#include "AcsBoardAssembly.h"

#include <devices/gpioIds.h>
#include <fsfw/power/PowerSwitchIF.h>
#include <fsfw/serviceinterface.h>

#include "OBSWConfig.h"

AcsBoardAssembly::AcsBoardAssembly(object_id_t objectId, PowerSwitchIF* switcher,
                                   AcsBoardHelper helper, GpioIF* gpioIF)
    : DualLaneAssemblyBase(objectId, switcher, SWITCH_A, SWITCH_B, POWER_STATE_MACHINE_TIMEOUT,
                           SIDE_SWITCH_TRANSITION_NOT_ALLOWED, TRANSITION_OTHER_SIDE_FAILED),
      helper(helper),
      gpioIF(gpioIF) {
  if (switcher == nullptr) {
    sif::error << "AcsBoardAssembly::AcsBoardAssembly: Invalid Power Switcher "
                  "IF passed"
               << std::endl;
  }
  if (gpioIF == nullptr) {
    sif::error << "AcsBoardAssembly::AcsBoardAssembly: Invalid GPIO IF passed" << std::endl;
  }
  ModeListEntry entry;
  initModeTableEntry(helper.mgm0Lis3IdSideA, entry, modeTable);
  initModeTableEntry(helper.mgm1Rm3100IdSideA, entry, modeTable);
  initModeTableEntry(helper.mgm2Lis3IdSideB, entry, modeTable);
  initModeTableEntry(helper.mgm3Rm3100IdSideB, entry, modeTable);
  initModeTableEntry(helper.gyro0AdisIdSideA, entry, modeTable);
  initModeTableEntry(helper.gyro1L3gIdSideA, entry, modeTable);
  initModeTableEntry(helper.gyro2AdisIdSideB, entry, modeTable);
  initModeTableEntry(helper.gyro3L3gIdSideB, entry, modeTable);
  initModeTableEntry(helper.gpsId, entry, modeTable);
}

ReturnValue_t AcsBoardAssembly::commandChildren(Mode_t mode, Submode_t submode) {
  using namespace duallane;
  ReturnValue_t result = returnvalue::OK;
  refreshHelperModes();
  // Initialize the mode table to ensure all devices are in a defined state
  modeTable[ModeTableIdx::GYRO_0_A].setMode(MODE_OFF);
  modeTable[ModeTableIdx::GYRO_0_A].setSubmode(SUBMODE_NONE);
  modeTable[ModeTableIdx::GYRO_1_A].setMode(MODE_OFF);
  modeTable[ModeTableIdx::GYRO_1_A].setSubmode(SUBMODE_NONE);
  modeTable[ModeTableIdx::GYRO_2_B].setMode(MODE_OFF);
  modeTable[ModeTableIdx::GYRO_2_B].setSubmode(SUBMODE_NONE);
  modeTable[ModeTableIdx::GYRO_3_B].setMode(MODE_OFF);
  modeTable[ModeTableIdx::GYRO_3_B].setSubmode(SUBMODE_NONE);
  modeTable[ModeTableIdx::MGM_0_A].setMode(MODE_OFF);
  modeTable[ModeTableIdx::MGM_0_A].setSubmode(SUBMODE_NONE);
  modeTable[ModeTableIdx::MGM_1_A].setMode(MODE_OFF);
  modeTable[ModeTableIdx::MGM_1_A].setSubmode(SUBMODE_NONE);
  modeTable[ModeTableIdx::MGM_2_B].setMode(MODE_OFF);
  modeTable[ModeTableIdx::MGM_2_B].setSubmode(SUBMODE_NONE);
  modeTable[ModeTableIdx::MGM_3_B].setMode(MODE_OFF);
  modeTable[ModeTableIdx::MGM_3_B].setSubmode(SUBMODE_NONE);
  modeTable[ModeTableIdx::GPS].setMode(MODE_OFF);
  modeTable[ModeTableIdx::GPS].setSubmode(SUBMODE_NONE);
  if (recoveryState == RecoveryState::RECOVERY_IDLE) {
    result = checkAndHandleHealthStates(mode, submode);
    if (result != returnvalue::OK) {
      return result;
    }
  }
  if (recoveryState != RecoveryState::RECOVERY_STARTED) {
    if (mode == DeviceHandlerIF::MODE_NORMAL or mode == MODE_ON) {
      result = handleNormalOrOnModeCmd(mode, submode);
    }
  }
  HybridIterator<ModeListEntry> tableIter(modeTable.begin(), modeTable.end());
  executeTable(tableIter);
  return result;
}

