#ifndef MISSION_DEVICES_DEVICEDEFINITIONS_PLOCSVPDEFINITIONS_H_
#define MISSION_DEVICES_DEVICEDEFINITIONS_PLOCSVPDEFINITIONS_H_

#include <fsfw/datapoollocal/StaticLocalDataSet.h>
#include <fsfw/devicehandlers/DeviceHandlerIF.h>
#include <fsfw/globalfunctions/CRC.h>
#include <fsfw/serialize/SerializeAdapter.h>
#include <fsfw/timemanager/Clock.h>
#include <fsfw/tmtcpacket/ccsds/SpacePacketCreator.h>
#include <fsfw/tmtcpacket/ccsds/SpacePacketReader.h>
#include <mission/payload/plocSpBase.h>

#include <atomic>

#include "eive/eventSubsystemIds.h"
#include "eive/resultClassIds.h"

namespace supv {

static constexpr bool DEBUG_PLOC_SUPV = false;
static constexpr bool REDUCE_NORMAL_MODE_PRINTOUT = true;

static const uint8_t SUBSYSTEM_ID = SUBSYSTEM_ID::PLOC_SUPERVISOR_HANDLER;

//! [EXPORT] : [COMMENT] PLOC supervisor crc failure in telemetry packet
static const Event SUPV_MEMORY_READ_RPT_CRC_FAILURE = MAKE_EVENT(1, severity::LOW);
//! [EXPORT] : [COMMENT] Unhandled event. P1: APID, P2: Service ID
static constexpr Event SUPV_UNKNOWN_TM = MAKE_EVENT(2, severity::LOW);
static constexpr Event SUPV_UNINIMPLEMENTED_TM = MAKE_EVENT(3, severity::LOW);
//! [EXPORT] : [COMMENT] PLOC supervisor received acknowledgment failure report
static const Event SUPV_ACK_FAILURE = MAKE_EVENT(4, severity::LOW);
//! [EXPORT] : [COMMENT] PLOC received execution failure report
//! P1: ID of command for which the execution failed
//! P2: Status code sent by the supervisor handler
static const Event SUPV_EXE_FAILURE = MAKE_EVENT(5, severity::LOW);
//! [EXPORT] : [COMMENT] PLOC supervisor reply has invalid crc
static const Event SUPV_CRC_FAILURE_EVENT = MAKE_EVENT(6, severity::LOW);
//! [EXPORT] : [COMMENT] Supervisor helper currently executing a command
static const Event SUPV_HELPER_EXECUTING = MAKE_EVENT(7, severity::LOW);
//! [EXPORT] : [COMMENT] Failed to build the command to shutdown the MPSoC
static const Event SUPV_MPSOC_SHUTDOWN_BUILD_FAILED = MAKE_EVENT(8, severity::LOW);
//! [EXPORT] : [COMMENT] Received ACK, but no related command is unknown or has not been sent
//  by this software instance. P1: Module APID. P2: Service ID.
static const Event SUPV_ACK_UNKNOWN_COMMAND = MAKE_EVENT(9, severity::LOW);
//! [EXPORT] : [COMMENT] Received ACK EXE, but no related command is unknown or has not been sent
//  by this software instance. P1: Module APID. P2: Service ID.
static const Event SUPV_EXE_ACK_UNKNOWN_COMMAND = MAKE_EVENT(10, severity::LOW);

extern std::atomic_bool SUPV_ON;
static constexpr uint32_t INTER_COMMAND_DELAY = 20;
static constexpr uint32_t BOOT_TIMEOUT_MS = 4000;
static constexpr uint32_t MAX_TRANSITION_TIME_TO_ON_MS = BOOT_TIMEOUT_MS + 3000;
static constexpr uint32_t MAX_TRANSITION_TIME_TO_OFF_MS = 1000;

namespace result {
static const uint8_t INTERFACE_ID = CLASS_ID::SUPV_RETURN_VALUES_IF;

//! [EXPORT] : [COMMENT] Space Packet received from PLOC supervisor has invalid CRC
static const ReturnValue_t CRC_FAILURE = MAKE_RETURN_CODE(0xA0);
static constexpr ReturnValue_t INVALID_SERVICE_ID = MAKE_RETURN_CODE(0xA1);
//! [EXPORT] : [COMMENT] Received ACK failure reply from PLOC supervisor
static const ReturnValue_t RECEIVED_ACK_FAILURE = MAKE_RETURN_CODE(0xA2);
//! [EXPORT] : [COMMENT] Received execution failure reply from PLOC supervisor
static const ReturnValue_t RECEIVED_EXE_FAILURE = MAKE_RETURN_CODE(0xA3);
//! [EXPORT] : [COMMENT] Received space packet with invalid APID from PLOC supervisor
static const ReturnValue_t INVALID_APID = MAKE_RETURN_CODE(0xA4);
//! [EXPORT] : [COMMENT] Failed to read current system time
static const ReturnValue_t GET_TIME_FAILURE = MAKE_RETURN_CODE(0xA5);
//! [EXPORT] : [COMMENT] Received command with invalid watchdog parameter. Valid watchdogs are 0
//! for PS, 1 for PL and 2 for INT
static const ReturnValue_t INVALID_WATCHDOG = MAKE_RETURN_CODE(0xA6);
//! [EXPORT] : [COMMENT] Received watchdog timeout config command with invalid timeout. Valid
//! timeouts must be in the range between 1000 and 360000 ms.
static const ReturnValue_t INVALID_WATCHDOG_TIMEOUT = MAKE_RETURN_CODE(0xA7);
//! [EXPORT] : [COMMENT] Received latchup config command with invalid latchup ID
static const ReturnValue_t INVALID_LATCHUP_ID = MAKE_RETURN_CODE(0xA8);
//! [EXPORT] : [COMMENT] Received set adc sweep period command with invalid sweep period. Must be
//! larger than 21.
static const ReturnValue_t SWEEP_PERIOD_TOO_SMALL = MAKE_RETURN_CODE(0xA9);
//! [EXPORT] : [COMMENT] Receive auto EM test command with invalid test param. Valid params are 1
//! and 2.
static const ReturnValue_t INVALID_TEST_PARAM = MAKE_RETURN_CODE(0xAA);
//! [EXPORT] : [COMMENT] Returned when scanning for MRAM dump packets failed.
static const ReturnValue_t MRAM_PACKET_PARSING_FAILURE = MAKE_RETURN_CODE(0xAB);
//! [EXPORT] : [COMMENT] Returned when the start and stop addresses of the MRAM dump or MRAM  wipe
//! commands are invalid (e.g. start address bigger than stop address)
static const ReturnValue_t INVALID_MRAM_ADDRESSES = MAKE_RETURN_CODE(0xAC);
//! [EXPORT] : [COMMENT] Expect reception of an MRAM dump packet but received space packet with
//! other apid.
static const ReturnValue_t NO_MRAM_PACKET = MAKE_RETURN_CODE(0xAD);
//! [EXPORT] : [COMMENT] Path to PLOC directory on SD card does not exist
static const ReturnValue_t PATH_DOES_NOT_EXIST = MAKE_RETURN_CODE(0xAE);
//! [EXPORT] : [COMMENT] MRAM dump file does not exists. The file should actually already have
//! been created with the reception of the first dump packet.
static const ReturnValue_t MRAM_FILE_NOT_EXISTS = MAKE_RETURN_CODE(0xAF);
static constexpr ReturnValue_t INVALID_REPLY_LENGTH = MAKE_RETURN_CODE(0xB0);
//! [EXPORT] : [COMMENT] Received action command has invalid length
static const ReturnValue_t INVALID_LENGTH = MAKE_RETURN_CODE(0xB1);
//! [EXPORT] : [COMMENT] Filename too long
static const ReturnValue_t FILENAME_TOO_LONG = MAKE_RETURN_CODE(0xB2);
//! [EXPORT] : [COMMENT] Received update status report with invalid packet length field
static const ReturnValue_t UPDATE_STATUS_REPORT_INVALID_LENGTH = MAKE_RETURN_CODE(0xB3);
//! [EXPORT] : [COMMENT] Update status report does not contain expected CRC. There might be a bit
//! flip in the update memory region.
static const ReturnValue_t UPDATE_CRC_FAILURE = MAKE_RETURN_CODE(0xB4);
//! [EXPORT] : [COMMENT] Supervisor helper task ist currently executing a command (wait until
//! helper tas has finished or interrupt by sending the terminate command)
static const ReturnValue_t SUPV_HELPER_EXECUTING = MAKE_RETURN_CODE(0xB5);

static constexpr ReturnValue_t BUF_TOO_SMALL = MAKE_RETURN_CODE(0xC0);
static constexpr ReturnValue_t NO_REPLY_TIMEOUT = MAKE_RETURN_CODE(0xC1);

};  // namespace result

static constexpr uint16_t DEFAULT_SEQ_COUNT = 0;

