#include "SusAssembly.h" #include #include #include SusAssembly::SusAssembly(object_id_t objectId, PowerSwitchIF* pwrSwitcher, SusAssHelper helper) : DualLaneAssemblyBase(objectId, pwrSwitcher, SWITCH_NOM, SWITCH_RED, POWER_STATE_MACHINE_TIMEOUT, SIDE_SWITCH_TRANSITION_NOT_ALLOWED, TRANSITION_OTHER_SIDE_FAILED), helper(helper), pwrSwitcher(pwrSwitcher) { ModeListEntry entry; for (uint8_t idx = 0; idx < NUMBER_SUN_SENSORS; idx++) { initModeTableEntry(helper.susIds[idx], entry, modeTable); } } ReturnValue_t SusAssembly::commandChildren(Mode_t mode, Submode_t submode) { ReturnValue_t result = returnvalue::OK; refreshHelperModes(); // Initialize the mode table to ensure all devices are in a defined state for (uint8_t idx = 0; idx < NUMBER_SUN_SENSORS; idx++) { modeTable[idx].setMode(MODE_OFF); modeTable[idx].setSubmode(SUBMODE_NONE); } if (recoveryState == RecoveryState::RECOVERY_IDLE) { result = checkAndHandleHealthStates(mode, submode); if (result == NEED_TO_CHANGE_HEALTH) { return returnvalue::OK; } } if (recoveryState != RecoveryState::RECOVERY_STARTED) { if (mode == DeviceHandlerIF::MODE_NORMAL or mode == MODE_ON) { result = handleNormalOrOnModeCmd(mode, submode); } } HybridIterator tableIter(modeTable.begin(), modeTable.end()); executeTable(tableIter); return result; } ReturnValue_t SusAssembly::handleNormalOrOnModeCmd(Mode_t mode, Submode_t submode) { using namespace duallane; ReturnValue_t result = returnvalue::OK; bool needsSecondStep = false; handleSideSwitchStates(submode, needsSecondStep); auto cmdSeq = [&](object_id_t objectId, Mode_t devMode, uint8_t tableIdx) { if (mode == devMode) { modeTable[tableIdx].setMode(mode); } else if (mode == DeviceHandlerIF::MODE_NORMAL) { if (isModeCommandable(objectId, devMode)) { if (devMode == MODE_ON) { modeTable[tableIdx].setMode(mode); modeTable[tableIdx].setSubmode(SUBMODE_NONE); } else { modeTable[tableIdx].setMode(MODE_ON); modeTable[tableIdx].setSubmode(SUBMODE_NONE); if (internalState != STATE_SECOND_STEP) { needsSecondStep = true; } } } } else if (mode == MODE_ON) { if (isModeCommandable(objectId, devMode)) { modeTable[tableIdx].setMode(MODE_ON); modeTable[tableIdx].setSubmode(SUBMODE_NONE); } } }; switch (submode) { case (A_SIDE): { for (uint8_t idx = 0; idx < NUMBER_SUN_SENSORS_ONE_SIDE; idx++) { cmdSeq(helper.susIds[idx], helper.susModes[idx], idx); // Switch off devices on redundant side modeTable[idx + NUMBER_SUN_SENSORS_ONE_SIDE].setMode(MODE_OFF); modeTable[idx + NUMBER_SUN_SENSORS_ONE_SIDE].setSubmode(SUBMODE_NONE); } break; } case (B_SIDE): { for (uint8_t idx = NUMBER_SUN_SENSORS_ONE_SIDE; idx < NUMBER_SUN_SENSORS; idx++) { cmdSeq(helper.susIds[idx], helper.susModes[idx], idx); // Switch devices on nominal side modeTable[idx - NUMBER_SUN_SENSORS_ONE_SIDE].setMode(MODE_OFF); modeTable[idx - NUMBER_SUN_SENSORS_ONE_SIDE].setSubmode(SUBMODE_NONE); } break; } case (DUAL_MODE): { for (uint8_t idx = 0; idx < NUMBER_SUN_SENSORS; idx++) { cmdSeq(helper.susIds[idx], helper.susModes[idx], idx); } break; } } if (needsSecondStep) { result = NEED_SECOND_STEP; } return result; } ReturnValue_t SusAssembly::checkChildrenStateOn(Mode_t wantedMode, Submode_t wantedSubmode) { using namespace duallane; refreshHelperModes(); if (wantedSubmode == A_SIDE) { for (uint8_t idx = 0; idx < NUMBER_SUN_SENSORS_ONE_SIDE; idx++) { if (helper.susModes[idx] != wantedMode) { return NOT_ENOUGH_CHILDREN_IN_CORRECT_STATE; } } return returnvalue::OK; } else if (wantedSubmode == B_SIDE) { for (uint8_t idx = NUMBER_SUN_SENSORS_ONE_SIDE; idx < NUMBER_SUN_SENSORS; idx++) { if (helper.susModes[idx] != wantedMode) { return NOT_ENOUGH_CHILDREN_IN_CORRECT_STATE; } } return returnvalue::OK; } else { // Trigger event if devices are faulty? This is the last fallback mode, returning // a failure here would trigger a transition to MODE_OFF unless handleModeTransitionFailed // is overriden return returnvalue::OK; } return returnvalue::OK; } ReturnValue_t SusAssembly::initialize() { for (const auto& child : childrenMap) { updateChildModeByObjId(child.first, MODE_OFF, 0); } return AssemblyBase::initialize(); } void SusAssembly::refreshHelperModes() { for (uint8_t idx = 0; idx < helper.susModes.size(); idx++) { helper.susModes[idx] = childrenMap[helper.susIds[idx]].mode; } } ReturnValue_t SusAssembly::checkAndHandleHealthStates(Mode_t deviceMode, Submode_t deviceSubmode) { using namespace returnvalue; ReturnValue_t status = returnvalue::OK; bool needsHealthOverwritten = false; auto checkSusGroup = [&](object_id_t devNom, object_id_t devRed) { HealthState healthNom = healthHelper.healthTable->getHealth(devNom); HealthState healthRed = healthHelper.healthTable->getHealth(devRed); if ((healthNom == FAULTY or healthNom == PERMANENT_FAULTY) and (healthRed == FAULTY or healthRed == PERMANENT_FAULTY)) { overwriteDeviceHealth(devNom, healthNom); overwriteDeviceHealth(devRed, healthRed); needsHealthOverwritten = true; } }; auto checkHealthForOneDev = [&](object_id_t dev) { HealthState health = healthHelper.healthTable->getHealth(dev); if (health == EXTERNAL_CONTROL) { modeHelper.setForced(true); } }; if (deviceSubmode == duallane::DUAL_MODE) { uint8_t idx = 0; for (idx = 0; idx < 6; idx++) { checkSusGroup(helper.susIds[idx], helper.susIds[idx + 6]); checkHealthForOneDev(helper.susIds[idx]); } for (idx = 6; idx < 12; idx++) { checkHealthForOneDev(helper.susIds[idx]); } } if(needsHealthOverwritten) { return NEED_TO_CHANGE_HEALTH; } return status; }