ReturnValue_t AcsBoardAssembly::checkChildrenStateOn(Mode_t wantedMode, Submode_t wantedSubmode) {
  using namespace duallane;
  refreshHelperModes();
  if (wantedSubmode == A_SIDE) {
    if ((helper.gyro0SideAMode != wantedMode and helper.gyro1SideAMode != wantedMode) or
        (helper.mgm0SideAMode != wantedMode and helper.mgm1SideAMode != wantedMode) or
        (helper.gpsMode != MODE_ON) or gps0HealthDevFaulty()) {
      return NOT_ENOUGH_CHILDREN_IN_CORRECT_STATE;
    }
    return returnvalue::OK;
  } else if (wantedSubmode == B_SIDE) {
    if ((helper.gyro2SideBMode != wantedMode and helper.gyro3SideBMode != wantedMode) or
        (helper.mgm2SideBMode != wantedMode and helper.mgm3SideBMode != wantedMode) or
        (helper.gpsMode != MODE_ON) or gps1HealthDevFaulty()) {
      return NOT_ENOUGH_CHILDREN_IN_CORRECT_STATE;
    }
    return returnvalue::OK;
  } else if (wantedSubmode == DUAL_MODE) {
    if ((helper.gyro0SideAMode != wantedMode and helper.gyro1SideAMode != wantedMode and
         helper.gyro2AdisIdSideB != wantedMode and helper.gyro3SideBMode != wantedMode) or
        (helper.mgm0SideAMode != wantedMode and helper.mgm1SideAMode != wantedMode and
         helper.mgm2SideBMode != wantedMode and helper.mgm3SideBMode != wantedMode) or
        helper.gpsMode != MODE_ON) {
      // Trigger event, but don't start any other transitions. This is the last fallback mode.
      if (dualModeErrorSwitch) {
        triggerEvent(NOT_ENOUGH_DEVICES_DUAL_MODE, 0, 0);
        dualModeErrorSwitch = false;
      }
      return returnvalue::OK;
    }
    return returnvalue::OK;
  }
  return returnvalue::OK;
}

ReturnValue_t AcsBoardAssembly::handleNormalOrOnModeCmd(Mode_t mode, Submode_t submode) {
  using namespace duallane;
  ReturnValue_t result = returnvalue::OK;
  bool needsSecondStep = false;
  handleSideSwitchStates(submode, needsSecondStep);
  auto cmdSeq = [&](object_id_t objectId, Mode_t devMode, ModeTableIdx tableIdx) {
    if (mode == devMode) {
      modeTable[tableIdx].setMode(mode);
    } else if (isModeCommandable(objectId, devMode)) {
      modeTable[tableIdx].setMode(mode);
      modeTable[tableIdx].setSubmode(SUBMODE_NONE);
    }
  };

  bool gpsUsable = isGpsUsable(submode);
  auto gpsCmd = [&](bool gnss0NReset, bool gnss1NReset, uint8_t gnssSelect) {
    if (gpsUsable) {
      if (mode == MODE_ON or mode == DeviceHandlerIF::MODE_NORMAL) {
        modeTable[ModeTableIdx::GPS].setMode(MODE_ON);
      } else if (mode == MODE_OFF) {
        gnss0NReset = true;
        gnss1NReset = true;
        modeTable[ModeTableIdx::GPS].setMode(MODE_OFF);
      }
      modeTable[ModeTableIdx::GPS].setSubmode(SUBMODE_NONE);

