#include "AcsController.h" #include AcsController::AcsController(object_id_t objectId) : ExtendedControllerBase(objectId, objects::NO_OBJECT), sensorProcessing(&acsParameters), navigation(&acsParameters), actuatorCmd(&acsParameters), guidance(&acsParameters), detumble(&acsParameters), ptgCtrl(&acsParameters), detumbleCounter{0}, mgmData(this), susData(this) {} ReturnValue_t AcsController::handleCommandMessage(CommandMessage *message) { return returnvalue::OK; } void AcsController::performControlOperation() { switch (internalState) { case InternalState::STARTUP: { initialCountdown.resetTimer(); internalState = InternalState::INITIAL_DELAY; return; } case InternalState::INITIAL_DELAY: { if (initialCountdown.hasTimedOut()) { internalState = InternalState::READY; } return; } case InternalState::READY: { if (mode != MODE_OFF) { switch (submode) { case SUBMODE_SAFE: // performSafe(); break; case SUBMODE_DETUMBLE: performDetumble(); break; case SUBMODE_PTG_GS: performPointingCtrl(); break; } } break; } default: break; } { PoolReadGuard pg(&mgmData); if (pg.getReadResult() == returnvalue::OK) { copyMgmData(); } } { PoolReadGuard pg(&susData); if (pg.getReadResult() == returnvalue::OK) { copySusData(); } } // DEBUG : REMOVE AFTER COMPLETION mode = MODE_ON; submode = SUBMODE_DETUMBLE; // DEBUG END } void AcsController::performSafe() {} void AcsController::performDetumble() { ACS::SensorValues sensorValues; ACS::OutputValues outputValues; timeval now; Clock::getClock_timeval(&now); sensorProcessing.process(now, &sensorValues, &outputValues, &acsParameters); ReturnValue_t validMekf; navigation.useMekf(&sensorValues, &outputValues, &validMekf); double magMomMtq[3] = {0, 0, 0}; detumble.bDotLaw(outputValues.magneticFieldVectorDerivative, &outputValues.magneticFieldVectorDerivativeValid, outputValues.magFieldEst, &outputValues.magFieldEstValid, magMomMtq); double dipolCmdUnits[3] = {0, 0, 0}; actuatorCmd.cmdDipolMtq(magMomMtq, dipolCmdUnits); if (outputValues.satRateMekfValid && VectorOperations::norm(outputValues.satRateMekf, 3) < acsParameters.detumbleParameter.omegaDetumbleEnd) { detumbleCounter++; } else if (outputValues.satRateEstValid && VectorOperations::norm(outputValues.satRateEst, 3) < acsParameters.detumbleParameter.omegaDetumbleEnd) { detumbleCounter++; } if (detumbleCounter > acsParameters.detumbleParameter.detumblecounter) { submode = SUBMODE_SAFE; detumbleCounter = 0; } } void AcsController::performPointingCtrl() { ACS::SensorValues sensorValues; ACS::OutputValues outputValues; timeval now; // Übergabe ? sensorProcessing.process(now, &sensorValues, &outputValues, &acsParameters); ReturnValue_t validMekf; navigation.useMekf(&sensorValues, &outputValues, &validMekf); double targetQuat[4] = {0, 0, 0, 0}, refSatRate[3] = {0, 0, 0}; guidance.targetQuatPtg(&sensorValues, &outputValues, now, targetQuat, refSatRate); double quatError[3] = {0, 0, 0}, deltaRate[3] = {0, 0, 0}; guidance.comparePtg(targetQuat, &outputValues, refSatRate, quatError, deltaRate); double rwPseudoInv[4][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}}; guidance.getDistributionMatrixRw(&sensorValues, *rwPseudoInv); double torquePtgRws[4] = {0, 0, 0, 0}, mode = 0; ptgCtrl.ptgGroundstation(mode, quatError, deltaRate, *rwPseudoInv, torquePtgRws); double