#include "AcsBoardAssembly.h" #include #include #include #include "OBSWConfig.h" AcsBoardAssembly::AcsBoardAssembly(object_id_t objectId, PowerSwitchIF* switcher, AcsBoardHelper helper, GpioIF* gpioIF) : DualLaneAssemblyBase(objectId, switcher, SWITCH_A, SWITCH_B, POWER_STATE_MACHINE_TIMEOUT, SIDE_SWITCH_TRANSITION_NOT_ALLOWED, TRANSITION_OTHER_SIDE_FAILED), helper(helper), gpioIF(gpioIF) { if (switcher == nullptr) { sif::error << "AcsBoardAssembly::AcsBoardAssembly: Invalid Power Switcher " "IF passed" << std::endl; } if (gpioIF == nullptr) { sif::error << "AcsBoardAssembly::AcsBoardAssembly: Invalid GPIO IF passed" << std::endl; } ModeListEntry entry; initModeTableEntry(helper.mgm0Lis3IdSideA, entry, modeTable); initModeTableEntry(helper.mgm1Rm3100IdSideA, entry, modeTable); initModeTableEntry(helper.mgm2Lis3IdSideB, entry, modeTable); initModeTableEntry(helper.mgm3Rm3100IdSideB, entry, modeTable); initModeTableEntry(helper.gyro0AdisIdSideA, entry, modeTable); initModeTableEntry(helper.gyro1L3gIdSideA, entry, modeTable); initModeTableEntry(helper.gyro2AdisIdSideB, entry, modeTable); initModeTableEntry(helper.gyro3L3gIdSideB, entry, modeTable); initModeTableEntry(helper.gpsId, entry, modeTable); } ReturnValue_t AcsBoardAssembly::commandChildren(Mode_t mode, Submode_t submode) { using namespace duallane; ReturnValue_t result = returnvalue::OK; refreshHelperModes(); // Initialize the mode table to ensure all devices are in a defined state modeTable[ModeTableIdx::GYRO_0_A].setMode(MODE_OFF); modeTable[ModeTableIdx::GYRO_0_A].setSubmode(SUBMODE_NONE); modeTable[ModeTableIdx::GYRO_1_A].setMode(MODE_OFF); modeTable[ModeTableIdx::GYRO_1_A].setSubmode(SUBMODE_NONE); modeTable[ModeTableIdx::GYRO_2_B].setMode(MODE_OFF); modeTable[ModeTableIdx::GYRO_2_B].setSubmode(SUBMODE_NONE); modeTable[ModeTableIdx::GYRO_3_B].setMode(MODE_OFF); modeTable[ModeTableIdx::GYRO_3_B].setSubmode(SUBMODE_NONE); modeTable[ModeTableIdx::MGM_0_A].setMode(MODE_OFF); modeTable[ModeTableIdx::MGM_0_A].setSubmode(SUBMODE_NONE); modeTable[ModeTableIdx::MGM_1_A].setMode(MODE_OFF); modeTable[ModeTableIdx::MGM_1_A].setSubmode(SUBMODE_NONE); modeTable[ModeTableIdx::MGM_2_B].setMode(MODE_OFF); modeTable[ModeTableIdx::MGM_2_B].setSubmode(SUBMODE_NONE); modeTable[ModeTableIdx::MGM_3_B].setMode(MODE_OFF); modeTable[ModeTableIdx::MGM_3_B].setSubmode(SUBMODE_NONE); modeTable[ModeTableIdx::GPS].setMode(MODE_OFF); modeTable[ModeTableIdx::GPS].setSubmode(SUBMODE_NONE); if (recoveryState == RecoveryState::RECOVERY_IDLE) { result = checkAndHandleHealthStates(mode, submode); if (result == NEED_TO_CHANGE_HEALTH) { return returnvalue::OK; } } if (recoveryState != RecoveryState::RECOVERY_STARTED) { if (mode == DeviceHandlerIF::MODE_NORMAL or mode == MODE_ON) { result = handleNormalOrOnModeCmd(mode, submode); } } HybridIterator