      gpioHandler(gpioIds::GNSS_0_NRESET, gnss0NReset,
                  "AcsBoardAssembly::handleNormalOrOnModeCmd: Could not pull nReset pin"
                  "of GNSS 0");
      gpioHandler(gpioIds::GNSS_1_NRESET, gnss1NReset,
                  "AcsBoardAssembly::handleNormalOrOnModeCmd: Could not pull nReset pin"
                  "of GNSS 1");
      gpioHandler(gpioIds::GNSS_SELECT, gnssSelect,
                  "AcsBoardAssembly::handleNormalOrOnModeCmd: Could not pull GNSS select");
    }
  };
  switch (submode) {
    case (A_SIDE): {
      modeTable[ModeTableIdx::GYRO_2_B].setMode(MODE_OFF);
      modeTable[ModeTableIdx::GYRO_2_B].setSubmode(SUBMODE_NONE);
      modeTable[ModeTableIdx::GYRO_3_B].setMode(MODE_OFF);
      modeTable[ModeTableIdx::GYRO_3_B].setSubmode(SUBMODE_NONE);
      modeTable[ModeTableIdx::MGM_2_B].setMode(MODE_OFF);
      modeTable[ModeTableIdx::MGM_2_B].setSubmode(SUBMODE_NONE);
      modeTable[ModeTableIdx::MGM_3_B].setMode(MODE_OFF);
      modeTable[ModeTableIdx::MGM_3_B].setSubmode(SUBMODE_NONE);
      cmdSeq(helper.gyro0AdisIdSideA, helper.gyro0SideAMode, ModeTableIdx::GYRO_0_A);
      cmdSeq(helper.gyro1L3gIdSideA, helper.gyro1SideAMode, ModeTableIdx::GYRO_1_A);
      cmdSeq(helper.mgm0Lis3IdSideA, helper.mgm0SideAMode, ModeTableIdx::MGM_0_A);
      cmdSeq(helper.mgm1Rm3100IdSideA, helper.mgm1SideAMode, ModeTableIdx::MGM_1_A);
      gpsCmd(true, false, 0);
      break;
    }
    case (B_SIDE): {
      modeTable[ModeTableIdx::GYRO_0_A].setMode(MODE_OFF);
      modeTable[ModeTableIdx::GYRO_0_A].setSubmode(SUBMODE_NONE);
      modeTable[ModeTableIdx::GYRO_1_A].setMode(MODE_OFF);
      modeTable[ModeTableIdx::GYRO_1_A].setSubmode(SUBMODE_NONE);
      modeTable[ModeTableIdx::MGM_0_A].setMode(MODE_OFF);
      modeTable[ModeTableIdx::MGM_0_A].setSubmode(SUBMODE_NONE);
      modeTable[ModeTableIdx::MGM_1_A].setMode(MODE_OFF);
      modeTable[ModeTableIdx::MGM_1_A].setSubmode(SUBMODE_NONE);
      cmdSeq(helper.gyro2AdisIdSideB, helper.gyro2SideBMode, ModeTableIdx::GYRO_2_B);
      cmdSeq(helper.gyro3L3gIdSideB, helper.gyro3SideBMode, ModeTableIdx::GYRO_3_B);
      cmdSeq(helper.mgm2Lis3IdSideB, helper.mgm2SideBMode, ModeTableIdx::MGM_2_B);
      cmdSeq(helper.mgm3Rm3100IdSideB, helper.mgm3SideBMode, ModeTableIdx::MGM_3_B);
      gpsCmd(false, true, 1);
      break;
    }
    case (DUAL_MODE): {
      cmdSeq(helper.gyro0AdisIdSideA, helper.gyro0SideAMode, ModeTableIdx::GYRO_0_A);
      cmdSeq(helper.gyro1L3gIdSideA, helper.gyro1SideAMode, ModeTableIdx::GYRO_1_A);
      cmdSeq(helper.mgm0Lis3IdSideA, helper.mgm0SideAMode, ModeTableIdx::MGM_0_A);
      cmdSeq(helper.mgm1Rm3100IdSideA, helper.mgm1SideAMode, ModeTableIdx::MGM_1_A);
      cmdSeq(helper.gyro2AdisIdSideB, helper.gyro2SideBMode, ModeTableIdx::GYRO_2_B);
      cmdSeq(helper.gyro3L3gIdSideB, helper.gyro3SideBMode, ModeTableIdx::GYRO_3_B);
      cmdSeq(helper.mgm2Lis3IdSideB, helper.mgm2SideBMode, ModeTableIdx::MGM_2_B);
      cmdSeq(helper.mgm3Rm3100IdSideB, helper.mgm3SideBMode, ModeTableIdx::MGM_3_B);
      if (defaultSubmode == Submodes::A_SIDE) {
        gpsCmd(true, true, 0);
      } else {
        gpsCmd(true, true, 1);
      }
      break;
    }
    default: {
      sif::error << "AcsBoardAssembly::handleNormalModeCmd: Unknown submode" << std::endl;
    }
  }
  if (needsSecondStep) {
    result = NEED_SECOND_STEP;
  }
  return result;
}

void AcsBoardAssembly::selectGpsInDualMode(duallane::Submodes side) {
  using namespace duallane;
  if (submode != Submodes::DUAL_MODE) {
    return;
  }
  ReturnValue_t result = returnvalue::OK;
  if (side == Submodes::A_SIDE) {
    result = gpioIF->pullLow(gpioIds::GNSS_SELECT);
  } else {
    result = gpioIF->pullHigh(gpioIds::GNSS_SELECT);
  }
  if (result != returnvalue::OK) {
#if OBSW_VERBOSE_LEVEL >= 1
    sif::error << "AcsBoardAssembly::switchGpsInDualMode: Switching GPS failed" << std::endl;
#endif
  }
}