/** Command IDs */
static const DeviceCommandId_t NONE = 0;
static const DeviceCommandId_t GET_HK_REPORT = 1;
static const DeviceCommandId_t START_MPSOC = 3;
static const DeviceCommandId_t SHUTDOWN_MPSOC = 4;
static const DeviceCommandId_t SEL_MPSOC_BOOT_IMAGE = 5;
static const DeviceCommandId_t SET_BOOT_TIMEOUT = 6;
static const DeviceCommandId_t SET_MAX_RESTART_TRIES = 7;
static const DeviceCommandId_t RESET_MPSOC = 8;
static const DeviceCommandId_t SET_TIME_REF = 9;
static const DeviceCommandId_t DISABLE_PERIOIC_HK_TRANSMISSION = 10;
static const DeviceCommandId_t GET_BOOT_STATUS_REPORT = 11;
static const DeviceCommandId_t ENABLE_LATCHUP_ALERT = 15;
static const DeviceCommandId_t DISABLE_LATCHUP_ALERT = 16;
static const DeviceCommandId_t SET_ALERT_LIMIT = 18;
static const DeviceCommandId_t SET_ADC_ENABLED_CHANNELS = 21;
static const DeviceCommandId_t SET_ADC_WINDOW_AND_STRIDE = 22;
static const DeviceCommandId_t SET_ADC_THRESHOLD = 23;
static const DeviceCommandId_t GET_LATCHUP_STATUS_REPORT = 24;
static const DeviceCommandId_t COPY_ADC_DATA_TO_MRAM = 25;
static const DeviceCommandId_t RUN_AUTO_EM_TESTS = 28;
static const DeviceCommandId_t WIPE_MRAM = 29;
static const DeviceCommandId_t FIRST_MRAM_DUMP = 30;
static const DeviceCommandId_t SET_GPIO = 34;
static const DeviceCommandId_t READ_GPIO = 35;
static const DeviceCommandId_t RESTART_SUPERVISOR = 36;
static const DeviceCommandId_t REQUEST_LOGGING_COUNTERS = 38;
static constexpr DeviceCommandId_t FACTORY_RESET = 39;
static const DeviceCommandId_t CONSECUTIVE_MRAM_DUMP = 43;
static const DeviceCommandId_t START_MPSOC_QUIET = 45;
static const DeviceCommandId_t SET_SHUTDOWN_TIMEOUT = 46;
static const DeviceCommandId_t FACTORY_FLASH = 47;
static const DeviceCommandId_t PERFORM_UPDATE = 48;
static const DeviceCommandId_t TERMINATE_SUPV_HELPER = 49;
static const DeviceCommandId_t ENABLE_AUTO_TM = 50;
static const DeviceCommandId_t DISABLE_AUTO_TM = 51;
static const DeviceCommandId_t LOGGING_REQUEST_EVENT_BUFFERS = 54;
static const DeviceCommandId_t LOGGING_CLEAR_COUNTERS = 55;
static const DeviceCommandId_t LOGGING_SET_TOPIC = 56;
static constexpr DeviceCommandId_t REQUEST_ADC_REPORT = 57;
static const DeviceCommandId_t RESET_PL = 58;
static const DeviceCommandId_t ENABLE_NVMS = 59;
static const DeviceCommandId_t CONTINUE_UPDATE = 60;
static const DeviceCommandId_t MEMORY_CHECK_WITH_FILE = 61;
static constexpr DeviceCommandId_t MEMORY_CHECK = 62;

/** Reply IDs */
enum ReplyId : DeviceCommandId_t {
  ACK_REPORT = 100,
  EXE_REPORT = 101,
  HK_REPORT = 102,
  BOOT_STATUS_REPORT = 103,
  LATCHUP_REPORT = 104,
  COUNTERS_REPORT = 105,
  ADC_REPORT = 106,
  UPDATE_STATUS_REPORT = 107,
};

// Size of complete space packet (6 byte header + size of data + 2 byte CRC)
static const uint16_t SIZE_ACK_REPORT = 14;
static const uint16_t SIZE_EXE_REPORT = 14;
static const uint16_t SIZE_BOOT_STATUS_REPORT = 24;
static const uint16_t SIZE_LATCHUP_STATUS_REPORT = 31;
static const uint16_t SIZE_COUNTERS_REPORT = 120;
static const uint16_t SIZE_ADC_REPORT = 72;

// 2 bits APID SRC, 00 for OBC, 2 bits APID DEST, 01 for SUPV, 7 bits CMD ID -> Mask 0x080
static constexpr uint16_t APID_TC_SUPV_MASK = 0x080;

enum Apid {
  TMTC_MAN = 0x00,
  HK = 0x01,
  BOOT_MAN = 0x02,
  LATCHUP_MON = 0x03,
  ADC_MON = 0x04,
  MEM_MAN = 0x05,
  DATA_LOGGER = 0x06,
  WDOG_MAN = 0x07
};

namespace tc {

enum class HkId : uint8_t {
  ENABLE = 0x01,
  SET_PERIOD = 0x02,
  GET_REPORT = 0x03,
  GET_HARDFAULTS_REPORT = 0x04,
};

enum class TmtcId : uint8_t {
  TIME_REF = 0x03,
  GET_SUPV_VERSION = 0x05,
  RUN_AUTO_EM_TEST = 0x08,
  SET_GPIO = 0x0E,
  READ_GPIO = 0x0F,
  GET_MPSOC_POWER_INFO = 0x10
};

enum class BootManId : uint8_t {
  START_MPSOC = 0x01,
  SHUTDOWN_MPSOC = 0x02,
  SELECT_IMAGE = 0x03,
  SET_BOOT_TIMEOUT = 0x04,
  SET_MAX_REBOOT_TRIES = 0x05,
  RESET_MPSOC = 0x06,
  RESET_PL = 0x07,
  GET_BOOT_STATUS_REPORT = 0x08,
  PREPARE_UPDATE = 0x09,
  SHUTDOWN_TIMEOUT = 0x0B,
  FACTORY_FLASH = 0x0C
};

enum class LatchupMonId : uint8_t {
  ENABLE = 0x01,
  DISABLE = 0x02,
  SET_ALERT_LIMIT = 0x04,
  GET_STATUS_REPORT = 0x06
};

// Right now, none of the commands seem to be implemented, but still
// keep the enum here in case some are added
enum class AdcMonId : uint8_t {
  SET_SWEEP_PERIOD = 0x01,
  SET_ENABLED_CHANNELS = 0x02,
  SET_WINDOW_STRIDE = 0x03,
  SET_ADC_THRESHOLD = 0x04,
  COPY_ADC_DATA_TO_MRAM = 0x05,
  REQUEST_ADC_SAMPLE = 0x06
};

enum class MemManId : uint8_t { ERASE = 0x01, WRITE = 0x02, CHECK = 0x03 };

enum class DataLoggerServiceId : uint8_t {
  // Not implemented.
  READ_MRAM_CFG_DATA_LOGGER = 0x00,
  REQUEST_COUNTERS = 0x01,
  // Not implemented.
  EVENT_BUFFER_DOWNLOAD = 0x02,
  WIPE_MRAM = 0x05,
  DUMP_MRAM = 0x06,
  FACTORY_RESET = 0x07
};

// Right now, none of the commands seem to be implemented, but still
// keep the enum here in case some are added
enum class WdogManServiceId : uint8_t {};

}  // namespace tc

namespace tm {

enum class TmtcId : uint8_t { ACK = 0x01, NAK = 0x02, EXEC_ACK = 0x03, EXEC_NAK = 0x04 };

enum class HkId : uint8_t { REPORT = 0x01, HARDFAULTS = 0x02 };

enum class BootManId : uint8_t { BOOT_STATUS_REPORT = 0x01 };
enum class AdcMonId : uint8_t { ADC_REPORT = 0x01 };

enum class MemManId : uint8_t { UPDATE_STATUS_REPORT = 0x01 };

enum class LatchupMonId : uint8_t { LATCHUP_STATUS_REPORT = 0x01 };
enum class DataLoggerId : uint8_t { COUNTERS_REPORT = 0x01 };

}  // namespace tm

enum class GeneralStatusCode : uint32_t {
  OK = 0x000,
  NAK = 0x001,
  INIT_ERROR = 0x002,
  BAD_PARAM = 0x003,
  NOT_INITIALIZED = 0x004,
  BAD_PERIPH_ID = 0x005,
  TIMEOUT = 0x006,
  RX_ERROR = 0x007,
  TX_ERROR = 0x008,
  ARB_LOST = 0x009,
  BUSY = 0x00A,
  NOT_IMPL = 0x00B,
  ALIGNMENT_ERROR = 0x00C,
  PERIPH_ERROR = 0x00D,
  FAILED_LATCH = 0x00E,
  GPIO_HIGH = 0x00F,
  GPIO_LOW = 0x010,
  TEST_PASSED = 0x011,
  TEST_FAILED = 0x012,
  BAD_NOF_PARAMS = 0x013,
  NULL_POINTER = 0x014,
  TASK_CREATION_ERROR = 0x015,
  CORRUPTED_MRAM_VAL = 0x016,
  BUF_EMPTY = 0x017
};

enum class BootManStatusCode : uint32_t {
  NOTHING_TODO = 0x100,
  POWER_FAULT = 0x101,
  INVALID_LENGTH = 0x102,
  OUT_OF_RANGE = 0x103,
  OUT_OF_HEAP_MEMORY = 0x104,
  INVALID_STATE_TRANSITION = 0x105,
  MPSOC_ALREADY_BOOTING = 0x106,
  MPSOC_ALREADY_OPERATIONAL = 0x107,
  MPSOC_BOOT_FAILED = 0x108,
};

enum class MemManStatusCode : uint32_t {
  SP_NOT_AVAILABLE = 0x200,
  SP_DATA_INSUFFICIENT = 0x201,
  SP_MEMORY_ID_INVALID = 0x202,
  MPSOC_NOT_IN_RESET = 0x203,
  FLASH_INIT_FAILED = 0x204,
  FLASH_ERASE_FAILED = 0x205,
  FLASH_WRITE_FAILED = 0x206,
  FLASH_VERIFY_FAILED = 0x207,
  CANNOT_ACCESS_TM = 0x208,
  CANNOT_SEND_TM = 0x209,
};

enum class PowerManStatusCode : uint32_t {
  PG_LOW = 0x300,
  PG_5V_LOW = 0x301,
  PG_0V85_LOW = 0x302,
  PG_1V8_LOW = 0x303,
  PG_MISC_LOW = 0x304,
  PG_3V3_LOW = 0x305,
  PG_MB_VAIO_LOW = 0x306,
  PG_MB_MPSOCIO_LOW = 0x307
};

enum class TmtcManStatusCode : uint32_t {
  BUF_FULL = 0x600,
  WRONG_APID = 0x601,
  WRONG_SERVICE_ID = 0x602,
  TC_DELIVERY_ACCEPTED = 0x603,
  TC_DELIVERY_REJECTED = 0x0604,
  TC_PACKET_LEN_INCORRECT = 0x605,
  BAD_CRC = 0x606,
  BAD_DEST = 0x607,
  BAD_SP_HEADER = 0x608
};

static constexpr uint16_t APID_MASK_TC = 0x80;
static constexpr uint16_t APID_MASK_TM = 0x200;
static constexpr uint16_t APID_MODULE_MASK = 0x7F;
static const uint16_t SEQUENCE_COUNT_MASK = 0xFFF;

static const uint8_t HK_SET_ENTRIES = 13;
static const uint8_t BOOT_REPORT_SET_ENTRIES = 10;
static const uint8_t LATCHUP_RPT_SET_ENTRIES = 16;
static const uint8_t LOGGING_RPT_SET_ENTRIES = 30;
static const uint8_t ADC_RPT_SET_ENTRIES = 32;

static const uint32_t HK_SET_ID = HK_REPORT;
static const uint32_t BOOT_REPORT_SET_ID = BOOT_STATUS_REPORT;
static const uint32_t LATCHUP_RPT_ID = LATCHUP_REPORT;
static const uint32_t LOGGING_RPT_ID = COUNTERS_REPORT;
static const uint32_t ADC_REPORT_SET_ID = ADC_REPORT;

namespace timeout {
// Erase memory can require up to 60 seconds for execution
static const uint32_t ERASE_MEMORY = 60000;
static const uint32_t UPDATE_STATUS_REPORT = 70000;
static const uint32_t CRC_EXECUTION_TIMEOUT = 60000;
}  // namespace timeout

static constexpr size_t TIMESTAMP_LEN = 7;
static constexpr size_t SECONDARY_HEADER_LEN = TIMESTAMP_LEN + 1;
static constexpr size_t CRC_LEN = 2;