tableIter(modeTable.begin(), modeTable.end()); executeTable(tableIter); return result; } ReturnValue_t AcsBoardAssembly::checkChildrenStateOn(Mode_t wantedMode, Submode_t wantedSubmode) { using namespace duallane; refreshHelperModes(); if (wantedSubmode == A_SIDE) { if ((helper.gyro0SideAMode != wantedMode and helper.gyro1SideAMode != wantedMode) or (helper.mgm0SideAMode != wantedMode and helper.mgm1SideAMode != wantedMode) or (helper.gpsMode != MODE_ON) or gps0HealthDevFaulty()) { return NOT_ENOUGH_CHILDREN_IN_CORRECT_STATE; } return returnvalue::OK; } else if (wantedSubmode == B_SIDE) { if ((helper.gyro2SideBMode != wantedMode and helper.gyro3SideBMode != wantedMode) or (helper.mgm2SideBMode != wantedMode and helper.mgm3SideBMode != wantedMode) or (helper.gpsMode != MODE_ON) or gps1HealthDevFaulty()) { return NOT_ENOUGH_CHILDREN_IN_CORRECT_STATE; } return returnvalue::OK; } else if (wantedSubmode == DUAL_MODE) { if ((helper.gyro0SideAMode != wantedMode and helper.gyro1SideAMode != wantedMode and helper.gyro2AdisIdSideB != wantedMode and helper.gyro3SideBMode != wantedMode) or (helper.mgm0SideAMode != wantedMode and helper.mgm1SideAMode != wantedMode and helper.mgm2SideBMode != wantedMode and helper.mgm3SideBMode != wantedMode) or helper.gpsMode != MODE_ON) { // Trigger event, but don't start any other transitions. This is the last fallback mode. if (dualModeErrorSwitch) { triggerEvent(NOT_ENOUGH_DEVICES_DUAL_MODE, 0, 0); dualModeErrorSwitch = false; } return returnvalue::OK; } return returnvalue::OK; } return returnvalue::OK; } ReturnValue_t AcsBoardAssembly::handleNormalOrOnModeCmd(Mode_t mode, Submode_t submode) { using namespace duallane; ReturnValue_t result = returnvalue::OK; bool needsSecondStep = false; handleSideSwitchStates(submode, needsSecondStep); auto cmdSeq = [&](object_id_t objectId, Mode_t devMode, ModeTableIdx tableIdx) { if (mode == devMode) { modeTable[tableIdx].setMode(mode); } else if (isModeCommandable(objectId, devMode)) { modeTable[tableIdx].setMode(mode); modeTable[tableIdx].setSubmode(SUBMODE_NONE); } }; bool gpsUsable = isGpsUsable(submode); auto gpsCmd = [&](bool gnss0NReset, bool gnss1NReset, uint8_t gnssSelect) { if (gpsUsable) { if (mode == MODE_ON or mode == DeviceHandlerIF::MODE_NORMAL) { modeTable[ModeTableIdx::GPS].setMode(MODE_ON); } else if (mode == MODE_OFF) { gnss0NReset = true; gnss1NReset = true; modeTable[ModeTableIdx::GPS].setMode(MODE_OFF); } modeTable[ModeTableIdx::GPS].setSubmode(SUBMODE_NONE); gpioHandler(gpioIds::GNSS_0_NRESET, gnss0NReset, "AcsBoardAssembly::handleNormalOrOnModeCmd: Could not pull nReset pin" "of GNSS 0"); gpioHandler(gpioIds::GNSS_1_NRESET, gnss1NReset, "AcsBoardAssembly::handleNormalOrOnModeCmd: Could not pull nReset pin" "of GNSS 1"); gpioHandler(gpioIds::GNSS_SELECT, gnssSelect, "AcsBoardAssembly::handleNormalOrOnModeCmd: Could not pull GNSS select"); } }; switch (submode) { case (A_SIDE): { modeTable[ModeTableIdx::GYRO_2_B].setMode(MODE_OFF); modeTable[ModeTableIdx::GYRO_2_B].setSubmode(SUBMODE_NONE); modeTable[ModeTableIdx::GYRO_3_B].setMode(MODE_OFF); modeTable[ModeTableIdx::GYRO_3_B].setSubmode(SUBMODE_NONE); modeTable[ModeTableIdx::MGM_2_B].setMode(MODE_OFF); modeTable[ModeTableIdx::MGM_2_B].setSubmode(SUBMODE_NONE); modeTable[ModeTableIdx::MGM_3_B].setMode(MODE_OFF); modeTable[ModeTableIdx::MGM_3_B].setSubmode(SUBMODE_NONE); cmdSeq(helper.gyro0AdisIdSideA, helper.gyro0SideAMode, ModeTableIdx::GYRO_0_A); cmdSeq(helper.gyro1L3gIdSideA, helper.gyro1SideAMode, ModeTableIdx::GYRO_1_A); cmdSeq(helper.mgm0Lis3IdSideA, helper.mgm0SideAMode, ModeTableIdx::MGM_0_A); cmdSeq(helper.mgm1Rm3100IdSideA, helper.mgm1SideAMode, ModeTableIdx::MGM_1_A); gpsCmd(true, false, 0); break; } case (B_SIDE): { modeTable[ModeTableIdx::GYRO_0_A].setMode(MODE_OFF); modeTable[ModeTableIdx::GYRO_0_A].setSubmode(SUBMODE_NONE); modeTable[ModeTableIdx::GYRO_1_A].setMode(MODE_OFF); modeTable[ModeTableIdx::GYRO_1_A].setSubmode(SUBMODE_NONE); modeTable[ModeTableIdx::MGM_0_A].setMode(MODE_OFF); modeTable[ModeTableIdx::MGM_0_A].setSubmode(SUBMODE_NONE); modeTable[ModeTableIdx::MGM_1_A].setMode(MODE_OFF); modeTable[ModeTableIdx::MGM_1_A].setSubmode(SUBMODE_NONE); cmdSeq(helper.gyro2AdisIdSideB, helper.gyro2SideBMode, ModeTableIdx::GYRO_2_B); cmdSeq(helper.gyro3L3gIdSideB, helper.gyro3SideBMode, ModeTableIdx::GYRO_3_B); cmdSeq(helper.mgm2Lis3IdSideB, helper.mgm2SideBMode, ModeTableIdx::MGM_2_B); cmdSeq(helper.mgm3Rm3100IdSideB, helper.mgm3SideBMode, ModeTableIdx::MGM_3_B); gpsCmd(false, true, 1); break; } case (DUAL_MODE): { cmdSeq(helper.gyro0AdisIdSideA, helper.gyro0SideAMode, ModeTableIdx::GYRO_0_A); cmdSeq(helper.gyro1L3gIdSideA, helper.gyro1SideAMode, ModeTableIdx::GYRO_1_A); cmdSeq(helper.mgm0Lis3IdSideA, helper.mgm0SideAMode, ModeTableIdx::MGM_0_A); cmdSeq(helper.mgm1Rm3100IdSideA, helper.mgm1SideAMode, ModeTableIdx::MGM_1_A); cmdSeq(helper.gyro2AdisIdSideB, helper.gyro2SideBMode, ModeTableIdx::GYRO_2_B); cmdSeq(helper.gyro3L3gIdSideB, helper.gyro3SideBMode, ModeTableIdx::GYRO_3_B); cmdSeq(helper.mgm2Lis3IdSideB, helper.mgm2SideBMode, ModeTableIdx::MGM_2_B); cmdSeq(helper.mgm3Rm3100IdSideB, helper.mgm3SideBMode, ModeTableIdx::MGM_3_B); if (defaultSubmode == Submodes::A_SIDE) { gpsCmd(true, true, 0); } else { gpsCmd(true, true, 1); } break; } default: { sif::error << "AcsBoardAssembly::handleNormalModeCmd: Unknown submode" << std::endl; } } if (needsSecondStep) { result = NEED_SECOND_STEP; } return result; } void AcsBoardAssembly::selectGpsInDualMode(duallane::Submodes side) { using namespace duallane; if (submode != Submodes::DUAL_MODE) { return; } ReturnValue_t result = returnvalue::OK; if (side == Submodes::A_SIDE) { result = gpioIF->pullLow(gpioIds::GNSS_SELECT); } else { result = gpioIF->pullHigh(gpioIds::GNSS_SELECT); } if (result != returnvalue::OK) { #if OBSW_VERBOSE_LEVEL >= 1 sif::error << "AcsBoardAssembly::switchGpsInDualMode: Switching GPS failed" << std::endl; #endif } } void AcsBoardAssembly::gpioHandler(gpioId_t gpio, bool high, std::string error) { ReturnValue_t result = returnvalue::OK; if (high) { result = gpioIF->pullHigh(gpio); } else { result = gpioIF->pullLow(gpio); } if (result != returnvalue::OK) { #if OBSW_VERBOSE_LEVEL >= 1 sif::error << error << std::endl; #endif } } void AcsBoardAssembly::refreshHelperModes() { try { helper.gyro0SideAMode = childrenMap.at(helper.gyro0AdisIdSideA).mode; helper.gyro1SideAMode = childrenMap.at(helper.gyro1L3gIdSideA).mode; helper.gyro2SideBMode = childrenMap.at(helper.gyro2AdisIdSideB).mode; helper.gyro3SideBMode = childrenMap.at(helper.gyro2AdisIdSideB).mode; helper.mgm0SideAMode = childrenMap.at(helper.mgm0Lis3IdSideA).mode; helper.mgm1SideAMode = childrenMap.at(helper.mgm1Rm3100IdSideA).mode; helper.mgm2SideBMode = childrenMap.at(helper.mgm2Lis3IdSideB).mode; helper.mgm3SideBMode = childrenMap.at(helper.mgm3Rm3100IdSideB).mode; helper.gpsMode = childrenMap.at(helper.gpsId).mode; } catch (const std::out_of_range& e) { sif::error << "AcsBoardAssembly::refreshHelperModes: Invalid map: " << e.what() << std::endl; } } ReturnValue_t AcsBoardAssembly::initialize() { for (const auto& child : childrenMap) { updateChildModeByObjId(child.first, MODE_OFF, 0); } return AssemblyBase::initialize(); } ReturnValue_t AcsBoardAssembly::checkAndHandleHealthStates(Mode_t deviceMode, Submode_t deviceSubmode) { using namespace returnvalue; ReturnValue_t status = returnvalue::OK; auto checkAcsBoardSensorGroup = [&](object_id_t o0, object_id_t o1, object_id_t o2, object_id_t o3) { HealthState h0 = healthHelper.healthTable->getHealth(o0); HealthState h1 = healthHelper.healthTable->getHealth(o1); HealthState h2 = healthHelper.healthTable->getHealth(o2); HealthState h3 = healthHelper.healthTable->getHealth(o3); if ((h0 == FAULTY or h0 == PERMANENT_FAULTY) and (h1 == FAULTY or h1 == PERMANENT_FAULTY) and (h2 == FAULTY or h2 == PERMANENT_FAULTY) and (h3 == FAULTY or h3 == PERMANENT_FAULTY)) { overwriteDeviceHealth(o0, h0); overwriteDeviceHealth(o1, h1); overwriteDeviceHealth(o2, h2); overwriteDeviceHealth(o3, h3); } if (h0 == EXTERNAL_CONTROL or h1 == EXTERNAL_CONTROL or h2 == EXTERNAL_CONTROL or h3 == EXTERNAL_CONTROL) { modeHelper.setForced(true); } }; if (healthHelper.healthTable->getHealth(helper.healthDevGps0) == EXTERNAL_CONTROL or healthHelper.healthTable->getHealth(helper.healthDevGps1) == EXTERNAL_CONTROL) { modeHelper.setForced(true); } if (healthHelper.healthTable->getHealth(helper.healthDevGps0) == PERMANENT_FAULTY