#include "AcsBoardAssembly.h" #include #include #include #include "OBSWConfig.h" AcsBoardAssembly::AcsBoardAssembly(object_id_t objectId, object_id_t parentId, PowerSwitchIF* switcher, AcsBoardHelper helper, GpioIF* gpioIF) : DualLaneAssemblyBase(objectId, parentId, switcher, SWITCH_A, SWITCH_B, POWER_STATE_MACHINE_TIMEOUT, SIDE_SWITCH_TRANSITION_NOT_ALLOWED, TRANSITION_OTHER_SIDE_FAILED), helper(helper), gpioIF(gpioIF) { if (switcher == nullptr) { sif::error << "AcsBoardAssembly::AcsBoardAssembly: Invalid Power Switcher " "IF passed" << std::endl; } if (gpioIF == nullptr) { sif::error << "AcsBoardAssembly::AcsBoardAssembly: Invalid GPIO IF passed" << std::endl; } ModeListEntry entry; initModeTableEntry(helper.mgm0Lis3IdSideA, entry, modeTable); initModeTableEntry(helper.mgm1Rm3100IdSideA, entry, modeTable); initModeTableEntry(helper.mgm2Lis3IdSideB, entry, modeTable); initModeTableEntry(helper.mgm3Rm3100IdSideB, entry, modeTable); initModeTableEntry(helper.gyro0AdisIdSideA, entry, modeTable); initModeTableEntry(helper.gyro1L3gIdSideA, entry, modeTable); initModeTableEntry(helper.gyro2AdisIdSideB, entry, modeTable); initModeTableEntry(helper.gyro3L3gIdSideB, entry, modeTable); initModeTableEntry(helper.gpsId, entry, modeTable); } ReturnValue_t AcsBoardAssembly::commandChildren(Mode_t mode, Submode_t submode) { using namespace duallane; ReturnValue_t result = RETURN_OK; refreshHelperModes(); // Initialize the mode table to ensure all devices are in a defined state modeTable[ModeTableIdx::GYRO_0_A].setMode(MODE_OFF); modeTable[ModeTableIdx::GYRO_0_A].setSubmode(SUBMODE_NONE); modeTable[ModeTableIdx::GYRO_1_A].setMode(MODE_OFF); modeTable[ModeTableIdx::GYRO_1_A].setSubmode(SUBMODE_NONE); modeTable[ModeTableIdx::GYRO_2_B].setMode(MODE_OFF); modeTable[ModeTableIdx::GYRO_2_B].setSubmode(SUBMODE_NONE); modeTable[ModeTableIdx::GYRO_3_B].setMode(MODE_OFF); modeTable[ModeTableIdx::GYRO_3_B].setSubmode(SUBMODE_NONE); modeTable[ModeTableIdx::MGM_0_A].setMode(MODE_OFF); modeTable[ModeTableIdx::MGM_0_A].setSubmode(SUBMODE_NONE); modeTable[ModeTableIdx::MGM_1_A].setMode(MODE_OFF); modeTable[ModeTableIdx::MGM_1_A].setSubmode(SUBMODE_NONE); modeTable[ModeTableIdx::MGM_2_B].setMode(MODE_OFF); modeTable[ModeTableIdx::MGM_2_B].setSubmode(SUBMODE_NONE); modeTable[ModeTableIdx::MGM_3_B].setMode(MODE_OFF); modeTable[ModeTableIdx::MGM_3_B].setSubmode(SUBMODE_NONE); modeTable[ModeTableIdx::GPS].setMode(MODE_OFF); modeTable[ModeTableIdx::GPS].setSubmode(SUBMODE_NONE); if (recoveryState != RecoveryState::RECOVERY_STARTED) { if (mode == DeviceHandlerIF::MODE_NORMAL or mode == MODE_ON) { result = handleNormalOrOnModeCmd(mode, submode); } } HybridIterator tableIter(modeTable.begin(), modeTable.end()); executeTable(tableIter); return result; } ReturnValue_t AcsBoardAssembly::checkChildrenStateOn(Mode_t wantedMode, Submode_t wantedSubmode) { using namespace duallane; refreshHelperModes(); if (wantedSubmode == A_SIDE) { if ((helper.gyro0SideAMode != wantedMode