/** This is the maximum length of a space packet as defined by the TAS ICD */
static const size_t MAX_COMMAND_SIZE = 1024;
static const size_t MAX_DATA_CAPACITY = 1016;
/** This is the maximum size of a space packet for the supervisor */
static const size_t MAX_PACKET_SIZE = 1024;

static constexpr size_t MIN_PAYLOAD_LEN = SECONDARY_HEADER_LEN + CRC_LEN;
static constexpr size_t MIN_TMTC_LEN = ccsds::HEADER_LEN + MIN_PAYLOAD_LEN;
static constexpr size_t PAYLOAD_OFFSET = ccsds::HEADER_LEN + SECONDARY_HEADER_LEN;

enum class FactoryResetSelect : uint8_t {
  EVENT_BUF = 0x00,
  ADC_BUF = 0x01,
  SYS_CFG = 0x02,
  DEBUG_CFG = 0x03,
  BOOT_MAN_CFG = 0x04,
  DATA_LOGGER_CFG = 0x05,
  DATA_LOGGER_OP_DATA = 0x06,
  LATCHUP_MON_CFG = 0x07,
  ADC_MON_CFG = 0x08,
  WDOG_MAN_CFG = 0x09,
  HK_CFG = 0x0A,
  MEM_MAN_CFG = 0xB9
};

struct UpdateParams {
  std::string file;
  uint8_t memId;
  uint32_t startAddr;
  uint32_t bytesWritten;
  uint16_t seqCount;
  bool deleteMemory;
};

enum PoolIds : lp_id_t {
  NUM_TMS,
  TEMP_PS,
  TEMP_PL,
  HK_SOC_STATE,
  NVM0_1_STATE,
  NVM3_STATE,
  MISSION_IO_STATE,
  FMC_STATE,
  NUM_TCS,
  TEMP_SUP,
  UPTIME,
  CPULOAD,
  AVAILABLEHEAP,
  BR_SOC_STATE,
  POWER_CYCLES,
  BOOT_AFTER_MS,
  BOOT_TIMEOUT_POOL_VAR_MS,
  ACTIVE_NVM,
  BP0_STATE,
  BP1_STATE,
  BP2_STATE,
  BOOT_STATE,
  BOOT_CYCLES,

  LATCHUP_ID,
  CNT0,
  CNT1,
  CNT2,
  CNT3,
  CNT4,
  CNT5,
  CNT6,
  LATCHUP_RPT_TIME_SEC,
  LATCHUP_RPT_TIME_MIN,
  LATCHUP_RPT_TIME_HOUR,
  LATCHUP_RPT_TIME_DAY,
  LATCHUP_RPT_TIME_MON,
  LATCHUP_RPT_TIME_YEAR,
  LATCHUP_RPT_TIME_MSEC,
  LATCHUP_RPT_IS_SET,

  SIGNATURE,
  LATCHUP_HAPPENED_CNTS,
  ADC_DEVIATION_TRIGGERS_CNT,
  TC_RECEIVED_CNT,
  TM_AVAILABLE_CNT,
  SUPERVISOR_BOOTS,
  MPSOC_BOOTS,
  MPSOC_BOOT_FAILED_ATTEMPTS,
  MPSOC_POWER_UP,
  MPSOC_UPDATES,
  MPSOC_HEARTBEAT_RESETS,
  CPU_WDT_RESETS,
  PS_HEARTBEATS_LOST,
  PL_HEARTBEATS_LOST,
  EB_TASK_LOST,
  BM_TASK_LOST,
  LM_TASK_LOST,
  AM_TASK_LOST,
  TCTMM_TASK_LOST,
  MM_TASK_LOST,
  HK_TASK_LOST,
  DL_TASK_LOST,
  RWS_TASKS_LOST,

  ADC_RAW,
  ADC_ENG,
};

struct TcParams : public ploc::SpTcParams {
 public:
  TcParams(SpacePacketCreator& creator) : ploc::SpTcParams(creator) {}

  TcParams(SpacePacketCreator& creator, uint8_t* buf, size_t maxSize)
      : ploc::SpTcParams(creator, buf, maxSize) {}

  void setLenFromPayloadLen(size_t payloadLen) {
    setFullPayloadLen(ccsds::HEADER_LEN + SECONDARY_HEADER_LEN + payloadLen + CRC_LEN);
  }
};

class TcBase : public ploc::SpTcBase {
 public:
  TcBase(TcParams params) : TcBase(params, 0x00, 0x00, MIN_PAYLOAD_LEN) {}

  TcBase(TcParams params, uint16_t apid) : TcBase(params, apid, 0x00, MIN_PAYLOAD_LEN) {}

  TcBase(TcParams params, uint16_t apid, uint8_t service, size_t payloadLen)
      : TcBase(params, apid, service, payloadLen, DEFAULT_SEQ_COUNT) {}

  TcBase(TcParams params, uint16_t apid, uint8_t serviceId, size_t payloadLen, uint16_t seqCount)
      : ploc::SpTcBase(params, apid | APID_MASK_TC, fullSpDataLenFromPayloadLen(payloadLen),
                       seqCount) {
    setup(serviceId);
  }

  void setServiceId(uint8_t id) {
    if (spParams.maxSize < MIN_PAYLOAD_LEN) {
      return;
    }
    payloadStart[supv::PAYLOAD_OFFSET] = id;
  }

  uint16_t getModuleApid() const { return getApid() & APID_MODULE_MASK; }

  uint8_t getServiceId() const { return getPacketData()[TIMESTAMP_LEN]; }

  static size_t fullSpDataLenFromPayloadLen(size_t payloadLen) {
    return SECONDARY_HEADER_LEN + payloadLen + CRC_LEN;
  }

  void setLenFromPayloadLen(size_t payloadLen) {
    spParams.setFullPayloadLen(fullSpDataLenFromPayloadLen(payloadLen));
    updateLenFromParams();
  }

 private:
  ReturnValue_t setup(uint8_t serviceId) {
    if (spParams.maxSize < MIN_PAYLOAD_LEN) {
      sif::error << "SupvTcBase::SupvTcBase: Passed buffer is too small" << std::endl;
      return returnvalue::FAILED;
    }
    std::memset(spParams.buf + ccsds::HEADER_LEN, 0, TIMESTAMP_LEN);
    payloadStart = spParams.buf + ccsds::HEADER_LEN + SECONDARY_HEADER_LEN;
    spParams.buf[ccsds::HEADER_LEN + SECONDARY_HEADER_LEN - 1] = serviceId;
    spParams.creator.setSecHeaderFlag();
    return returnvalue::OK;
  }
};

class TmBase : public ploc::SpTmReader {
 public:
  TmBase() = default;

  TmBase(const uint8_t* data, size_t maxSize) : ploc::SpTmReader(data, maxSize) {
    if (maxSize < MIN_TMTC_LEN) {
      sif::error << "SupvTcBase::SupvTcBase: Passed buffer is too small" << std::endl;
    }
  }

  uint8_t getServiceId() const { return getPacketData()[TIMESTAMP_LEN]; }

  uint16_t getModuleApid() const { return getApid() & APID_MODULE_MASK; }

  const uint8_t* getPayloadStart() const { return getPacketData() + SECONDARY_HEADER_LEN; }
  size_t getPayloadLen() const {
    if (getFullPacketLen() > SECONDARY_HEADER_LEN + ccsds::HEADER_LEN) {
      return getFullPacketLen() - SECONDARY_HEADER_LEN - ccsds::HEADER_LEN;
    }
    return 0;
  }
};

class NoPayloadPacket : public TcBase {
 public:
  NoPayloadPacket(TcParams params, uint16_t apid, uint8_t serviceId)
      : NoPayloadPacket(params, apid, serviceId, 0) {}

  NoPayloadPacket(TcParams params, uint16_t apid, uint8_t serviceId, uint16_t seqId)
      : TcBase(params, apid, serviceId, MIN_PAYLOAD_LEN, seqId) {}

  ReturnValue_t buildPacket() {
    ReturnValue_t result = checkSizeAndSerializeHeader();
    if (result != returnvalue::OK) {
      return result;
    }
    return calcAndSetCrc();
  }

 private:
};

/**
 * @brief   This class can be used to generate the space packet selecting the boot image of
 *          of the MPSoC.
 */
class MPSoCBootSelect : public TcBase {
 public:
  static const uint8_t NVM0 = 0;
  static const uint8_t NVM1 = 1;

  /**
   * @brief   Constructor
   *
   * @param mem   The memory to boot from: NVM0 (0), NVM1 (1)
   * @param bp0   Partition pin 0
   * @param bp1   Partition pin 1
   * @param bp2   Partition pin 2
   *
   * @note  Selection of partitions is currently not supported.
   */
  MPSoCBootSelect(TcParams params)
      : TcBase(params, Apid::BOOT_MAN, static_cast<uint8_t>(tc::BootManId::SELECT_IMAGE), 4) {}

  ReturnValue_t buildPacket(uint8_t mem = 0, uint8_t bp0 = 0, uint8_t bp1 = 0, uint8_t bp2 = 0) {
    auto res = checkSizeAndSerializeHeader();
    if (res != returnvalue::OK) {
      return res;
    }
    initPacket(mem, bp0, bp1, bp2);
    return calcAndSetCrc();
  }

 private:
  void initPacket(uint8_t mem = 0, uint8_t bp0 = 0, uint8_t bp1 = 0, uint8_t bp2 = 0) {
    payloadStart[0] = mem;
    payloadStart[1] = bp0;
    payloadStart[2] = bp1;
    payloadStart[3] = bp2;
  }
};