rwTrqNs[4] = {0, 0, 0, 0}; ptgCtrl.ptgNullspace( &(sensorValues.rw1Set.currSpeed.value), &(sensorValues.rw2Set.currSpeed.value), &(sensorValues.rw3Set.currSpeed.value), &(sensorValues.rw4Set.currSpeed.value), rwTrqNs); double cmdSpeedRws[4] = {0, 0, 0, 0}; // Should be given to the actuator reaction wheel as input actuatorCmd.cmdSpeedToRws( &(sensorValues.rw1Set.currSpeed.value), &(sensorValues.rw2Set.currSpeed.value), &(sensorValues.rw3Set.currSpeed.value), &(sensorValues.rw4Set.currSpeed.value), torquePtgRws, rwTrqNs, cmdSpeedRws); double mgtDpDes[3] = {0, 0, 0}, dipolUnits[3] = {0, 0, 0}; // Desaturation Dipol ptgCtrl.ptgDesaturation( outputValues.magFieldEst, &outputValues.magFieldEstValid, outputValues.satRateMekf, &(sensorValues.rw1Set.currSpeed.value), &(sensorValues.rw2Set.currSpeed.value), &(sensorValues.rw3Set.currSpeed.value), &(sensorValues.rw4Set.currSpeed.value), mgtDpDes); actuatorCmd.cmdDipolMtq(mgtDpDes, dipolUnits); } ReturnValue_t AcsController::initializeLocalDataPool(localpool::DataPool &localDataPoolMap, LocalDataPoolManager &poolManager) { // MGM localDataPoolMap.emplace(acsctrl::PoolIds::MGM_0_LIS3_UT, &mgm0PoolVec); localDataPoolMap.emplace(acsctrl::PoolIds::MGM_1_RM3100_UT, &mgm1PoolVec); localDataPoolMap.emplace(acsctrl::PoolIds::MGM_2_LIS3_UT, &mgm2PoolVec); localDataPoolMap.emplace(acsctrl::PoolIds::MGM_3_RM3100_UT, &mgm3PoolVec); localDataPoolMap.emplace(acsctrl::PoolIds::MGM_IMTQ_CAL_NT, &imtqMgmPoolVec); localDataPoolMap.emplace(acsctrl::PoolIds::MGM_IMTQ_CAL_ACT_STATUS, &imtqCalActStatus); poolManager.subscribeForRegularPeriodicPacket({mgmData.getSid(), false, 5.0}); // SUS localDataPoolMap.emplace(acsctrl::PoolIds::SUS_0_N_LOC_XFYFZM_PT_XF, &sus0PoolVec); localDataPoolMap.emplace(acsctrl::PoolIds::SUS_1_N_LOC_XBYFZM_PT_XB, &sus1PoolVec); localDataPoolMap.emplace(acsctrl::PoolIds::SUS_2_N_LOC_XFYBZB_PT_YB, &sus2PoolVec); localDataPoolMap.emplace(acsctrl::PoolIds::SUS_3_N_LOC_XFYBZF_PT_YF, &sus3PoolVec); localDataPoolMap.emplace(acsctrl::PoolIds::SUS_4_N_LOC_XMYFZF_PT_ZF, &sus4PoolVec); localDataPoolMap.emplace(acsctrl::PoolIds::SUS_5_N_LOC_XFYMZB_PT_ZB, &sus5PoolVec); localDataPoolMap.emplace(acsctrl::PoolIds::SUS_6_R_LOC_XFYBZM_PT_XF, &sus6PoolVec); localDataPoolMap.emplace(acsctrl::PoolIds::SUS_7_R_LOC_XBYBZM_PT_XB, &sus7PoolVec); localDataPoolMap.emplace(acsctrl::PoolIds::SUS_8_R_LOC_XBYBZB_PT_YB, &sus8PoolVec); localDataPoolMap.emplace(acsctrl::PoolIds::SUS_9_R_LOC_XBYBZB_PT_YF, &sus9PoolVec); localDataPoolMap.emplace(acsctrl::PoolIds::SUS_10_N_LOC_XMYBZF_PT_ZF, &sus10PoolVec); localDataPoolMap.emplace(acsctrl::PoolIds::SUS_11_R_LOC_XBYMZB_PT_ZB, &sus11PoolVec); poolManager.subscribeForRegularPeriodicPacket({susData.getSid(), false, 5.0}); return returnvalue::OK; } LocalPoolDataSetBase *AcsController::getDataSetHandle(sid_t sid) { if (sid == mgmData.getSid()) { return &mgmData; } else if (sid == susData.getSid()) { return &susData; } return nullptr; } ReturnValue_t AcsController::checkModeCommand(Mode_t mode, Submode_t submode, uint32_t *msToReachTheMode) { if (mode == MODE_OFF) { if (submode == SUBMODE_NONE) { return returnvalue::OK; } else { return INVALID_SUBMODE; } } else if ((mode == MODE_ON) || (mode == MODE_NORMAL)) { if ((submode > 5) || (submode < 2)) { return INVALID_SUBMODE; } else { return returnvalue::OK; } } return INVALID_MODE; } void AcsController::modeChanged(Mode_t mode, Submode_t submode) {} void AcsController::announceMode(bool recursive) {} void AcsController::copyMgmData() { { PoolReadGuard pg(&mgm0Lis3Set); if (pg.getReadResult() == returnvalue::OK) { std::memcpy(mgmData.mgm0Lis3.value, mgm0Lis3Set.fieldStrengths.value, 3 * sizeof(float)); } } { PoolReadGuard pg(&mgm1Rm3100Set); if (pg.getReadResult() == returnvalue::OK) { std::memcpy(mgmData.mgm1Rm3100.value, mgm1Rm3100Set.fieldStrengths.value, 3 * sizeof(float)); } } { PoolReadGuard pg(&mgm2Lis3Set); if (pg.getReadResult() == returnvalue::OK) { std::memcpy(mgmData.mgm2Lis3.value, mgm2Lis3Set.fieldStrengths.value, 3 * sizeof(float)); } } { PoolReadGuard pg(&mgm3Rm3100Set); if (pg.getReadResult() == returnvalue::OK) { std::memcpy(mgmData.mgm3Rm3100.value, mgm3Rm3100Set.fieldStrengths.value, 3 * sizeof(float)); } } { PoolReadGuard pg(&imtqMgmSet); if (pg.getReadResult() == returnvalue::OK) { std::memcpy(mgmData.imtqRaw.value, imtqMgmSet.mtmRawNt.value, 3 * sizeof(float)); mgmData.actuationCalStatus.value = imtqMgmSet.coilActuationStatus.value; } } } void AcsController::copySusData() { { PoolReadGuard pg(&susSets[0]); if (pg.getReadResult() == returnvalue::OK) { std::memcpy(susData.sus0.value, susSets[0].channels.value, 6 * sizeof(uint16_t)); } } { PoolReadGuard pg(&susSets[1]); if (pg.getReadResult() == returnvalue::OK) { std::memcpy(susData.sus1.value, susSets[1].channels.value, 6 * sizeof(uint16_t)); } } { PoolReadGuard pg(&susSets[2]); if (pg.getReadResult() == returnvalue::OK) { std::memcpy(susData.sus2.value, susSets[2].channels.value, 6 * sizeof(uint16_t)); } } { PoolReadGuard pg(&susSets[3]); if (pg.getReadResult() == returnvalue::OK) { std::memcpy(susData.sus3.value, susSets[3].channels.value, 6 * sizeof(uint16_t)); } } { PoolReadGuard pg(&susSets[4]); if (pg.getReadResult() == returnvalue::OK) { std::memcpy(susData.sus4.value, susSets[4].channels.value, 6 * sizeof(uint16_t)); } } { PoolReadGuard pg(&susSets[5]); if (pg.getReadResult() == returnvalue::OK) { std::memcpy(susData.sus5.value, susSets[5].channels.value, 6 * sizeof(uint16_t)); } } { PoolReadGuard pg(&susSets[6]); if (pg.getReadResult() == returnvalue::OK) { std::memcpy(susData.sus6.value, susSets[6].channels.value, 6 * sizeof(uint16_t)); } } { PoolReadGuard pg(&susSets[7]); if (pg.getReadResult() == returnvalue::OK) { std::memcpy(susData.sus7.value, susSets[7].channels.value, 6 * sizeof(uint16_t)); } } { PoolReadGuard pg(&susSets[8]); if (pg.getReadResult() == returnvalue::OK) { std::memcpy(susData.sus8.value, susSets[8].channels.value, 6 * sizeof(uint16_t)); } } { PoolReadGuard pg(&susSets[9]); if (pg.getReadResult() == returnvalue::OK) { std::memcpy(susData.sus9.value, susSets[9].channels.value, 6 * sizeof(uint16_t)); } } { PoolReadGuard pg(&susSets[10]); if (pg.getReadResult() == returnvalue::OK) { std::memcpy(susData.sus10.value, susSets[10].channels.value, 6 * sizeof(uint16_t)); } } { PoolReadGuard pg(&susSets[11]); if (pg.getReadResult() == returnvalue::OK) { std::memcpy(susData.sus11.value, susSets[11].channels.value, 6 * sizeof(uint16_t)); } } }