#include "MGMHandlerLIS3MDL.h" MGMHandlerLIS3MDL::MGMHandlerLIS3MDL(object_id_t objectId, object_id_t deviceCommunication, CookieIF* comCookie): DeviceHandlerBase(objectId, deviceCommunication, comCookie) { registers[0] = 0x00; registers[1] = 0x00; registers[2] = 0x00; registers[3] = 0x00; registers[4] = 0x00; } MGMHandlerLIS3MDL::~MGMHandlerLIS3MDL() { } void MGMHandlerLIS3MDL::doStartUp() { switch (internalState) { case STATE_NONE: internalState = STATE_FIRST_CONTACT; break; case STATE_FIRST_CONTACT: internalState = STATE_SETUP; break; case STATE_SETUP: internalState = STATE_CHECK_REGISTERS; break; case STATE_CHECK_REGISTERS: if (setupMGM() == RETURN_OK) { for (size_t i = 1; i <= MGMLIS3MDL::NR_OF_CTRL_REGISTERS; i++) { if (registers[i - 1] != commandBuffer[i]) { break; } } setMode(_MODE_TO_ON); } break; default: break; } } void MGMHandlerLIS3MDL::doShutDown() { setMode(_MODE_POWER_DOWN); } ReturnValue_t MGMHandlerLIS3MDL::buildTransitionDeviceCommand( DeviceCommandId_t *id) { switch (internalState) { case STATE_FIRST_CONTACT: *id = MGMLIS3MDL::IDENTIFY_DEVICE; break; case STATE_SETUP: *id = MGMLIS3MDL::SETUP_MGM; break; case STATE_CHECK_REGISTERS: *id = MGMLIS3MDL::READALL_MGM; break; default: break; } return buildCommandFromCommand(*id, NULL, 0); } uint8_t MGMHandlerLIS3MDL::readCommand(uint8_t command, bool continuousCom) { command |= (1 << MGMLIS3MDL::RW_BIT); if (continuousCom == true) { command |= (1 << MGMLIS3MDL::MS_BIT); } return command; } uint8_t MGMHandlerLIS3MDL::writeCommand(uint8_t command, bool continuousCom) { command &= ~(1 << MGMLIS3MDL::RW_BIT); if (continuousCom == true) { command |= (1 << MGMLIS3MDL::MS_BIT); } return command; } ReturnValue_t MGMHandlerLIS3MDL::setupMGM() { registers[0] = (1 << MGMLIS3MDL::TEMP_EN) | (1 << MGMLIS3MDL::OM1) | (1 << MGMLIS3MDL::DO0) | (1 << MGMLIS3MDL::DO1) | (1 << MGMLIS3MDL::DO2); registers[1] = 0; registers[2] = 0; registers[3] = (1 << MGMLIS3MDL::OMZ1); registers[4] = 0; return prepareRegisterWrite(); } ReturnValue_t MGMHandlerLIS3MDL::buildNormalDeviceCommand( DeviceCommandId_t *id) { //defines CommandID of MGM in normal operation and build command from command *id = MGMLIS3MDL::READALL_MGM; return buildCommandFromCommand(*id, NULL, 0); } ReturnValue_t MGMHandlerLIS3MDL::buildCommandFromCommand( DeviceCommandId_t deviceCommand, const uint8_t *commandData, size_t commandDataLen) { lastSentCommand = deviceCommand; switch(deviceCommand) { case(MGMLIS3MDL::READALL_MGM): { if (commandDataLen == 0) { std::memset(commandBuffer, 0, sizeof(commandBuffer)); commandBuffer[0] = readCommand(0, true); rawPacket = commandBuffer; rawPacketLen = sizeof(commandBuffer); return RETURN_OK; } case(MGMLIS3MDL::IDENTIFY_DEVICE): { return identifyDevice(); } case(MGMLIS3MDL::TEMP_SENSOR_ENABLE): { return enableTemperatureSensor(commandData, commandDataLen); } case(MGMLIS3MDL::SETUP_MGM): { return setupMGM(); } case(MGMLIS3MDL::ACCURACY_OP_MODE_SET): { return setOperatingMode(commandData, commandDataLen); } default: lastSentCommand = DeviceHandlerIF::NO_COMMAND; return