/**
 * @brief   This class generates the space packet to update the time of the PLOC supervisor.
 */
class SetTimeRef : public TcBase {
 public:
  static constexpr size_t PAYLOAD_LEN = 8;
  SetTimeRef(TcParams params)
      : TcBase(params, Apid::TMTC_MAN, static_cast<uint8_t>(tc::TmtcId::TIME_REF), 8) {}

  ReturnValue_t buildPacket(Clock::TimeOfDay_t* time) {
    auto res = checkSizeAndSerializeHeader();
    if (res != returnvalue::OK) {
      return res;
    }
    res = initPacket(time);
    if (res != returnvalue::OK) {
      return res;
    }
    return calcAndSetCrc();
  }

 private:
  static const uint16_t SYNC = 0x8000;

  ReturnValue_t initPacket(Clock::TimeOfDay_t* time) {
    size_t serializedSize = 6;
    uint8_t* dataFieldPtr = payloadStart;
    uint16_t milliseconds = static_cast<uint16_t>(time->usecond / 1000) | SYNC;
    ReturnValue_t result =
        SerializeAdapter::serialize(&milliseconds, &dataFieldPtr, &serializedSize, spParams.maxSize,
                                    SerializeIF::Endianness::BIG);
    if (result != returnvalue::OK) {
      return result;
    }
    uint8_t second = static_cast<uint8_t>(time->second);
    result = SerializeAdapter::serialize(&second, &dataFieldPtr, &serializedSize, spParams.maxSize,
                                         SerializeIF::Endianness::BIG);
    if (result != returnvalue::OK) {
      return result;
    }
    uint8_t minute = static_cast<uint8_t>(time->minute);
    result = SerializeAdapter::serialize(&minute, &dataFieldPtr, &serializedSize, spParams.maxSize,
                                         SerializeIF::Endianness::BIG);
    if (result != returnvalue::OK) {
      return result;
    }
    uint8_t hour = static_cast<uint8_t>(time->hour);
    result = SerializeAdapter::serialize(&hour, &dataFieldPtr, &serializedSize, spParams.maxSize,
                                         SerializeIF::Endianness::BIG);
    if (result != returnvalue::OK) {
      return result;
    }
    uint8_t day = static_cast<uint8_t>(time->day);
    result = SerializeAdapter::serialize(&day, &dataFieldPtr, &serializedSize, spParams.maxSize,
                                         SerializeIF::Endianness::BIG);
    if (result != returnvalue::OK) {
      return result;
    }
    uint8_t month = static_cast<uint8_t>(time->month);
    result = SerializeAdapter::serialize(&month, &dataFieldPtr, &serializedSize, spParams.maxSize,
                                         SerializeIF::Endianness::BIG);
    if (result != returnvalue::OK) {
      return result;
    }
    uint8_t year = static_cast<uint8_t>(time->year - 1900);
    return SerializeAdapter::serialize(&year, &dataFieldPtr, &serializedSize, spParams.maxSize,
                                       SerializeIF::Endianness::BIG);
  }
};

/**
 * @brief   This class can be used to generate the set boot timout command.
 */
class SetBootTimeout : public TcBase {
 public:
  static constexpr size_t PAYLOAD_LEN = 4;
  /**
   * @brief   Constructor
   *
   * @param timeout  The boot timeout in milliseconds.
   */
  SetBootTimeout(TcParams params)
      : TcBase(params, Apid::BOOT_MAN, static_cast<uint8_t>(tc::BootManId::SET_BOOT_TIMEOUT),
               PAYLOAD_LEN) {}

  ReturnValue_t buildPacket(uint32_t timeout) {
    auto res = checkSizeAndSerializeHeader();
    if (res != returnvalue::OK) {
      return res;
    }
    initPacket(timeout);
    return calcAndSetCrc();
  }

 private:
  void initPacket(uint32_t timeout) {
    size_t serializedSize = 0;
    uint8_t* dataFieldPtr = payloadStart;
    SerializeAdapter::serialize<uint32_t>(&timeout, &dataFieldPtr, &serializedSize, sizeof(timeout),
                                          SerializeIF::Endianness::BIG);
  }
};

class FactoryReset : public TcBase {
 public:
  FactoryReset(TcParams params)
      : TcBase(params, Apid::DATA_LOGGER,
               static_cast<uint8_t>(tc::DataLoggerServiceId::FACTORY_RESET), 0) {}

  ReturnValue_t buildPacket(uint8_t op) {
    setLenFromPayloadLen(1);
    auto res = checkSizeAndSerializeHeader();
    if (res != returnvalue::OK) {
      return res;
    }
    payloadStart[0] = op;
    return calcAndSetCrc();
  }

 private:
};

/**
 * @brief   This class can be used to generate the space packet to set the maximum boot tries.
 */
class SetRestartTries : public TcBase {
 public:
  /**
   * @brief   Constructor
   *
   * @param restartTries  Maximum restart tries to set.
   */
  SetRestartTries(TcParams params)
      : TcBase(params, Apid::BOOT_MAN, static_cast<uint8_t>(tc::BootManId::SET_MAX_REBOOT_TRIES),
               1) {}

  ReturnValue_t buildPacket(uint8_t restartTries) {
    auto res = checkSizeAndSerializeHeader();
    if (res != returnvalue::OK) {
      return res;
    }
    initPacket(restartTries);
    return calcAndSetCrc();
  }

 private:
  void initPacket(uint8_t restartTries) { payloadStart[0] = restartTries; }
};

/**
 * @brief   With this class the space packet can be generated to disable to periodic transmission
 *          of housekeeping data. Normally, this will be disabled by default. However, adding this
 *          command can be useful for debugging.
 */
class DisablePeriodicHkTransmission : public TcBase {
 public:
  /**
   * @brief   Constructor
   */
  DisablePeriodicHkTransmission(TcParams params)
      : TcBase(params, Apid::HK, static_cast<uint8_t>(tc::HkId::ENABLE), 1) {}

  ReturnValue_t buildPacket() {
    auto res = checkSizeAndSerializeHeader();
    if (res != returnvalue::OK) {
      return res;
    }
    initPacket();
    return calcAndSetCrc();
  }

 private:
  void initPacket() { payloadStart[0] = false; }
};

/**
 * @brief   This class packages the command to enable of disable the latchup alert.
 *
 * @details There are 7 different latchup alerts.
 */
class LatchupAlert : public TcBase {
 public:
  /**
   * @brief   Constructor
   *
   * @param state    true - enable, false - disable
   * @param latchupId Identifies the latchup to enable/disable (0 - 0.85V, 1 - 1.8V, 2 - MISC,
   *        3 - 3.3V, 4 - NVM_4XO, 5 - MISSION, 6 - SAFECOTS)
   */
  LatchupAlert(TcParams params) : TcBase(params, Apid::LATCHUP_MON) { setLenFromPayloadLen(1); }

  ReturnValue_t buildPacket(bool state, uint8_t latchupId) {
    if (state) {
      setServiceId(static_cast<uint8_t>(tc::LatchupMonId::ENABLE));
    } else {
      setServiceId(static_cast<uint8_t>(tc::LatchupMonId::DISABLE));
    }
    auto res = checkSizeAndSerializeHeader();
    if (res != returnvalue::OK) {
      return res;
    }
    initPacket(latchupId);
    return calcAndSetCrc();
  }

 private:
  void initPacket(uint8_t latchupId) { payloadStart[0] = latchupId; }
};

class SetAlertlimit : public TcBase {
 public:
  /**
   * @brief   Constructor
   *
   * @param latchupId Identifies the latchup alert to calibrate (0 - 0.85V, 1 - 1.8V, 2 - MISC,
   *        3 - 3.3V, 4 - NVM_4XO, 5 - MISSION, 6 - SAFECOTS)
   * @param dutycycle
   */
  SetAlertlimit(TcParams params)
      : TcBase(params, Apid::LATCHUP_MON, static_cast<uint8_t>(tc::LatchupMonId::SET_ALERT_LIMIT),
               5) {}

  ReturnValue_t buildPacket(uint8_t latchupId, uint32_t dutycycle) {
    auto res = checkSizeAndSerializeHeader();
    if (res != returnvalue::OK) {
      return res;
    }
    res = initPacket(latchupId, dutycycle);
    if (res != returnvalue::OK) {
      return res;
    }
    return calcAndSetCrc();
  }

 private:
  ReturnValue_t initPacket(uint8_t latchupId, uint32_t dutycycle) {
    payloadStart[0] = latchupId;
    size_t serLen = 0;
    return SerializeAdapter::serialize<uint32_t>(&dutycycle, payloadStart + 1, &serLen,
                                                 sizeof(dutycycle), SerializeIF::Endianness::BIG);
  }
};

/**
 * @brief   This class packages the space packet to configures the window size and striding step of
 *          the moving average filter applied to the ADC readings.
 */
class SetAdcWindowAndStride : public TcBase {
 public:
  /**
   * @brief   Constructor
   *
   * @param windowSize
   * @param stridingStepSize
   */
  SetAdcWindowAndStride(TcParams params)
      : TcBase(params, Apid::ADC_MON, static_cast<uint8_t>(tc::AdcMonId::SET_WINDOW_STRIDE), 4) {}

  ReturnValue_t buildPacket(uint16_t windowSize, uint16_t stridingStepSize) {
    auto res = checkSizeAndSerializeHeader();
    if (res != returnvalue::OK) {
      return res;
    }
    initPacket(windowSize, stridingStepSize);
    return calcAndSetCrc();
  }

 private:
  void initPacket(uint16_t windowSize, uint16_t stridingStepSize) {
    size_t serializedSize = 6;
    uint8_t* data = payloadStart;
    SerializeAdapter::serialize(&windowSize, &data, &serializedSize, spParams.maxSize,
                                SerializeIF::Endianness::BIG);
    SerializeAdapter::serialize(&stridingStepSize, &data, &serializedSize, spParams.maxSize,
                                SerializeIF::Endianness::BIG);
  }
};

/**
 * @brief   This class packages the space packet to set the ADC trigger threshold.
 */
class SetAdcThreshold : public TcBase {
 public:
  /**
   * @brief   Constructor
   *
   * @param threshold
   */
  SetAdcThreshold(TcParams params)
      : TcBase(params, Apid::ADC_MON, static_cast<uint8_t>(tc::AdcMonId::SET_ADC_THRESHOLD), 4) {}