and helper.gyro1SideAMode != wantedMode) or (helper.mgm0SideAMode != wantedMode and helper.mgm1SideAMode != wantedMode) or helper.gpsMode != MODE_ON) { return NOT_ENOUGH_CHILDREN_IN_CORRECT_STATE; } return RETURN_OK; } else if (wantedSubmode == B_SIDE) { if ((helper.gyro2SideBMode != wantedMode and helper.gyro3SideBMode != wantedMode) or (helper.mgm2SideBMode != wantedMode and helper.mgm3SideBMode != wantedMode) or helper.gpsMode != MODE_ON) { return NOT_ENOUGH_CHILDREN_IN_CORRECT_STATE; } return RETURN_OK; } else if (wantedSubmode == DUAL_MODE) { if ((helper.gyro0SideAMode != wantedMode and helper.gyro1SideAMode != wantedMode and helper.gyro2AdisIdSideB != wantedMode and helper.gyro3SideBMode != wantedMode) or (helper.mgm0SideAMode != wantedMode and helper.mgm1SideAMode != wantedMode and helper.mgm2SideBMode != wantedMode and helper.mgm3SideBMode != wantedMode) or helper.gpsMode != MODE_ON) { // Trigger event, but don't start any other transitions. This is the last fallback mode. if (dualModeErrorSwitch) { triggerEvent(NOT_ENOUGH_DEVICES_DUAL_MODE, 0, 0); dualModeErrorSwitch = false; } return RETURN_OK; } return RETURN_OK; } return HasReturnvaluesIF::RETURN_OK; } ReturnValue_t AcsBoardAssembly::handleNormalOrOnModeCmd(Mode_t mode, Submode_t submode) { using namespace duallane; ReturnValue_t result = RETURN_OK; bool needsSecondStep = false; auto cmdSeq = [&](object_id_t objectId, Mode_t devMode, ModeTableIdx tableIdx) { if (mode == devMode) { modeTable[tableIdx].setMode(mode); } else if (mode == DeviceHandlerIF::MODE_NORMAL) { if (isUseable(objectId, devMode)) { if (devMode == MODE_ON) { modeTable[tableIdx].setMode(mode); modeTable[tableIdx].setSubmode(SUBMODE_NONE); } else { modeTable[tableIdx].setMode(MODE_ON); modeTable[tableIdx].setSubmode(SUBMODE_NONE); if (internalState != STATE_SECOND_STEP) { needsSecondStep = true; } } } } else if (mode == MODE_ON) { if (isUseable(objectId, devMode)) { modeTable[tableIdx].setMode(MODE_ON); modeTable[tableIdx].setSubmode(SUBMODE_NONE); } } }; bool gpsUsable = isUseable(helper.gpsId, helper.gpsMode); switch (submode) { case (A_SIDE): { modeTable[ModeTableIdx::GYRO_2_B].setMode(MODE_OFF); modeTable[ModeTableIdx::GYRO_2_B].setSubmode(SUBMODE_NONE); modeTable[ModeTableIdx::GYRO_3_B].setMode(MODE_OFF); modeTable[ModeTableIdx::GYRO_3_B].setSubmode(SUBMODE_NONE); modeTable[ModeTableIdx::MGM_2_B].setMode(MODE_OFF); modeTable[ModeTableIdx::MGM_2_B].setSubmode(SUBMODE_NONE); modeTable[ModeTableIdx::MGM_3_B].setMode(MODE_OFF); modeTable[ModeTableIdx::MGM_3_B].setSubmode(SUBMODE_NONE); cmdSeq(helper.gyro0AdisIdSideA, helper.gyro0SideAMode, ModeTableIdx::GYRO_0_A); cmdSeq(helper.gyro1L3gIdSideA, helper.gyro1SideAMode, ModeTableIdx::GYRO_1_A); cmdSeq(helper.mgm0Lis3IdSideA, helper.mgm0SideAMode, ModeTableIdx::MGM_0_A); cmdSeq(helper.mgm1Rm3100IdSideA, helper.mgm1SideAMode, ModeTableIdx::MGM_1_A); if (gpsUsable) { gpioHandler(gpioIds::GNSS_0_NRESET, true, "AcsBoardAssembly::handleNormalOrOnModeCmd: Could