DeviceHandlerIF::COMMAND_NOT_IMPLEMENTED; } } return HasReturnvaluesIF::RETURN_FAILED; } ReturnValue_t MGMHandlerLIS3MDL::identifyDevice() { uint32_t size = 2; commandBuffer[0] = readCommand(MGMLIS3MDL::IDENTIFY_DEVICE_REG_ADDR); commandBuffer[1] = 0x00; rawPacket = commandBuffer; rawPacketLen = size; return RETURN_OK; } ReturnValue_t MGMHandlerLIS3MDL::scanForReply(const uint8_t *start, size_t len, DeviceCommandId_t *foundId, size_t *foundLen) { *foundLen = len; if (len == MGMLIS3MDL::TOTAL_NR_OF_ADRESSES + 1) { *foundLen = len; *foundId = MGMLIS3MDL::READALL_MGM; //WHO AM I test if (*(start + 16) != MGMLIS3MDL::DEVICE_ID) { return DeviceHandlerIF::INVALID_DATA; } } else if (len == MGMLIS3MDL::SETUP_REPLY) { *foundLen = len; *foundId = MGMLIS3MDL::SETUP_MGM; } else if (len == SINGLE_COMMAND_ANSWER_LEN) { *foundLen = len; *foundId = lastSentCommand; } else { return DeviceHandlerIF::INVALID_DATA; } // Data with SPI Interface has always this answer if (start[0] == 0b11111111) { return RETURN_OK; } else { return DeviceHandlerIF::INVALID_DATA; } } ReturnValue_t MGMHandlerLIS3MDL::interpretDeviceReply(DeviceCommandId_t id, const uint8_t *packet) { switch (id) { case MGMLIS3MDL::IDENTIFY_DEVICE: { break; } case MGMLIS3MDL::SETUP_MGM: { break; } case MGMLIS3MDL::READALL_MGM: { // TODO: Store configuration and sensor values in new local datasets. registers[0] = *(packet + 33); registers[1] = *(packet + 34); registers[2] = *(packet + 35); registers[3] = *(packet + 36); registers[4] = *(packet + 37); uint8_t reg2_value = *(packet + 34); uint8_t scale = getFullScale(®2_value); float sensitivityFactor = getSensitivityFactor(scale); int16_t x_value_raw; int16_t y_value_raw; int16_t z_value_raw; int16_t temp_value_raw; //size_t size = 2; uint8_t *accessBuffer; accessBuffer = const_cast(packet + 41); x_value_raw = *(accessBuffer + 1) << 8 | *(accessBuffer); accessBuffer += 2; y_value_raw = *(accessBuffer + 1) << 8 | *(accessBuffer); accessBuffer += 2; z_value_raw = *(accessBuffer + 1) << 8 | *(accessBuffer); accessBuffer += 2; temp_value_raw = *(accessBuffer + 1) << 8 | *(accessBuffer); float x_value = static_cast(x_value_raw) * sensitivityFactor; float y_value = static_cast(y_value_raw) * sensitivityFactor; float z_value = static_cast(z_value_raw) * sensitivityFactor; float temp_value = 25.0 + ((static_cast(temp_value_raw)) / 8.0); break; } default: { return DeviceHandlerIF::UNKNOW_DEVICE_REPLY; } } return RETURN_OK; } uint8_t MGMHandlerLIS3MDL::getFullScale(uint8_t *reg2) { bool FS0 = false; bool FS1 = false; if ((*reg2 >> 5) == 1) FS0 = true; if ((*reg2 >> 6) == 1) FS1 = true; if ((FS0 == true) && (FS1 == true)) return 16; else if ((FS0 == false) && (FS1 == true)) return 12; else if ((FS0 == true) && (FS1 == false)) return 8; else return 4; } float MGMHandlerLIS3MDL::getSensitivityFactor(uint8_t scale) { return (float) scale / (INT16_MAX); } ReturnValue_t MGMHandlerLIS3MDL::enableTemperatureSensor( const uint8_t *commandData, size_t commandDataLen) { triggerEvent(CHANGE_OF_SETUP_PARAMETER); uint32_t