and healthHelper.healthTable->getHealth(helper.healthDevGps1) == FAULTY) { overwriteDeviceHealth(helper.healthDevGps1, FAULTY); } else if (healthHelper.healthTable->getHealth(helper.healthDevGps1) == PERMANENT_FAULTY and healthHelper.healthTable->getHealth(helper.healthDevGps0) == FAULTY) { overwriteDeviceHealth(helper.healthDevGps0, FAULTY); } else if (healthHelper.healthTable->isFaulty(helper.healthDevGps0) and healthHelper.healthTable->isFaulty(helper.healthDevGps1)) { overwriteDeviceHealth(helper.healthDevGps0, healthHelper.healthTable->getHealth(helper.healthDevGps0)); overwriteDeviceHealth(helper.healthDevGps1, healthHelper.healthTable->getHealth(helper.healthDevGps1)); } if (deviceSubmode == duallane::DUAL_MODE) { checkAcsBoardSensorGroup(helper.mgm0Lis3IdSideA, helper.mgm1Rm3100IdSideA, helper.mgm2Lis3IdSideB, helper.mgm3Rm3100IdSideB); checkAcsBoardSensorGroup(helper.gyro0AdisIdSideA, helper.gyro1L3gIdSideA, helper.gyro2AdisIdSideB, helper.gyro3L3gIdSideB); } return status; } void AcsBoardAssembly::handleChildrenLostMode(ReturnValue_t result) { using namespace duallane; // Special handling to account for GPS devices being faulty. If the GPS device on the other // side is marked faulty, directly to to dual side. if (submode == Submodes::A_SIDE) { if (gps0HealthDevFaulty()) { triggerEvent(DIRECT_TRANSITION_TO_DUAL_OTHER_GPS_FAULTY, submode, 0); startTransition(mode, Submodes::DUAL_MODE); return; } } else if (submode == Submodes::B_SIDE) { if (gps1HealthDevFaulty()) { triggerEvent(DIRECT_TRANSITION_TO_DUAL_OTHER_GPS_FAULTY, submode, 0); startTransition(mode, Submodes::DUAL_MODE); return; } } DualLaneAssemblyBase::handleChildrenLostMode(result); } bool AcsBoardAssembly::gps0HealthDevFaulty() const { auto health = healthHelper.healthTable->getHealth(helper.healthDevGps0); if (health == FAULTY or health == PERMANENT_FAULTY) { return true; } return false; } bool AcsBoardAssembly::gps1HealthDevFaulty() const { auto health = healthHelper.healthTable->getHealth(helper.healthDevGps1); if (health == FAULTY or health == PERMANENT_FAULTY) { return true; } return false; } bool AcsBoardAssembly::isGpsUsable(uint8_t targetSubmode) const { if (targetSubmode == duallane::A_SIDE and healthHelper.healthTable->isFaulty(helper.healthDevGps0)) { // Causes a OFF command to be sent, which triggers a side switch or a switch to dual side. return false; } if (targetSubmode == duallane::B_SIDE and healthHelper.healthTable->isFaulty(helper.healthDevGps1)) { // Causes a OFF command to be sent, which triggers a side switch or a switch to dual side. return false; } auto gpsIter = childrenMap.find(helper.gpsId); // Check if device is already in target mode if (gpsIter != childrenMap.end() and gpsIter->second.mode == mode) { return true; } return true; }