not pull nReset pin" "of GNSS 0 high (used GNSS)"); gpioHandler(gpioIds::GNSS_1_NRESET, false, "AcsBoardAssembly::handleNormalOrOnModeCmd: Could not pull nReset pin" "of GNSS 1 low (unused GNSS)"); gpioHandler(gpioIds::GNSS_SELECT, false, "AcsBoardAssembly::handleNormalOrOnModeCmd: Could not pull GNSS select low"); } break; } case (B_SIDE): { modeTable[ModeTableIdx::GYRO_0_A].setMode(MODE_OFF); modeTable[ModeTableIdx::GYRO_0_A].setSubmode(SUBMODE_NONE); modeTable[ModeTableIdx::GYRO_1_A].setMode(MODE_OFF); modeTable[ModeTableIdx::GYRO_1_A].setSubmode(SUBMODE_NONE); modeTable[ModeTableIdx::MGM_0_A].setMode(MODE_OFF); modeTable[ModeTableIdx::MGM_0_A].setSubmode(SUBMODE_NONE); modeTable[ModeTableIdx::MGM_1_A].setMode(MODE_OFF); modeTable[ModeTableIdx::MGM_1_A].setSubmode(SUBMODE_NONE); cmdSeq(helper.gyro2AdisIdSideB, helper.gyro2SideBMode, ModeTableIdx::GYRO_2_B); cmdSeq(helper.gyro3L3gIdSideB, helper.gyro3SideBMode, ModeTableIdx::GYRO_3_B); cmdSeq(helper.mgm2Lis3IdSideB, helper.mgm2SideBMode, ModeTableIdx::MGM_2_B); cmdSeq(helper.mgm3Rm3100IdSideB, helper.mgm3SideBMode, ModeTableIdx::MGM_3_B); if (gpsUsable) { gpioHandler(gpioIds::GNSS_0_NRESET, false, "AcsBoardAssembly::handleNormalOrOnModeCmd: Could not pull nReset pin" "of GNSS 0 low (unused GNSS)"); gpioHandler(gpioIds::GNSS_1_NRESET, true, "AcsBoardAssembly::handleNormalOrOnModeCmd: Could not pull nReset pin" "of GNSS 1 high (used GNSS)"); gpioHandler(gpioIds::GNSS_SELECT, true, "AcsBoardAssembly::handleNormalOrOnModeCmd: Could not pull GNSS select high"); } break; } case (DUAL_MODE): { cmdSeq(helper.gpsId, helper.gpsMode, ModeTableIdx::GPS); cmdSeq(helper.gyro0AdisIdSideA, helper.gyro0SideAMode, ModeTableIdx::GYRO_0_A); cmdSeq(helper.gyro1L3gIdSideA, helper.gyro1SideAMode, ModeTableIdx::GYRO_1_A); cmdSeq(helper.mgm0Lis3IdSideA, helper.mgm0SideAMode, ModeTableIdx::MGM_0_A); cmdSeq(helper.mgm1Rm3100IdSideA, helper.mgm1SideAMode, ModeTableIdx::MGM_1_A); cmdSeq(helper.gyro2AdisIdSideB, helper.gyro2SideBMode, ModeTableIdx::GYRO_2_B); cmdSeq(helper.gyro3L3gIdSideB, helper.gyro3SideBMode, ModeTableIdx::GYRO_3_B); cmdSeq(helper.mgm2Lis3IdSideB, helper.mgm2SideBMode, ModeTableIdx::MGM_2_B); cmdSeq(helper.mgm3Rm3100IdSideB, helper.mgm3SideBMode, ModeTableIdx::MGM_3_B); ReturnValue_t status = RETURN_OK; if (gpsUsable) { gpioHandler(gpioIds::GNSS_0_NRESET, true, "AcsBoardAssembly::handleNormalOrOnModeCmd: Could not pull nReset pin" "of GNSS 0 high (used GNSS)"); gpioHandler(gpioIds::GNSS_1_NRESET, true, "AcsBoardAssembly::handleNormalOrOnModeCmd: Could not pull nReset pin" "of GNSS 1 high (used GNSS)"); if (defaultSubmode == Submodes::A_SIDE) { status = gpioIF->pullLow(gpioIds::GNSS_SELECT); } else { status = gpioIF->pullHigh(gpioIds::GNSS_SELECT); } if (status != HasReturnvaluesIF::RETURN_OK) { #if OBSW_VERBOSE_LEVEL >= 1 sif::error << "AcsBoardAssembly::handleNormalOrOnModeCmd: Could not pull GNSS select to" "default side for dual mode" << std::endl; #endif } } break; } default: { sif::error << "AcsBoardAssembly::handleNormalModeCmd: Unknown submode" << std::endl; } } if (gpsUsable) { modeTable[ModeTableIdx::GPS].setMode(MODE_ON); modeTable[ModeTableIdx::GPS].setSubmode(SUBMODE_NONE); } if (needsSecondStep) { result = NEED_SECOND_STEP; } return result; } void AcsBoardAssembly::selectGpsInDualMode(duallane::Submodes side) { using namespace duallane; if (submode != Submodes::DUAL_MODE) { return; } ReturnValue_t result = RETURN_OK; if (side == Submodes::A_SIDE) { result = gpioIF->pullLow(gpioIds::GNSS_SELECT); } else { result = gpioIF->pullHigh(gpioIds::GNSS_SELECT); } if (result != HasReturnvaluesIF::RETURN_OK) { #if OBSW_VERBOSE_LEVEL >= 1 sif::error << "AcsBoardAssembly::switchGpsInDualMode: Switching GPS failed" << std::endl; #endif } } void AcsBoardAssembly::gpioHandler(gpioId_t gpio, bool high, std::string error) { ReturnValue_t result = RETURN_OK; if (high) { result = gpioIF->pullHigh(gpio); } else { result = gpioIF->pullLow(gpio); } if (result != HasReturnvaluesIF::RETURN_OK) { #if OBSW_VERBOSE_LEVEL >= 1 sif::error << error << std::endl; #endif } } void AcsBoardAssembly::refreshHelperModes() { try { helper.gyro0SideAMode = childrenMap.at(helper.gyro0AdisIdSideA).mode; helper.gyro1SideAMode = childrenMap.at(helper.gyro1L3gIdSideA).mode; helper.gyro2SideBMode = childrenMap.at(helper.gyro2AdisIdSideB).mode; helper.gyro3SideBMode = childrenMap.at(helper.gyro2AdisIdSideB).mode; helper.mgm0SideAMode = childrenMap.at(helper.mgm0Lis3IdSideA).mode; helper.mgm1SideAMode = childrenMap.at(helper.mgm1Rm3100IdSideA).mode; helper.mgm2SideBMode = childrenMap.at(helper.mgm2Lis3IdSideB).mode; helper.mgm3SideBMode = childrenMap.at(helper.mgm3Rm3100IdSideB).mode; helper.gpsMode = childrenMap.at(helper.gpsId).mode; } catch (const std::out_of_range& e) { sif::error << "AcsBoardAssembly::refreshHelperModes: Invalid map: " << e.what() << std::endl; } } ReturnValue_t AcsBoardAssembly::initialize() { ReturnValue_t result = registerChild(helper.gyro0AdisIdSideA); if (result != HasReturnvaluesIF::RETURN_OK) { return result; } result = registerChild(helper.gyro1L3gIdSideA); if (result != HasReturnvaluesIF::RETURN_OK) { return result; } result = registerChild(helper.gyro2AdisIdSideB); if (result != HasReturnvaluesIF::RETURN_OK) { return result; } result = registerChild(helper.gyro3L3gIdSideB); if (result != HasReturnvaluesIF::RETURN_OK) { return result; } result = registerChild(helper.mgm0Lis3IdSideA); if (result != HasReturnvaluesIF::RETURN_OK) { return result; } result = registerChild(helper.mgm1Rm3100IdSideA); if (result != HasReturnvaluesIF::RETURN_OK) { return result; } result = registerChild(helper.mgm2Lis3IdSideB); if (result != HasReturnvaluesIF::RETURN_OK) { return result; } result = registerChild(helper.mgm3Rm3100IdSideB); if (result != HasReturnvaluesIF::RETURN_OK) { return result; } result = registerChild(helper.gpsId); if (result != HasReturnvaluesIF::RETURN_OK) { return result; } return AssemblyBase::initialize(); }