#include "PtgCtrl.h" #include #include #include #include #include #include #include "../util/MathOperations.h" PtgCtrl::PtgCtrl(AcsParameters *acsParameters_) { acsParameters = acsParameters_; } PtgCtrl::~PtgCtrl() {} void PtgCtrl::ptgLaw(AcsParameters::PointingLawParameters *pointingLawParameters, const double *errorQuat, const double *deltaRate, const double *rwPseudoInv, double *torqueRws) { //------------------------------------------------------------------------------------------------ // Compute gain matrix K and P matrix //------------------------------------------------------------------------------------------------ double om = pointingLawParameters->om; double zeta = pointingLawParameters->zeta; double qErrorMin = pointingLawParameters->qiMin; double omMax = pointingLawParameters->omMax; double qError[3] = {errorQuat[0], errorQuat[1], errorQuat[2]}; double cInt = 2 * om * zeta; double kInt = 2 * pow(om, 2); double qErrorLaw[3] = {0, 0, 0}; for (int i = 0; i < 3; i++) { if (abs(qError[i]) < qErrorMin) { qErrorLaw[i] = qErrorMin; } else { qErrorLaw[i] = abs(qError[i]); } } double qErrorLawNorm = VectorOperations::norm(qErrorLaw, 3); double gain1 = cInt * omMax / qErrorLawNorm; double gainVector[3] = {0, 0, 0}; VectorOperations::mulScalar(qErrorLaw, gain1, gainVector, 3); double gainMatrixDiagonal[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}}; double gainMatrix[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}}; gainMatrixDiagonal[0][0] = gainVector[0]; gainMatrixDiagonal[1][1] = gainVector[1]; gainMatrixDiagonal[2][2] = gainVector[2]; MatrixOperations::multiply(*gainMatrixDiagonal, *(acsParameters->inertiaEIVE.inertiaMatrixDeployed), *gainMatrix, 3, 3, 3); // Inverse of gainMatrix double gainMatrixInverse[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}}; gainMatrixInverse[0][0] = 1 / gainMatrix[0][0]; gainMatrixInverse[1][1] = 1 / gainMatrix[1][1]; gainMatrixInverse[2][2] = 1 / gainMatrix[2][2]; double pMatrix[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}}; MatrixOperations::multiply( *gainMatrixInverse, *(acsParameters->inertiaEIVE.inertiaMatrixDeployed), *pMatrix, 3, 3, 3); MatrixOperations::multiplyScalar(*pMatrix, kInt, *pMatrix, 3, 3); //------------------------------------------------------------------------------------------------ // Torque Calculations for the reaction wheels //------------------------------------------------------------------------------------------------ double pError[3] = {0, 0, 0}; MatrixOperations::multiply(*pMatrix, qError, pError, 3, 3, 1); double pErrorSign[3] = {0, 0, 0}; for (int i = 0; i < 3; i++) { if (abs(pError[i]) > 1) { pErrorSign[i] = sign(pError[i]); } else { pErrorSign[i] = pError[i]; } } // torque for quaternion error double torqueQuat[3] = {0, 0, 0}; MatrixOperations::multiply(*gainMatrix, pErrorSign, torqueQuat, 3, 3, 1); VectorOperations::mulScalar(torqueQuat, -1, torqueQuat, 3); // torque for rate error double torqueRate[3] = {0, 0, 0}; MatrixOperations::multiply(*(acsParameters->inertiaEIVE.inertiaMatrixDeployed), deltaRate, torqueRate, 3, 3, 1); VectorOperations::mulScalar(torqueRate, cInt, torqueRate, 3); VectorOperations::mulScalar(torqueRate, -1, torqueRate, 3); // final commanded Torque for every reaction wheel double torque[3] = {0, 0, 0}; VectorOperations::add(torqueRate, torqueQuat, torque, 3); MatrixOperations::multiply(rwPseudoInv, torque, torqueRws, 4, 3, 1); VectorOperations::mulScalar(torqueRws, -1, torqueRws, 4); } void PtgCtrl::ptgDesaturation(AcsParameters::PointingLawParameters *pointingLawParameters, double *magFieldEst, bool magFieldEstValid, double *satRate, int32_t *speedRw0, int32_t *speedRw1, int32_t *speedRw2, int32_t *speedRw3, double *mgtDpDes) { if (!