  ReturnValue_t buildPacket(uint32_t threshold) {
    auto res = checkSizeAndSerializeHeader();
    if (res != returnvalue::OK) {
      return res;
    }
    initPacket(threshold);
    return calcAndSetCrc();
  }

 private:
  void initPacket(uint32_t threshold) {
    size_t serializedSize = 0;
    SerializeAdapter::serialize(&threshold, payloadStart, &serializedSize, sizeof(threshold),
                                SerializeIF::Endianness::BIG);
  }
};

/**
 * @brief   This class packages the space packet to run auto EM tests.
 */
class RunAutoEmTests : public TcBase {
 public:
  /**
   * @brief   Constructor
   *
   * @param test  1 - complete EM test, 2 - Short test (only memory readback NVM0,1,3)
   */
  RunAutoEmTests(TcParams params)
      : TcBase(params, Apid::TMTC_MAN, static_cast<uint8_t>(tc::TmtcId::RUN_AUTO_EM_TEST), 1) {}

  ReturnValue_t buildPacket(uint8_t test) {
    auto res = checkSizeAndSerializeHeader();
    if (res != returnvalue::OK) {
      return res;
    }
    initPacket(test);
    return calcAndSetCrc();
  }

 private:
  uint8_t test = 0;

  void initPacket(uint8_t test) { payloadStart[0] = test; }
};

/**
 * @brief   This class packages the space packet to enable or disable ADC channels.
 */
class SetAdcEnabledChannels : public TcBase {
 public:
  /**
   * @brief   Constructor
   *
   * @param ch    Defines channels to be enabled or disabled.
   */
  SetAdcEnabledChannels(TcParams params)
      : TcBase(params, Apid::ADC_MON, static_cast<uint8_t>(tc::AdcMonId::SET_ENABLED_CHANNELS), 2) {
  }

  ReturnValue_t buildPacket(uint16_t ch) {
    auto res = checkSizeAndSerializeHeader();
    if (res != returnvalue::OK) {
      return res;
    }
    initPacket(ch);
    return calcAndSetCrc();
  }

 private:
  void initPacket(uint16_t ch) {
    size_t serializedSize = 0;
    SerializeAdapter::serialize(&ch, &payloadStart, &serializedSize, sizeof(ch),
                                SerializeIF::Endianness::BIG);
  }
};

/**
 * @brief   This class packages the space packet change the state of a GPIO. This command is only
 *          required for ground testing.
 */
class SetGpio : public TcBase {
 public:
  /**
   * @brief   Constructor
   *
   * @param port
   * @param pin
   * @param val
   */
  SetGpio(TcParams params)
      : TcBase(params, Apid::TMTC_MAN, static_cast<uint8_t>(tc::TmtcId::SET_GPIO), 3) {}

  ReturnValue_t buildPacket(uint8_t port, uint8_t pin, uint8_t val) {
    auto res = checkSizeAndSerializeHeader();
    if (res != returnvalue::OK) {
      return res;
    }
    initPacket(port, pin, val);
    return calcAndSetCrc();
  }

 private:
  uint8_t port = 0;
  uint8_t pin = 0;
  uint8_t val = 0;

  void initPacket(uint8_t port, uint8_t pin, uint8_t val) {
    payloadStart[0] = port;
    payloadStart[1] = pin;
    payloadStart[2] = val;
  }
};

/**
 * @brief   This class packages the space packet causing the supervisor print the state of a GPIO
 *          to the debug output.
 */
class ReadGpio : public TcBase {
 public:
  /**
   * @brief   Constructor
   *
   * @param port
   * @param pin
   */
  ReadGpio(TcParams params)
      : TcBase(params, Apid::TMTC_MAN, static_cast<uint8_t>(tc::TmtcId::READ_GPIO), 2) {}

  ReturnValue_t buildPacket(uint8_t port, uint8_t pin) {
    auto res = checkSizeAndSerializeHeader();
    if (res != returnvalue::OK) {
      return res;
    }
    initPacket(port, pin);
    return calcAndSetCrc();
  }

 private:
  uint8_t port = 0;
  uint8_t pin = 0;

  void initPacket(uint8_t port, uint8_t pin) {
    payloadStart[0] = port;
    payloadStart[1] = pin;
  }
};

class SetShutdownTimeout : public TcBase {
 public:
  SetShutdownTimeout(TcParams params)
      : TcBase(params, Apid::BOOT_MAN, static_cast<uint8_t>(tc::BootManId::SHUTDOWN_TIMEOUT), 4) {}

  ReturnValue_t buildPacket(uint32_t timeout) {
    auto res = checkSizeAndSerializeHeader();
    if (res != returnvalue::OK) {
      return res;
    }
    initPacket(timeout);
    return calcAndSetCrc();
  }

 private:
  void initPacket(uint32_t timeout) {
    size_t serLen = 0;
    SerializeAdapter::serialize(&timeout, payloadStart, &serLen, sizeof(timeout),
                                SerializeIF::Endianness::BIG);
  }
};

/**
 * @brief   Command to request CRC over memory region of the supervisor.
 */
class CheckMemory : public TcBase {
 public:
  /**
   * @brief   Constructor
   *
   * @param memoryId
   * @param startAddress    Start address of CRC calculation
   * @param length          Length in bytes of memory region
   */
  CheckMemory(TcParams params)
      : TcBase(params, Apid::MEM_MAN, static_cast<uint8_t>(tc::MemManId::CHECK), 10) {}

  ReturnValue_t buildPacket(uint8_t memoryId, uint32_t startAddress, uint32_t length) {
    auto res = checkSizeAndSerializeHeader();
    if (res != returnvalue::OK) {
      return res;
    }
    initPacket(memoryId, startAddress, length);
    return calcAndSetCrc();
  }

 private:
  uint8_t n = 1;

  void initPacket(uint8_t memoryId, uint32_t startAddress, uint32_t length) {
    uint8_t* data = payloadStart;
    size_t serLen = 6;
    SerializeAdapter::serialize(&memoryId, &data, &serLen, spParams.maxSize,
                                SerializeIF::Endianness::BIG);
    SerializeAdapter::serialize(&n, &data, &serLen, spParams.maxSize, SerializeIF::Endianness::BIG);
    SerializeAdapter::serialize(&startAddress, &data, &serLen, spParams.maxSize,
                                SerializeIF::Endianness::BIG);
    SerializeAdapter::serialize(&length, &data, &serLen, spParams.maxSize,
                                SerializeIF::Endianness::BIG);
  }
};

/**
 * @brief   This class packages the space packet transporting a part of an MPSoC update.
 */
class WriteMemory : public TcBase {
 public:
  /**
   * @brief   Constructor
   *
   * @param seqFlags        Sequence flags
   * @param sequenceCount   Sequence count (first update packet expects 1 as sequence count)
   * @param updateData      Pointer to buffer containing update data
   */
  WriteMemory(TcParams params)
      : TcBase(params, Apid::MEM_MAN, static_cast<uint8_t>(tc::MemManId::WRITE), 1) {}

  ReturnValue_t buildPacket(ccsds::SequenceFlags seqFlags, uint16_t sequenceCount, uint8_t memoryId,
                            uint32_t startAddress, uint16_t length, uint8_t* updateData) {
    if (length > CHUNK_MAX) {
      sif::error << "WriteMemory::WriteMemory: Invalid length" << std::endl;
      return SerializeIF::BUFFER_TOO_SHORT;
    }
    spParams.creator.setSeqFlags(seqFlags);
    spParams.creator.setSeqCount(sequenceCount);
    auto res = initPacket(memoryId, startAddress, length, updateData);
    if (res != returnvalue::OK) {
      return res;
    }
    res = checkSizeAndSerializeHeader();
    if (res != returnvalue::OK) {
      return res;
    }
    return calcAndSetCrc();
  }
  // Although the space packet has space left for 1010 bytes of data to supervisor can only process
  // update packets with a maximum of 512 bytes.
  static const uint16_t CHUNK_MAX = 512;

 private:
  static const uint16_t META_DATA_LENGTH = 8;
  uint8_t n = 1;

  ReturnValue_t initPacket(uint8_t memoryId, uint32_t startAddr, uint16_t updateDataLen,
                           uint8_t* updateData) {
    uint8_t* data = payloadStart;
    if (updateDataLen % 2 != 0) {
      setLenFromPayloadLen(META_DATA_LENGTH + updateDataLen + 1);
    } else {
      setLenFromPayloadLen(META_DATA_LENGTH + updateDataLen);
    }
    // To avoid crashes in this unexpected case
    ReturnValue_t result = checkPayloadLen();
    if (result != returnvalue::OK) {
      return result;
    }
    size_t serializedSize = MIN_TMTC_LEN;
    SerializeAdapter::serialize(&memoryId, &data, &serializedSize, spParams.maxSize,
                                SerializeIF::Endianness::BIG);
    SerializeAdapter::serialize(&n, &data, &serializedSize, spParams.maxSize,
                                SerializeIF::Endianness::BIG);
    SerializeAdapter::serialize(&startAddr, &data, &serializedSize, spParams.maxSize,
                                SerializeIF::Endianness::BIG);
    SerializeAdapter::serialize(&updateDataLen, &data, &serializedSize, spParams.maxSize,
                                SerializeIF::Endianness::BIG);
    std::memcpy(data, updateData, updateDataLen);
    if (updateDataLen % 2 != 0) {
      // The data field must be two bytes aligned. Thus, in case the number of bytes to write is odd
      // a value of zero is added here
      data[updateDataLen] = 0;
    }
    return returnvalue::OK;
  }
};

/**
 * @brief   This class packages the space packet to wipe or dump parts of the MRAM.
 */
class MramCmd : public TcBase {
 public:
  enum class MramAction { WIPE, DUMP };

  /**
   * @brief   Constructor
   *
   * @param start Start address of the MRAM section to wipe or dump
   * @param stop   End address of the MRAM section to wipe or dump
   * @param action    Dump or wipe MRAM
   *
   * @note    The content at the stop address is excluded from the dump or wipe operation.
   */
  MramCmd(TcParams params) : TcBase(params, Apid::DATA_LOGGER) { setLenFromPayloadLen(6); }