void AcsBoardAssembly::gpioHandler(gpioId_t gpio, bool high, std::string error) {
  ReturnValue_t result = returnvalue::OK;
  if (high) {
    result = gpioIF->pullHigh(gpio);
  } else {
    result = gpioIF->pullLow(gpio);
  }
  if (result != returnvalue::OK) {
#if OBSW_VERBOSE_LEVEL >= 1
    sif::error << error << std::endl;
#endif
  }
}

void AcsBoardAssembly::refreshHelperModes() {
  try {
    helper.gyro0SideAMode = childrenMap.at(helper.gyro0AdisIdSideA).mode;
    helper.gyro1SideAMode = childrenMap.at(helper.gyro1L3gIdSideA).mode;
    helper.gyro2SideBMode = childrenMap.at(helper.gyro2AdisIdSideB).mode;
    helper.gyro3SideBMode = childrenMap.at(helper.gyro3L3gIdSideB).mode;
    helper.mgm0SideAMode = childrenMap.at(helper.mgm0Lis3IdSideA).mode;
    helper.mgm1SideAMode = childrenMap.at(helper.mgm1Rm3100IdSideA).mode;
    helper.mgm2SideBMode = childrenMap.at(helper.mgm2Lis3IdSideB).mode;
    helper.mgm3SideBMode = childrenMap.at(helper.mgm3Rm3100IdSideB).mode;
    helper.gpsMode = childrenMap.at(helper.gpsId).mode;
  } catch (const std::out_of_range& e) {
    sif::error << "AcsBoardAssembly::refreshHelperModes: Invalid map: " << e.what() << std::endl;
  }
}

ReturnValue_t AcsBoardAssembly::initialize() {
  for (const auto& child : childrenMap) {
    updateChildModeByObjId(child.first, MODE_OFF, 0);
  }
  return AssemblyBase::initialize();
}

ReturnValue_t AcsBoardAssembly::checkAndHandleHealthStates(Mode_t commandedMode,
                                                           Submode_t commandedSubmode) {
  using namespace returnvalue;
  ReturnValue_t status = returnvalue::OK;
  bool healthNeedsToBeOverwritten = false;
  auto checkAcsBoardSensorGroup = [&](object_id_t o0, object_id_t o1, object_id_t o2,
                                      object_id_t o3) {
    HealthState h0 = healthHelper.healthTable->getHealth(o0);
    HealthState h1 = healthHelper.healthTable->getHealth(o1);
    HealthState h2 = healthHelper.healthTable->getHealth(o2);
    HealthState h3 = healthHelper.healthTable->getHealth(o3);
    // All device are faulty or permanent faulty, but this is a safe mode assembly, so we need
    // to restore the devices.
    if ((h0 == FAULTY or h0 == PERMANENT_FAULTY) and (h1 == FAULTY or h1 == PERMANENT_FAULTY) and
        (h2 == FAULTY or h2 == PERMANENT_FAULTY) and (h3 == FAULTY or h3 == PERMANENT_FAULTY)) {
      uint8_t numPermFaulty = 0;
      if (h0 == PERMANENT_FAULTY) {
        numPermFaulty++;
      }
      if (h1 == PERMANENT_FAULTY) {
        numPermFaulty++;
      }
      if (h2 == PERMANENT_FAULTY) {
        numPermFaulty++;
      }
      if (h3 == PERMANENT_FAULTY) {
        numPermFaulty++;
      }
      if (numPermFaulty < 4) {
        // Some are faulty and some are permanent faulty, so only set faulty ones to
        // EXTERNAL_CONTROL.
        if (h0 == FAULTY) {
          overwriteDeviceHealth(o0, h0);
        }
        if (h1 == FAULTY) {
          overwriteDeviceHealth(o1, h1);
        }
        if (h2 == FAULTY) {
          overwriteDeviceHealth(o2, h2);
        }
        if (h3 == FAULTY) {
          overwriteDeviceHealth(o3, h3);
        }
      } else {
        // All permanent faulty, so set all to EXTERNAL_CONTROL
        overwriteDeviceHealth(o0, h0);
        overwriteDeviceHealth(o1, h1);
        overwriteDeviceHealth(o2, h2);
        overwriteDeviceHealth(o3, h3);
      }
      healthNeedsToBeOverwritten = true;
    }
    if (h0 == EXTERNAL_CONTROL or h1 == EXTERNAL_CONTROL or h2 == EXTERNAL_CONTROL or
        h3 == EXTERNAL_CONTROL) {
      modeHelper.setForced(true);
    }
  };
  if (healthHelper.healthTable->getHealth(helper.healthDevGps0) == EXTERNAL_CONTROL or
      healthHelper.healthTable->getHealth(helper.healthDevGps1) == EXTERNAL_CONTROL) {
    modeHelper.setForced(true);
  }
  if (healthHelper.healthTable->getHealth(helper.healthDevGps0) == PERMANENT_FAULTY and
      healthHelper.healthTable->getHealth(helper.healthDevGps1) == FAULTY) {
    overwriteDeviceHealth(helper.healthDevGps1, FAULTY);
    healthNeedsToBeOverwritten = true;
  } else if (healthHelper.healthTable->getHealth(helper.healthDevGps1) == PERMANENT_FAULTY and
             healthHelper.healthTable->getHealth(helper.healthDevGps0) == FAULTY) {
    overwriteDeviceHealth(helper.healthDevGps0, FAULTY);
  } else if (healthHelper.healthTable->isFaulty(helper.healthDevGps0) and
             healthHelper.healthTable->isFaulty(helper.healthDevGps1)) {
    overwriteDeviceHealth(helper.healthDevGps0,
                          healthHelper.healthTable->getHealth(helper.healthDevGps0));
    overwriteDeviceHealth(helper.healthDevGps1,
                          healthHelper.healthTable->getHealth(helper.healthDevGps1));
    healthNeedsToBeOverwritten = true;
  }

