#include "RwAssembly.h" RwAssembly::RwAssembly(object_id_t objectId, object_id_t parentId, PowerSwitchIF* pwrSwitcher, power::Switch_t switcher, RwHelper helper) : AssemblyBase(objectId, parentId), helper(helper), switcher(pwrSwitcher, switcher) { ModeListEntry entry; for (uint8_t idx = 0; idx < NUMBER_RWS; idx++) { entry.setObject(helper.rwIds[idx]); entry.setMode(MODE_OFF); entry.setSubmode(SUBMODE_NONE); entry.setInheritSubmode(false); modeTable.insert(entry); } } void RwAssembly::performChildOperation() { auto state = switcher.getState(); if (state != PowerSwitcher::WAIT_OFF and state != PowerSwitcher::WAIT_ON) { AssemblyBase::performChildOperation(); return; } switcher.doStateMachine(); if (state == PowerSwitcher::WAIT_OFF and switcher.getState() == PowerSwitcher::SWITCH_IS_OFF) { // Indicator that a transition to off is finished AssemblyBase::handleModeReached(); } else if (state == PowerSwitcher::WAIT_ON and switcher.getState() == PowerSwitcher::SWITCH_IS_ON) { // Indicator that mode commanding can be performed now AssemblyBase::startTransition(targetMode, targetSubmode); } } ReturnValue_t RwAssembly::commandChildren(Mode_t mode, Submode_t submode) { ReturnValue_t result = RETURN_OK; modeTransitionFailedSwitch = true; // Initialize the mode table to ensure all devices are in a defined state for (uint8_t idx = 0; idx < NUMBER_RWS; idx++) { modeTable[idx].setMode(MODE_OFF); modeTable[idx].setSubmode(SUBMODE_NONE); } if (recoveryState != RecoveryState::RECOVERY_STARTED) { if (mode == DeviceHandlerIF::MODE_NORMAL or mode == MODE_ON) { result = handleNormalOrOnModeCmd(mode, submode); } } HybridIterator tableIter(modeTable.begin(), modeTable.end()); executeTable(tableIter); return result; } ReturnValue_t RwAssembly::checkChildrenStateOn(Mode_t wantedMode, Submode_t wantedSubmode) { int devsInCorrectMode = 0; try { for (uint8_t idx = 0; idx < NUMBER_RWS; idx++) { if (childrenMap.at(helper.rwIds[idx]).mode == wantedMode) { devsInCorrectMode++; } } } catch (const std::out_of_range& e) { sif::error << "RwAssembly: Invalid children map: " << e.what() << std::endl; } if (devsInCorrectMode < 3) { if (warningSwitch) { sif::warning << "RwAssembly::checkChildrenStateOn: Only " << devsInCorrectMode << " devices in correct mode" << std::endl; warningSwitch = false; } return NOT_ENOUGH_CHILDREN_IN_CORRECT_STATE; } return RETURN_OK; } ReturnValue_t RwAssembly::isModeCombinationValid(Mode_t mode, Submode_t submode) { if (mode == MODE_ON or mode == MODE_OFF or mode == DeviceHandlerIF::MODE_NORMAL) { return RETURN_OK; } return HasModesIF::INVALID_MODE; } void RwAssembly::startTransition(Mode_t mode, Submode_t submode) { if (mode != MODE_OFF) { switcher.turnOn(true); switcher.doStateMachine(); if (switcher.getState() == PowerSwitcher::SWITCH_IS_ON) { AssemblyBase::startTransition(mode, submode); } else { // Need to wait with mode commanding until power switcher is done targetMode = mode; targetSubmode = submode; } } else { // Perform regular mode commanding first AssemblyBase::startTransition(mode, submode); } } void RwAssembly::handleModeReached() { if (targetMode == MODE_OFF) { switcher.turnOff(true); switcher.doStateMachine(); // Need to wait with call to AssemblyBase::handleModeReached until power switcher is done if (switcher.getState() == PowerSwitcher::SWITCH_IS_OFF) { AssemblyBase::handleModeReached(); } } else { AssemblyBase::handleModeReached(); } } void RwAssembly::handleChildrenLostMode(ReturnValue_t result) { AssemblyBase::handleChildrenLostMode(result); } ReturnValue_t RwAssembly::handleNormalOrOnModeCmd(Mode_t mode, Submode_t submode) { ReturnValue_t result = RETURN_OK; bool needsSecondStep = false; Mode_t devMode = 0; object_id_t objId = 0; try { for (uint8_t idx = 0; idx < NUMBER_RWS; idx++) { devMode = childrenMap.at(helper.rwIds[idx]).mode; objId = helper.rwIds[idx]; if (mode == devMode) { modeTable[idx].setMode(mode); } else if (mode == DeviceHandlerIF::MODE_NORMAL) { if (isUseable(objId, devMode)) { if (devMode == MODE_ON) { modeTable[idx].setMode(mode); modeTable[idx].setSubmode(SUBMODE_NONE); } else { modeTable[idx].setMode(MODE_ON); modeTable[idx].setSubmode(SUBMODE_NONE); if (internalState != STATE_SECOND_STEP) { needsSecondStep = true; } } } } else if (mode == MODE_ON) { if (isUseable(objId, devMode)) { modeTable[idx].setMode(MODE_ON); modeTable[idx].setSubmode(SUBMODE_NONE); } } } } catch (const std::out_of_range& e) { sif::error << "TcsBoardAssembly: Invalid children map: " << e.what() << std::endl; } if (needsSecondStep) { result = NEED_SECOND_STEP; } return result; } bool RwAssembly::isUseable(object_id_t object, Mode_t mode) { if (healthHelper.healthTable->isFaulty(object)) { return false; } // Check if device is already in target mode if (childrenMap[object].mode == mode) { return true; } if (healthHelper.healthTable->isCommandable(object)) { return true; } return false; } ReturnValue_t RwAssembly::initialize() { ReturnValue_t result = RETURN_OK; for (const auto& obj : helper.rwIds) { result = registerChild(obj); if (result != HasReturnvaluesIF::RETURN_OK) { return result; } } return SubsystemBase::initialize(); } void RwAssembly::handleModeTransitionFailed(ReturnValue_t result) { if (targetMode == MODE_OFF) { AssemblyBase::handleModeTransitionFailed(result); } else { if (modeTransitionFailedSwitch) { // To avoid transitioning back to off triggerEvent(MODE_TRANSITION_FAILED, result); modeTransitionFailedSwitch = false; } } } ModeDefinitionHelper RwAssembly::getModeDefinitionHelper() { return ModeDefinitionHelper::create(); }