  ReturnValue_t buildPacket(uint32_t start, uint32_t stop, MramAction action) {
    if (action == MramAction::WIPE) {
      setServiceId(static_cast<uint8_t>(tc::DataLoggerServiceId::WIPE_MRAM));
    } else if (action == MramAction::DUMP) {
      setServiceId(static_cast<uint8_t>(tc::DataLoggerServiceId::DUMP_MRAM));
    } else {
      sif::debug << "WipeMram: Invalid action specified";
    }
    auto res = checkSizeAndSerializeHeader();
    if (res != returnvalue::OK) {
      return res;
    }
    initPacket(start, stop);
    return calcAndSetCrc();
  }

 private:
  uint32_t start = 0;
  uint32_t stop = 0;

  void initPacket(uint32_t start, uint32_t stop) {
    uint8_t concatBuffer[6];
    concatBuffer[0] = static_cast<uint8_t>(start >> 16);
    concatBuffer[1] = static_cast<uint8_t>(start >> 8);
    concatBuffer[2] = static_cast<uint8_t>(start);
    concatBuffer[3] = static_cast<uint8_t>(stop >> 16);
    concatBuffer[4] = static_cast<uint8_t>(stop >> 8);
    concatBuffer[5] = static_cast<uint8_t>(stop);
    std::memcpy(payloadStart, concatBuffer, sizeof(concatBuffer));
  }
};

/**
 * @brief   This class can be used to package erase memory command
 */
class EraseMemory : public TcBase {
 public:
  EraseMemory(TcParams params)
      : TcBase(params, Apid::MEM_MAN, static_cast<uint8_t>(tc::MemManId::ERASE), PAYLOAD_LENGTH) {}

  ReturnValue_t buildPacket(uint8_t memoryId, uint32_t startAddress, uint32_t length) {
    auto res = checkSizeAndSerializeHeader();
    if (res != returnvalue::OK) {
      return res;
    }
    initPacket(memoryId, startAddress, length);
    return calcAndSetCrc();
  }

 private:
  static const uint16_t PAYLOAD_LENGTH = 10;  // length without CRC field

  uint8_t n = 1;

  void initPacket(uint8_t memoryId, uint32_t startAddress, uint32_t length) {
    uint8_t* data = payloadStart;
    size_t serializedSize = 6;
    SerializeAdapter::serialize(&memoryId, &data, &serializedSize, spParams.maxSize,
                                SerializeIF::Endianness::BIG);
    SerializeAdapter::serialize(&n, &data, &serializedSize, spParams.maxSize,
                                SerializeIF::Endianness::BIG);
    SerializeAdapter::serialize(&startAddress, &data, &serializedSize, spParams.maxSize,
                                SerializeIF::Endianness::BIG);
    SerializeAdapter::serialize(&length, &data, &serializedSize, spParams.maxSize,
                                SerializeIF::Endianness::BIG);
  }
};

class VerificationReport {
 public:
  VerificationReport(TmBase& readerBase) : readerBase(readerBase) {}

  virtual ~VerificationReport() = default;

  virtual ReturnValue_t parse(bool checkCrc) {
    if (checkCrc and readerBase.checkCrc() != returnvalue::OK) {
      return result::CRC_FAILURE;
    }
    if (readerBase.getModuleApid() != Apid::TMTC_MAN) {
      return result::INVALID_APID;
    }
    if (readerBase.getBufSize() < MIN_TMTC_LEN + PAYLOAD_LEN or
        readerBase.getPayloadLen() < PAYLOAD_LEN) {
      sif::error << "VerificationReport: Invalid verification report, payload too small"
                 << std::endl;
      return result::BUF_TOO_SMALL;
    }
    const uint8_t* payloadStart = readerBase.getPayloadStart();
    size_t remLen = PAYLOAD_LEN;
    ReturnValue_t result = SerializeAdapter::deSerialize(&refApid, &payloadStart, &remLen,
                                                         SerializeIF::Endianness::BIG);
    if (result != returnvalue::OK) {
      sif::warning << "VerificationReport: Failed to deserialize reference APID field" << std::endl;
      return result;
    }
    result = SerializeAdapter::deSerialize(&refServiceId, &payloadStart, &remLen,
                                           SerializeIF::Endianness::BIG);
    if (result != returnvalue::OK) {
      sif::warning << "VerificationReport: Failed to deserialize reference Service ID field"
                   << std::endl;
      return result;
    }
    result = SerializeAdapter::deSerialize(&refSeqCount, &payloadStart, &remLen,
                                           SerializeIF::Endianness::BIG);
    if (result != returnvalue::OK) {
      sif::warning << "VerificationReport: Failed to deserialize reference sequence count field"
                   << std::endl;
      return result;
    }
    result = SerializeAdapter::deSerialize(&statusCode, &payloadStart, &remLen,
                                           SerializeIF::Endianness::BIG);
    if (result != returnvalue::OK) {
      sif::warning << "VerificationReport: Failed to deserialize status code field" << std::endl;
      return result;
    }
    return returnvalue::OK;
  }

  /**
   * @brief Gets the APID of command which caused the transmission of this verification report.
   */
  uint8_t getRefModuleApid() const { return refApid; }

  uint8_t getRefServiceId() const { return refServiceId; }

  uint16_t getRefSequenceCount() const { return refSeqCount; }

  uint32_t getStatusCode() const { return statusCode; }

  virtual void printStatusInformation(const char* prefix) const {
    bool codeHandled = true;
    if (statusCode < 0x100) {
      GeneralStatusCode code = static_cast<GeneralStatusCode>(getStatusCode());
      switch (code) {
        case GeneralStatusCode::OK: {
          sif::warning << prefix << "Ok" << std::endl;
          break;
        }
        case GeneralStatusCode::INIT_ERROR: {
          sif::warning << prefix << "Init error" << std::endl;
          break;
        }
        case GeneralStatusCode::BAD_PARAM: {
          sif::warning << prefix << "Bad param" << std::endl;
          break;
        }
        case GeneralStatusCode::NOT_INITIALIZED: {
          sif::warning << prefix << "Not initialized" << std::endl;
          break;
        }
        case GeneralStatusCode::BAD_PERIPH_ID: {
          sif::warning << prefix << "Bad periph ID" << std::endl;
          break;
        }
        case GeneralStatusCode::TIMEOUT: {
          sif::warning << prefix << "Timeout" << std::endl;
          break;
        }
        case GeneralStatusCode::RX_ERROR: {
          sif::warning << prefix << "RX error" << std::endl;
          break;
        }
        case GeneralStatusCode::TX_ERROR: {
          sif::warning << prefix << "TX error" << std::endl;
          break;
        }
        case GeneralStatusCode::BUF_EMPTY: {
          sif::warning << prefix << "Buf empty" << std::endl;
          break;
        }
        case GeneralStatusCode::NAK: {
          sif::warning << prefix << "Nak, default error code" << std::endl;
          break;
        }
        case GeneralStatusCode::ARB_LOST: {
          sif::warning << prefix << "Arb lost" << std::endl;
          break;
        }
        case GeneralStatusCode::BUSY: {
          sif::warning << prefix << "Busy" << std::endl;
          break;
        }
        case GeneralStatusCode::NOT_IMPL: {
          sif::warning << prefix << "Not implemented" << std::endl;
          break;
        }
        case GeneralStatusCode::ALIGNMENT_ERROR: {
          sif::warning << prefix << "Alignment error" << std::endl;
          break;
        }
        case GeneralStatusCode::PERIPH_ERROR: {
          sif::warning << prefix << "Periph error" << std::endl;
          break;
        }
        case GeneralStatusCode::FAILED_LATCH: {
          sif::warning << prefix << "Failed latch" << std::endl;
          break;
        }
        case GeneralStatusCode::GPIO_HIGH: {
          sif::warning << prefix << "GPIO high" << std::endl;
          break;
        }
        case GeneralStatusCode::GPIO_LOW: {
          sif::warning << prefix << "GPIO low" << std::endl;
          break;
        }
        case GeneralStatusCode::TEST_PASSED: {
          sif::warning << prefix << "Test passed" << std::endl;
          break;
        }
        case GeneralStatusCode::TEST_FAILED: {
          sif::warning << prefix << "Test failed" << std::endl;
          break;
        }
        default: {
          codeHandled = false;
          break;
        }
      }
    } else if (statusCode < 0x200 and statusCode >= 0x100) {
      BootManStatusCode code = static_cast<BootManStatusCode>(statusCode);
      switch (code) {
        case BootManStatusCode::NOTHING_TODO: {
          sif::warning << prefix << "Nothing to do" << std::endl;
          break;
        }
        case BootManStatusCode::POWER_FAULT: {
          sif::warning << prefix << "Power fault" << std::endl;
          break;
        }
        case BootManStatusCode::INVALID_LENGTH: {
          sif::warning << prefix << "Invalid length" << std::endl;
          break;
        }
        case BootManStatusCode::OUT_OF_RANGE: {
          sif::warning << prefix << "Out of range, lenght check of parameter failed" << std::endl;
          break;
        }
        case BootManStatusCode::OUT_OF_HEAP_MEMORY: {
          sif::warning << prefix << "Out of heap memory" << std::endl;
          break;
        }
        case BootManStatusCode::INVALID_STATE_TRANSITION: {
          sif::warning << prefix << "Invalid state transition" << std::endl;
          break;
        }
        case BootManStatusCode::MPSOC_ALREADY_BOOTING: {
          sif::warning << prefix << "MPSoC already booting" << std::endl;
          break;
        }
        case BootManStatusCode::MPSOC_ALREADY_OPERATIONAL: {
          sif::warning << prefix << "MPSoC already operational" << std::endl;
          break;
        }
        case BootManStatusCode::MPSOC_BOOT_FAILED: {
          sif::warning << prefix << "MPSoC boot failed" << std::endl;
          break;
        }
        default: {
          codeHandled = false;
          break;
        }
      }
    } else if (statusCode < 0x300 and statusCode >= 0x200) {
      MemManStatusCode code = static_cast<MemManStatusCode>(statusCode);
      switch (code) {
        case MemManStatusCode::SP_NOT_AVAILABLE: {
          sif::warning << prefix << "SP not available" << std::endl;
          break;
        }
        case MemManStatusCode::SP_DATA_INSUFFICIENT: {
          sif::warning << prefix << "SP data insufficient" << std::endl;
          break;
        }
        case MemManStatusCode::SP_MEMORY_ID_INVALID: {
          sif::warning << prefix << "SP data insufficient" << std::endl;
          break;
        }
        case MemManStatusCode::MPSOC_NOT_IN_RESET: {
          sif::warning << prefix << "MPSoC not in reset" << std::endl;
          break;
        }
        case MemManStatusCode::FLASH_INIT_FAILED: {
          sif::warning << prefix << "Flash init failed" << std::endl;
          break;
        }
        case MemManStatusCode::FLASH_ERASE_FAILED: {
          sif::warning << prefix << "Flash erase failed" << std::endl;
          break;
        }
        case MemManStatusCode::FLASH_WRITE_FAILED: {
          sif::warning << prefix << "Flash write failed" << std::endl;
          break;
        }
        case MemManStatusCode::FLASH_VERIFY_FAILED: {
          sif::warning << prefix << "Flash verify failed" << std::endl;
          break;
        }
        case MemManStatusCode::CANNOT_ACCESS_TM: {
          sif::warning << prefix << "Can not access tm" << std::endl;
          break;
        }
        case MemManStatusCode::CANNOT_SEND_TM: {
          sif::warning << prefix << "Can not access tm" << std::endl;
          break;
        }
        default: {
          codeHandled = false;
          break;
        }
      }
    } else if (statusCode < 0x400 and statusCode >= 0x300) {
      PowerManStatusCode code = static_cast<PowerManStatusCode>(statusCode);
      switch (code) {
        case PowerManStatusCode::PG_LOW: {
          sif::warning << prefix << "PG low" << std::endl;
          break;
        }
        case PowerManStatusCode::PG_5V_LOW: {
          sif::warning << prefix << "PG 5V low" << std::endl;
          break;
        }
        case PowerManStatusCode::PG_0V85_LOW: {
          sif::warning << prefix << "PG 0V85 low" << std::endl;
          break;
        }
        case PowerManStatusCode::PG_1V8_LOW: {
          sif::warning << prefix << "PG 1V8 low" << std::endl;
          break;
        }
        case PowerManStatusCode::PG_MISC_LOW: {
          sif::warning << prefix << "PG misc low" << std::endl;
          break;
        }
        case PowerManStatusCode::PG_3V3_LOW: {
          sif::warning << prefix << "PG 3V3 low" << std::endl;
          break;
        }
        case PowerManStatusCode::PG_MB_VAIO_LOW: {
          sif::warning << prefix << "PG mb vaio low" << std::endl;
          break;
        }
        case PowerManStatusCode::PG_MB_MPSOCIO_LOW: {
          sif::warning << prefix << "PG mb mpsocio low" << std::endl;
          break;
        }
        default: {
          codeHandled = false;
          break;
        }
      }
    } else if (statusCode >= 0x600) {
      TmtcManStatusCode code = static_cast<TmtcManStatusCode>(statusCode);
      switch (code) {
        case TmtcManStatusCode::BUF_FULL: {
          sif::warning << prefix << "TMTC MAN: Buffer full" << std::endl;
          break;
        }
        case TmtcManStatusCode::WRONG_APID: {
          sif::warning << prefix << "TMTC MAN: Wrong APID" << std::endl;
          break;
        }
        case TmtcManStatusCode::WRONG_SERVICE_ID: {
          sif::warning << prefix << "TMTC MAN: Wrong Service ID" << std::endl;
          break;
        }
        case TmtcManStatusCode::TC_DELIVERY_ACCEPTED: {
          sif::warning << prefix << "TMTC MAN: TC accepted" << std::endl;
          break;
        }
        case TmtcManStatusCode::TC_DELIVERY_REJECTED: {
          sif::warning << prefix << "TMTC MAN: TC rejected" << std::endl;
          break;
        }
        case TmtcManStatusCode::TC_PACKET_LEN_INCORRECT: {
          sif::warning << prefix << "TMTC MAN: TC packet lenght incorrect" << std::endl;
          break;
        }
        case TmtcManStatusCode::BAD_CRC: {
          sif::warning << prefix << "TMTC MAN: Bad CRC" << std::endl;
          break;
        }
        case TmtcManStatusCode::BAD_DEST: {
          sif::warning << prefix << "TMTC MAN: Bad destination" << std::endl;
          break;
        }
        case TmtcManStatusCode::BAD_SP_HEADER: {
          sif::warning << prefix << "TMTC MAN: Bad SP header" << std::endl;
          break;
        }
        default: {
          codeHandled = false;
          break;
        }
      }
    }
    if (not codeHandled) {
      sif::warning << prefix << "Invalid or unimplemented status code: 0x" << std::hex
                   << std::setfill('0') << std::setw(4) << static_cast<uint16_t>(statusCode)
                   << std::dec << std::endl;
    }
  }

