#include "AttitudeEstimation.h"

AttitudeEstimation::AttitudeEstimation(AcsParameters *acsParameters_) {
  acsParameters = acsParameters_;
}

AttitudeEstimation::~AttitudeEstimation() {}

void AttitudeEstimation::quest(acsctrl::SusDataProcessed *susData,
                               acsctrl::MgmDataProcessed *mgmData,
                               acsctrl::AttitudeEstimationData *attitudeEstimationData) {
  if (not(susData->susVecTot.isValid() and susData->sunIjkModel.isValid() and
          mgmData->mgmVecTot.isValid() and mgmData->magIgrfModel.isValid())) {
    {
      PoolReadGuard pg{attitudeEstimationData};
      if (pg.getReadResult() == returnvalue::OK) {
        std::memcpy(attitudeEstimationData->quatQuest.value, ZERO_VEC4, 4 * sizeof(double));
        attitudeEstimationData->quatQuest.setValid(false);
      }
    }
    return;
  }

  // Normalize Data
  double normMgmB[3] = {0, 0, 0}, normMgmI[3] = {0, 0, 0}, normSusB[3] = {0, 0, 0},
         normSusI[3] = {0, 0, 0};
  VectorOperations<double>::normalize(susData->susVecTot.value, normSusB, 3);
  VectorOperations<double>::normalize(susData->sunIjkModel.value, normSusI, 3);
  VectorOperations<double>::normalize(mgmData->mgmVecTot.value, normMgmB, 3);
  VectorOperations<double>::normalize(mgmData->magIgrfModel.value, normMgmI, 3);

  // Create Helper Vectors
  double normHelperB[3] = {0, 0, 0}, normHelperI[3] = {0, 0, 0}, helperCross[3] = {0, 0, 0},
         helperSum[3] = {0, 0, 0};
  VectorOperations<double>::cross(normSusB, normMgmB, normHelperB);
  VectorOperations<double>::cross(normSusI, normMgmI, normHelperI);
  VectorOperations<double>::normalize(normHelperB, normHelperB, 3);
  VectorOperations<double>::normalize(normHelperI, normHelperI, 3);
  VectorOperations<double>::cross(normHelperB, normHelperI, helperCross);
  VectorOperations<double>::add(normHelperB, normHelperI, helperSum, 3);

  // Sensor Weights
  double kSus = 0, kMgm = 0;
  kSus = std::pow(acsParameters->kalmanFilterParameters.sensorNoiseSus, -2);
  kMgm = std::pow(acsParameters->kalmanFilterParameters.sensorNoiseMgm, -2);

  // Weighted Vectors
  double weightedSusB[3] = {0, 0, 0}, weightedMgmB[3] = {0, 0, 0}, kSusVec[3] = {0, 0, 0},
         kMgmVec[3] = {0, 0, 0}, kSumVec[3] = {0, 0, 0};
  VectorOperations<double>::mulScalar(normSusB, kSus, weightedSusB, 3);
  VectorOperations<double>::mulScalar(normMgmB, kMgm, weightedMgmB, 3);
  VectorOperations<double>::cross(weightedSusB, normSusI, kSusVec);
  VectorOperations<double>::cross(weightedMgmB, normMgmI, kMgmVec);
  VectorOperations<double>::add(kSusVec, kMgmVec, kSumVec, 3);

  // Some weird Angles
  double alpha = (1 + VectorOperations<double>::dot(normHelperB, normHelperI)) *
                     (VectorOperations<double>::dot(weightedSusB, normSusI) +
                      VectorOperations<double>::dot(weightedMgmB, normMgmI)) +
                 VectorOperations<double>::dot(helperCross, kSumVec);
  double beta = VectorOperations<double>::dot(helperSum, kSumVec);
  double gamma = std::sqrt(std::pow(alpha, 2) + std::pow(beta, 2));

  // I don't even know what this is supposed to be
  double constPlus =
      1. / (2 * std::sqrt(gamma * (gamma + alpha) *
                          (1 + VectorOperations<double>::dot(normHelperB, normHelperI))));
  double constMinus =
      1. / (2 * std::sqrt(gamma * (gamma - alpha) *
                          (1 + VectorOperations<double>::dot(normHelperB, normHelperI))));

  // Calculate Quaternion
  double qBI[4] = {0, 0, 0, 0}, qRotVecTot[3] = {0, 0, 0}, qRotVecPt0[3] = {0, 0, 0},
         qRotVecPt1[3] = {0, 0, 0};
  if (alpha >= 0) {
    // Scalar Part
    qBI[3] = (gamma + alpha) * (1 + VectorOperations<double>::dot(normHelperB, normHelperI));
    // Rotational Vector Part
    VectorOperations<double>::mulScalar(helperCross, gamma + alpha, qRotVecPt0, 3);
    VectorOperations<double>::mulScalar(helperSum, beta, qRotVecPt1, 3);
    VectorOperations<double>::add(qRotVecPt0, qRotVecPt1, qRotVecTot, 3);
    std::memcpy(qBI, qRotVecTot, sizeof(qRotVecTot));

    VectorOperations<double>::mulScalar(qBI, constPlus, qBI, 4);
    QuaternionOperations::normalize(qBI, qBI);
  } else {
    // Scalar Part
    qBI[3] = (beta) * (1 + VectorOperations<double>::dot(normHelperB, normHelperI));
    // Rotational Vector Part
    VectorOperations<double>::mulScalar(helperCross, beta, qRotVecPt0, 3);
    VectorOperations<double>::mulScalar(helperSum, gamma - alpha, qRotVecPt1, 3);
    VectorOperations<double>::add(qRotVecPt0, qRotVecPt1, qRotVecTot, 3);
    std::memcpy(qBI, qRotVecTot, sizeof(qRotVecTot));

    VectorOperations<double>::mulScalar(qBI, constMinus, qBI, 4);
    QuaternionOperations::normalize(qBI, qBI);
  }
  // Low Pass
  if (VectorOperations<double>::norm(qOld, 4) != 0.0) {
    QuaternionOperations::slerp(qBI, qOld, acsParameters->onBoardParams.questFilterWeight, qBI);
  }
  {
    PoolReadGuard pg{attitudeEstimationData};
    if (pg.getReadResult() == returnvalue::OK) {
      std::memcpy(attitudeEstimationData->quatQuest.value, qBI, 4 * sizeof(double));
      attitudeEstimationData->quatQuest.setValid(true);
    }
  }
}