  if (commandedSubmode == duallane::DUAL_MODE) {
    checkAcsBoardSensorGroup(helper.mgm0Lis3IdSideA, helper.mgm1Rm3100IdSideA,
                             helper.mgm2Lis3IdSideB, helper.mgm3Rm3100IdSideB);
    checkAcsBoardSensorGroup(helper.gyro0AdisIdSideA, helper.gyro1L3gIdSideA,

                             helper.gyro2AdisIdSideB, helper.gyro3L3gIdSideB);
  }
  if (healthNeedsToBeOverwritten) {
    // If we are overwriting the health states, we are already in a transition to dual mode,
    // and we would like that transition to complete. The default behaviour is to go back to the
    // old mode. We force our behaviour by overwriting the internal modes.
    mode = commandedMode;
    submode = commandedSubmode;
    return NEED_TO_CHANGE_HEALTH;
  }
  return status;
}

void AcsBoardAssembly::handleChildrenLostMode(ReturnValue_t result) {
  using namespace duallane;
  // Special handling to account for GPS devices being faulty. If the GPS device on the other
  // side is marked faulty, directly to to dual side.
  if (submode == Submodes::A_SIDE) {
    if (gps0HealthDevFaulty()) {
      triggerEvent(DIRECT_TRANSITION_TO_DUAL_OTHER_GPS_FAULTY, submode, 0);
      startTransition(mode, Submodes::DUAL_MODE);
      return;
    }
  } else if (submode == Submodes::B_SIDE) {
    if (gps1HealthDevFaulty()) {
      triggerEvent(DIRECT_TRANSITION_TO_DUAL_OTHER_GPS_FAULTY, submode, 0);
      startTransition(mode, Submodes::DUAL_MODE);
      return;
    }
  }
  DualLaneAssemblyBase::handleChildrenLostMode(result);
}

bool AcsBoardAssembly::gps0HealthDevFaulty() const {
  auto health = healthHelper.healthTable->getHealth(helper.healthDevGps0);
  if (health == FAULTY or health == PERMANENT_FAULTY) {
    return true;
  }
  return false;
}

bool AcsBoardAssembly::gps1HealthDevFaulty() const {
  auto health = healthHelper.healthTable->getHealth(helper.healthDevGps1);
  if (health == FAULTY or health == PERMANENT_FAULTY) {
    return true;
  }
  return false;
}

bool AcsBoardAssembly::isGpsUsable(uint8_t targetSubmode) const {
  if (targetSubmode == duallane::A_SIDE and
      healthHelper.healthTable->isFaulty(helper.healthDevGps0)) {
    // Causes a OFF command to be sent, which triggers a side switch or a switch to dual side.
    return false;
  }
  if (targetSubmode == duallane::B_SIDE and
      healthHelper.healthTable->isFaulty(helper.healthDevGps1)) {
    // Causes a OFF command to be sent, which triggers a side switch or a switch to dual side.
    return false;
  }
  auto gpsIter = childrenMap.find(helper.gpsId);
  // Check if device is already in target mode
  if (gpsIter != childrenMap.end() and gpsIter->second.mode == mode) {
    return true;
  }
  return true;
}