 protected:
  TmBase& readerBase;
  uint8_t refApid = 0;
  uint8_t refServiceId = 0;
  uint16_t refSeqCount = 0;
  uint32_t statusCode = 0;
  static const size_t PAYLOAD_LEN = 8;
};

class AcknowledgmentReport : public VerificationReport {
 public:
  AcknowledgmentReport(TmBase& readerBase) : VerificationReport(readerBase) {}

  ReturnValue_t parse(bool checkCrc) override {
    if (readerBase.getServiceId() != static_cast<uint8_t>(tm::TmtcId::ACK) and
        readerBase.getServiceId() != static_cast<uint8_t>(tm::TmtcId::NAK)) {
      return result::INVALID_SERVICE_ID;
    }
    return VerificationReport::parse(checkCrc);
  }

  void printStatusInformationAck() {
    VerificationReport::printStatusInformation(STATUS_PRINTOUT_PREFIX);
  }

 private:
  static constexpr char STATUS_PRINTOUT_PREFIX[] = "SUPV NAK Status: ";
};

class ExecutionReport : public VerificationReport {
 public:
  ExecutionReport(TmBase& readerBase) : VerificationReport(readerBase) {}

  TmBase& getReader() { return readerBase; }

  ReturnValue_t parse(bool checkCrc) override {
    if (readerBase.getServiceId() != static_cast<uint8_t>(tm::TmtcId::EXEC_ACK) and
        readerBase.getServiceId() != static_cast<uint8_t>(tm::TmtcId::EXEC_NAK)) {
      return returnvalue::FAILED;
    }
    return VerificationReport::parse(checkCrc);
  }

  void printStatusInformationExe() {
    VerificationReport::printStatusInformation(STATUS_PRINTOUT_PREFIX);
  }

 private:
  static constexpr char STATUS_PRINTOUT_PREFIX[] = "SUPV EXE NAK Status: ";
};

class UpdateStatusReport {
 public:
  UpdateStatusReport(TmBase& tmReader) : tmReader(tmReader) {}

  ReturnValue_t parse(bool checkCrc) {
    if (checkCrc and tmReader.checkCrc() != returnvalue::OK) {
      return result::CRC_FAILURE;
    }
    if (tmReader.getModuleApid() != Apid::MEM_MAN) {
      return result::INVALID_APID;
    }
    if (tmReader.getBufSize() < MIN_TMTC_LEN + PAYLOAD_LEN or
        tmReader.getPayloadLen() < PAYLOAD_LEN) {
      sif::error << "VerificationReport: Invalid verification report, payload too small"
                 << std::endl;
      return result::BUF_TOO_SMALL;
    }
    size_t remLen = tmReader.getPayloadLen();
    const uint8_t* dataFieldPtr = tmReader.getPayloadStart();
    SerializeAdapter::deSerialize(&memoryId, &dataFieldPtr, &remLen, SerializeIF::Endianness::BIG);
    SerializeAdapter::deSerialize(&n, &dataFieldPtr, &remLen, SerializeIF::Endianness::BIG);
    SerializeAdapter::deSerialize(&startAddress, &dataFieldPtr, &remLen,
                                  SerializeIF::Endianness::BIG);
    SerializeAdapter::deSerialize(&length, &dataFieldPtr, &remLen, SerializeIF::Endianness::BIG);
    SerializeAdapter::deSerialize(&crc, &dataFieldPtr, &remLen, SerializeIF::Endianness::BIG);
    return returnvalue::OK;
  }

  ReturnValue_t verifyCrc(uint16_t goodCrc) const {
    if (crc != goodCrc) {
      return result::UPDATE_CRC_FAILURE;
    }
    return returnvalue::OK;
  }

  uint16_t getCrc() const { return crc; }

 private:
  TmBase& tmReader;

  // Nominal size of the space packet
  static const uint16_t PAYLOAD_LEN = 12;  // header, data field and crc

  uint8_t memoryId = 0;
  uint8_t n = 0;
  uint32_t startAddress = 0;
  uint32_t length = 0;
  uint16_t crc = 0;
};

/**
 * @brief   This dataset stores the boot status report of the supervisor.
 */
class BootStatusReport : public StaticLocalDataSet<BOOT_REPORT_SET_ENTRIES> {
 public:
  BootStatusReport(HasLocalDataPoolIF* owner) : StaticLocalDataSet(owner, BOOT_REPORT_SET_ID) {}

  BootStatusReport(object_id_t objectId)
      : StaticLocalDataSet(sid_t(objectId, BOOT_REPORT_SET_ID)) {}

  /** Information about boot status of MPSoC */
  lp_var_t<uint8_t> socState = lp_var_t<uint8_t>(sid.objectId, PoolIds::BR_SOC_STATE, this);
  lp_var_t<uint8_t> powerCycles = lp_var_t<uint8_t>(sid.objectId, PoolIds::POWER_CYCLES, this);
  /** Time the MPSoC needs for last boot */
  lp_var_t<uint32_t> bootAfterMs = lp_var_t<uint32_t>(sid.objectId, PoolIds::BOOT_AFTER_MS, this);
  /** The currently set boot timeout */
  lp_var_t<uint32_t> bootTimeoutMs =
      lp_var_t<uint32_t>(sid.objectId, PoolIds::BOOT_TIMEOUT_POOL_VAR_MS, this);
  lp_var_t<uint8_t> activeNvm = lp_var_t<uint8_t>(sid.objectId, PoolIds::ACTIVE_NVM, this);
  /** States of the boot partition pins */
  lp_var_t<uint8_t> bp0State = lp_var_t<uint8_t>(sid.objectId, PoolIds::BP0_STATE, this);
  lp_var_t<uint8_t> bp1State = lp_var_t<uint8_t>(sid.objectId, PoolIds::BP1_STATE, this);
  lp_var_t<uint8_t> bp2State = lp_var_t<uint8_t>(sid.objectId, PoolIds::BP2_STATE, this);
  lp_var_t<uint8_t> bootState = lp_var_t<uint8_t>(sid.objectId, PoolIds::BOOT_STATE, this);
  lp_var_t<uint8_t> bootCycles = lp_var_t<uint8_t>(sid.objectId, PoolIds::BOOT_CYCLES, this);
};