(magFieldEstValid) || !(pointingLawParameters->desatOn)) { mgtDpDes[0] = 0; mgtDpDes[1] = 0; mgtDpDes[2] = 0; return; } // calculating momentum of satellite and momentum of reaction wheels double speedRws[4] = {(double)*speedRw0, (double)*speedRw1, (double)*speedRw2, (double)*speedRw3}; double momentumRwU[4] = {0, 0, 0, 0}, momentumRw[3] = {0, 0, 0}; VectorOperations::mulScalar(speedRws, acsParameters->rwHandlingParameters.inertiaWheel, momentumRwU, 4); MatrixOperations::multiply(*(acsParameters->rwMatrices.alignmentMatrix), momentumRwU, momentumRw, 3, 4, 1); double momentumSat[3] = {0, 0, 0}, momentumTotal[3] = {0, 0, 0}; MatrixOperations::multiply(*(acsParameters->inertiaEIVE.inertiaMatrixDeployed), satRate, momentumSat, 3, 3, 1); VectorOperations::add(momentumSat, momentumRw, momentumTotal, 3); // calculating momentum error double deltaMomentum[3] = {0, 0, 0}; VectorOperations::subtract(momentumTotal, pointingLawParameters->desatMomentumRef, deltaMomentum, 3); // resulting magnetic dipole command double crossMomentumMagField[3] = {0, 0, 0}; VectorOperations::cross(deltaMomentum, magFieldEst, crossMomentumMagField); double normMag = VectorOperations::norm(magFieldEst, 3), factor = 0; factor = (pointingLawParameters->deSatGainFactor) / normMag; VectorOperations::mulScalar(crossMomentumMagField, factor, mgtDpDes, 3); } void PtgCtrl::ptgNullspace(AcsParameters::PointingLawParameters *pointingLawParameters, const int32_t *speedRw0, const int32_t *speedRw1, const int32_t *speedRw2, const int32_t *speedRw3, double *rwTrqNs) { double speedRws[4] = {(double)*speedRw0, (double)*speedRw1, (double)*speedRw2, (double)*speedRw3}; double wheelMomentum[4] = {0, 0, 0, 0}; double rpmOffset[4] = {1, 1, 1, -1}, factor = 350 * 2 * Math::PI / 60; // conversion to [rad/s] for further calculations VectorOperations::mulScalar(rpmOffset, factor, rpmOffset, 4); VectorOperations::mulScalar(speedRws, 2 * Math::PI / 60, speedRws, 4); double diffRwSpeed[4] = {0, 0, 0, 0}; VectorOperations::subtract(speedRws, rpmOffset, diffRwSpeed, 4); VectorOperations::mulScalar(diffRwSpeed, acsParameters->rwHandlingParameters.inertiaWheel, wheelMomentum, 4); double gainNs = pointingLawParameters->gainNullspace; double nullSpaceMatrix[4][4] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}}; MathOperations::vecTransposeVecMatrix(acsParameters->rwMatrices.nullspace, acsParameters->rwMatrices.nullspace, *nullSpaceMatrix, 4); MatrixOperations::multiply(*nullSpaceMatrix, wheelMomentum, rwTrqNs, 4, 4, 1); VectorOperations::mulScalar(rwTrqNs, gainNs, rwTrqNs, 4); VectorOperations::mulScalar(rwTrqNs, -1, rwTrqNs, 4); } void PtgCtrl::rwAntistiction(ACS::SensorValues *sensorValues, int32_t *rwCmdSpeeds) { bool rwAvailable[4] = { (sensorValues->rw1Set.state.value && sensorValues->rw1Set.state.isValid()), (sensorValues->rw2Set.state.value && sensorValues->rw2Set.state.isValid()), (sensorValues->rw3Set.state.value && sensorValues->rw3Set.state.isValid()), (sensorValues->rw4Set.state.value && sensorValues->rw4Set.state.isValid())}; int32_t currRwSpeed[4] = { sensorValues->rw1Set.currSpeed.value, sensorValues->rw2Set.currSpeed.value, sensorValues->rw3Set.currSpeed.value, sensorValues->rw4Set.currSpeed.value}; for (uint8_t i = 0; i < 4; i++) { if (rwAvailable[i]) { if (rwCmdSpeeds[i] != 0) { if (rwCmdSpeeds[i] > -acsParameters->rwHandlingParameters.stictionSpeed && rwCmdSpeeds[i] < acsParameters->rwHandlingParameters.stictionSpeed) { if (rwCmdSpeeds[i] > currRwSpeed[i]) { rwCmdSpeeds[i] = acsParameters->rwHandlingParameters.stictionSpeed; } else if (rwCmdSpeeds[i] < currRwSpeed[i]) { rwCmdSpeeds[i] = -acsParameters->rwHandlingParameters.stictionSpeed; } } } } } }