENSORS_ONE_SIDE].setSubmode(SUBMODE_NONE);
      }
      break;
    }
    case (DUAL_MODE): {
      for (uint8_t idx = 0; idx < NUMBER_SUN_SENSORS; idx++) {
        cmdSeq(helper.susIds[idx], helper.susModes[idx], idx);
      }
      break;
    }
  }
  if (needsSecondStep) {
    result = NEED_SECOND_STEP;
  }
  return result;
}

ReturnValue_t SusAssembly::checkChildrenStateOn(Mode_t wantedMode, Submode_t wantedSubmode) {
  using namespace duallane;
  refreshHelperModes();
  if (wantedSubmode == A_SIDE) {
    for (uint8_t idx = 0; idx < NUMBER_SUN_SENSORS_ONE_SIDE; idx++) {
      if (helper.susModes[idx] != wantedMode) {
        return NOT_ENOUGH_CHILDREN_IN_CORRECT_STATE;
      }
    }
    return returnvalue::OK;
  } else if (wantedSubmode == B_SIDE) {
    for (uint8_t idx = NUMBER_SUN_SENSORS_ONE_SIDE; idx < NUMBER_SUN_SENSORS; idx++) {
      if (helper.susModes[idx] != wantedMode) {
        return NOT_ENOUGH_CHILDREN_IN_CORRECT_STATE;
      }
    }
    return returnvalue::OK;
  } else {
    // Trigger event if devices are faulty? This is the last fallback mode, returning
    // a failure here would trigger a transition to MODE_OFF unless handleModeTransitionFailed
    // is overriden
    return returnvalue::OK;
  }
  return returnvalue::OK;
}

ReturnValue_t SusAssembly::initialize() {
  ReturnValue_t result = returnvalue::OK;
  for (const auto& id : helper.susIds) {
    result = registerChild(id);
    if (result != returnvalue::OK) {
      return result;
    }
  }
  return AssemblyBase::initialize();
}

bool SusAssembly::isUseable(object_id_t object, Mode_t mode) {
  if (healthHelper.healthTable->isFaulty(object)) {
    return false;
  }

  // Check if device is already in target mode
  if (childrenMap[object].mode == mode) {
    return true;
  }

  if (healthHelper.healthTable->isCommandable(object)) {
    return true;
  }
  return false;
}

void SusAssembly::refreshHelperModes() {
  for (uint8_t idx = 0; idx < helper.susModes.size(); idx++) {
    helper.susModes[idx] = childrenMap[helper.susIds[idx]].mode;
  }
}