size = 2; commandBuffer[0] = writeCommand(MGMLIS3MDL::CTRL_REG1); if (commandDataLen > 1) { return INVALID_NUMBER_OR_LENGTH_OF_PARAMETERS; } switch (*commandData) { case (MGMLIS3MDL::ON): commandBuffer[1] = registers[0] | (1 << 7); break; case (MGMLIS3MDL::OFF): commandBuffer[1] = registers[0] & ~(1 << 7); break; default: return INVALID_COMMAND_PARAMETER; break; } registers[0] = commandBuffer[1]; rawPacket = commandBuffer; rawPacketLen = size; return RETURN_OK; } ReturnValue_t MGMHandlerLIS3MDL::setOperatingMode(const uint8_t *commandData, size_t commandDataLen) { triggerEvent(CHANGE_OF_SETUP_PARAMETER); if (commandDataLen != 1) { return INVALID_NUMBER_OR_LENGTH_OF_PARAMETERS; } switch (commandData[0]) { case MGMLIS3MDL::LOW: registers[0] = (registers[0] & (~(1 << MGMLIS3MDL::OM1))) & (~(1 << MGMLIS3MDL::OM0)); registers[3] = (registers[3] & (~(1 << MGMLIS3MDL::OMZ1))) & (~(1 << MGMLIS3MDL::OMZ0)); break; case MGMLIS3MDL::MEDIUM: registers[0] = (registers[0] & (~(1 << MGMLIS3MDL::OM1))) | (1 << MGMLIS3MDL::OM0); registers[3] = (registers[3] & (~(1 << MGMLIS3MDL::OMZ1))) | (1 << MGMLIS3MDL::OMZ0); break; case MGMLIS3MDL::HIGH: registers[0] = (registers[0] | (1 << MGMLIS3MDL::OM1)) & (~(1 << MGMLIS3MDL::OM0)); registers[3] = (registers[3] | (1 << MGMLIS3MDL::OMZ1)) & (~(1 << MGMLIS3MDL::OMZ0)); break; case MGMLIS3MDL::ULTRA: registers[0] = (registers[0] | (1 << MGMLIS3MDL::OM1)) | (1 << MGMLIS3MDL::OM0); registers[3] = (registers[3] | (1 << MGMLIS3MDL::OMZ1)) | (1 << MGMLIS3MDL::OMZ0); break; default: break; } return prepareRegisterWrite(); } void MGMHandlerLIS3MDL::fillCommandAndReplyMap() { /* * Regarding ArduinoBoard: * Actually SPI answers directly, but as commanding ArduinoBoard the * communication could be delayed * SPI always has to be triggered, so there could be no periodic answer of * the device, the device has to asked with a command, so periodic is zero. * * We dont read single registers, we just expect special * reply from he Readall_MGM */ insertInCommandAndReplyMap(MGMLIS3MDL::READALL_MGM, 1); insertInCommandAndReplyMap(MGMLIS3MDL::SETUP_MGM, 1); insertInCommandAndReplyMap(MGMLIS3MDL::IDENTIFY_DEVICE, 1); insertInCommandAndReplyMap(MGMLIS3MDL::TEMP_SENSOR_ENABLE, 1); insertInCommandAndReplyMap(MGMLIS3MDL::ACCURACY_OP_MODE_SET, 1); } ReturnValue_t MGMHandlerLIS3MDL::prepareRegisterWrite() { commandBuffer[0] = writeCommand(MGMLIS3MDL::CTRL_REG1, true); for (size_t i = 1; i <= MGMLIS3MDL::NR_OF_CTRL_REGISTERS; i++) { commandBuffer[i] = registers[i]; } rawPacket = commandBuffer; rawPacketLen = MGMLIS3MDL::NR_OF_CTRL_REGISTERS; // We dont have to check if this is working because we just did it return RETURN_OK; } void MGMHandlerLIS3MDL::setNormalDatapoolEntriesInvalid() { // TODO: use new distributed datapools here. } void MGMHandlerLIS3MDL::doTransition(Mode_t modeFrom, Submode_t subModeFrom) { } uint32_t MGMHandlerLIS3MDL::getTransitionDelayMs(Mode_t from, Mode_t to) { return 5000; } void MGMHandlerLIS3MDL::modeChanged(void) { internalState = STATE_NONE; }