/**
 * @brief   This dataset stores the housekeeping data of the supervisor.
 */
class HkSet : public StaticLocalDataSet<HK_SET_ENTRIES> {
 public:
  enum class SocState { OFF = 0, BOOTING = 1, OPERATIONAL = 3, SHUTDOWN = 4 };

  HkSet(HasLocalDataPoolIF* owner) : StaticLocalDataSet(owner, HK_SET_ID) {}

  HkSet(object_id_t objectId) : StaticLocalDataSet(sid_t(objectId, HK_SET_ID)) {}

  lp_var_t<uint32_t> tempPs = lp_var_t<uint32_t>(sid.objectId, PoolIds::TEMP_PS, this);
  lp_var_t<uint32_t> tempPl = lp_var_t<uint32_t>(sid.objectId, PoolIds::TEMP_PS, this);
  lp_var_t<uint32_t> tempSup = lp_var_t<uint32_t>(sid.objectId, PoolIds::TEMP_SUP, this);
  lp_var_t<uint64_t> uptime = lp_var_t<uint64_t>(sid.objectId, PoolIds::UPTIME, this);
  lp_var_t<uint32_t> cpuLoad = lp_var_t<uint32_t>(sid.objectId, PoolIds::CPULOAD, this);
  lp_var_t<uint32_t> availableHeap = lp_var_t<uint32_t>(sid.objectId, PoolIds::AVAILABLEHEAP, this);
  lp_var_t<uint32_t> numTcs = lp_var_t<uint32_t>(sid.objectId, PoolIds::NUM_TCS, this);
  lp_var_t<uint32_t> numTms = lp_var_t<uint32_t>(sid.objectId, PoolIds::NUM_TMS, this);
  lp_var_t<uint32_t> socState = lp_var_t<uint32_t>(sid.objectId, PoolIds::HK_SOC_STATE, this);
  lp_var_t<uint8_t> nvm0_1_state = lp_var_t<uint8_t>(sid.objectId, PoolIds::NVM0_1_STATE, this);
  lp_var_t<uint8_t> nvm3_state = lp_var_t<uint8_t>(sid.objectId, PoolIds::NVM3_STATE, this);
  lp_var_t<uint8_t> missionIoState =
      lp_var_t<uint8_t>(sid.objectId, PoolIds::MISSION_IO_STATE, this);
  lp_var_t<uint8_t> fmcState = lp_var_t<uint8_t>(sid.objectId, PoolIds::FMC_STATE, this);
};

/**
 * @brief   This dataset stores the last requested latchup status report.
 */
class LatchupStatusReport : public StaticLocalDataSet<LATCHUP_RPT_SET_ENTRIES> {
 public:
  LatchupStatusReport(HasLocalDataPoolIF* owner) : StaticLocalDataSet(owner, LATCHUP_RPT_ID) {}

  LatchupStatusReport(object_id_t objectId) : StaticLocalDataSet(sid_t(objectId, LATCHUP_RPT_ID)) {}

  lp_var_t<uint8_t> id = lp_var_t<uint8_t>(sid.objectId, PoolIds::LATCHUP_ID, this);
  lp_var_t<uint16_t> cnt0 = lp_var_t<uint16_t>(sid.objectId, PoolIds::CNT0, this);
  lp_var_t<uint16_t> cnt1 = lp_var_t<uint16_t>(sid.objectId, PoolIds::CNT1, this);
  lp_var_t<uint16_t> cnt2 = lp_var_t<uint16_t>(sid.objectId, PoolIds::CNT2, this);
  lp_var_t<uint16_t> cnt3 = lp_var_t<uint16_t>(sid.objectId, PoolIds::CNT3, this);
  lp_var_t<uint16_t> cnt4 = lp_var_t<uint16_t>(sid.objectId, PoolIds::CNT4, this);
  lp_var_t<uint16_t> cnt5 = lp_var_t<uint16_t>(sid.objectId, PoolIds::CNT5, this);
  lp_var_t<uint16_t> cnt6 = lp_var_t<uint16_t>(sid.objectId, PoolIds::CNT6, this);
  lp_var_t<uint16_t> timeMsec =
      lp_var_t<uint16_t>(sid.objectId, PoolIds::LATCHUP_RPT_TIME_MSEC, this);
  lp_var_t<uint8_t> timeSec = lp_var_t<uint8_t>(sid.objectId, PoolIds::LATCHUP_RPT_TIME_SEC, this);
  lp_var_t<uint8_t> timeMin = lp_var_t<uint8_t>(sid.objectId, PoolIds::LATCHUP_RPT_TIME_MIN, this);
  lp_var_t<uint8_t> timeHour =
      lp_var_t<uint8_t>(sid.objectId, PoolIds::LATCHUP_RPT_TIME_HOUR, this);
  lp_var_t<uint8_t> timeDay = lp_var_t<uint8_t>(sid.objectId, PoolIds::LATCHUP_RPT_TIME_DAY, this);
  lp_var_t<uint8_t> timeMon = lp_var_t<uint8_t>(sid.objectId, PoolIds::LATCHUP_RPT_TIME_MON, this);
  lp_var_t<uint8_t> timeYear =
      lp_var_t<uint8_t>(sid.objectId, PoolIds::LATCHUP_RPT_TIME_YEAR, this);
  lp_var_t<uint8_t> isSynced = lp_var_t<uint8_t>(sid.objectId, PoolIds::LATCHUP_RPT_IS_SET, this);

  static const uint8_t IS_SET_BIT_POS = 15;
};

/**
 * @brief   This dataset stores the logging report.
 */
class CountersReport : public StaticLocalDataSet<LOGGING_RPT_SET_ENTRIES> {
 public:
  CountersReport(HasLocalDataPoolIF* owner) : StaticLocalDataSet(owner, LOGGING_RPT_ID) {}

  CountersReport(object_id_t objectId) : StaticLocalDataSet(sid_t(objectId, LOGGING_RPT_ID)) {}

  lp_var_t<uint32_t> signature =
      lp_var_t<uint32_t>(sid.objectId, PoolIds::LATCHUP_HAPPENED_CNTS, this);
  lp_vec_t<uint32_t, 7> latchupHappenCnts =
      lp_vec_t<uint32_t, 7>(sid.objectId, PoolIds::LATCHUP_HAPPENED_CNTS, this);
  lp_var_t<uint32_t> adcDeviationTriggersCnt =
      lp_var_t<uint32_t>(sid.objectId, PoolIds::ADC_DEVIATION_TRIGGERS_CNT, this);
  lp_var_t<uint32_t> tcReceivedCnt =
      lp_var_t<uint32_t>(sid.objectId, PoolIds::TC_RECEIVED_CNT, this);
  lp_var_t<uint32_t> tmAvailableCnt =
      lp_var_t<uint32_t>(sid.objectId, PoolIds::TM_AVAILABLE_CNT, this);
  lp_var_t<uint32_t> supervisorBoots =
      lp_var_t<uint32_t>(sid.objectId, PoolIds::SUPERVISOR_BOOTS, this);
  lp_var_t<uint32_t> mpsocBoots = lp_var_t<uint32_t>(sid.objectId, PoolIds::MPSOC_BOOTS, this);
  lp_var_t<uint32_t> mpsocBootFailedAttempts =
      lp_var_t<uint32_t>(sid.objectId, PoolIds::MPSOC_BOOT_FAILED_ATTEMPTS, this);
  lp_var_t<uint32_t> mpsocPowerup = lp_var_t<uint32_t>(sid.objectId, PoolIds::MPSOC_POWER_UP, this);
  lp_var_t<uint32_t> mpsocUpdates = lp_var_t<uint32_t>(sid.objectId, PoolIds::MPSOC_UPDATES, this);
  lp_var_t<uint32_t> mpsocHeartbeatResets =
      lp_var_t<uint32_t>(sid.objectId, PoolIds::MPSOC_HEARTBEAT_RESETS, this);
  lp_var_t<uint32_t> cpuWdtResets =
      lp_var_t<uint32_t>(sid.objectId, PoolIds::MPSOC_HEARTBEAT_RESETS, this);
  lp_var_t<uint32_t> psHeartbeatsLost =
      lp_var_t<uint32_t>(sid.objectId, PoolIds::PS_HEARTBEATS_LOST, this);
  lp_var_t<uint32_t> plHeartbeatsLost =
      lp_var_t<uint32_t>(sid.objectId, PoolIds::PL_HEARTBEATS_LOST, this);
  lp_var_t<uint32_t> ebTaskLost = lp_var_t<uint32_t>(sid.objectId, PoolIds::EB_TASK_LOST, this);
  lp_var_t<uint32_t> bmTaskLost = lp_var_t<uint32_t>(sid.objectId, PoolIds::BM_TASK_LOST, this);
  lp_var_t<uint32_t> lmTaskLost = lp_var_t<uint32_t>(sid.objectId, PoolIds::LM_TASK_LOST, this);
  lp_var_t<uint32_t> amTaskLost = lp_var_t<uint32_t>(sid.objectId, PoolIds::AM_TASK_LOST, this);
  lp_var_t<uint32_t> tctmmTaskLost =
      lp_var_t<uint32_t>(sid.objectId, PoolIds::TCTMM_TASK_LOST, this);
  lp_var_t<uint32_t> mmTaskLost = lp_var_t<uint32_t>(sid.objectId, PoolIds::MM_TASK_LOST, this);
  lp_var_t<uint32_t> hkTaskLost = lp_var_t<uint32_t>(sid.objectId, PoolIds::HK_TASK_LOST, this);
  lp_var_t<uint32_t> dlTaskLost = lp_var_t<uint32_t>(sid.objectId, PoolIds::DL_TASK_LOST, this);
  lp_vec_t<uint32_t, 3> rwsTasksLost =
      lp_vec_t<uint32_t, 3>(sid.objectId, PoolIds::RWS_TASKS_LOST, this);

  void printSet() {
    for (unsigned i = 0; i < 7; i++) {
      sif::info << "LoggingReport: Latchup happened count " << i << ": "
                << this->latchupHappenCnts[i] << std::endl;
    }
    sif::info << "LoggingReport: ADC deviation triggers count: " << this->adcDeviationTriggersCnt
              << std::endl;
    sif::info << "LoggingReport: TC received count: " << this->tcReceivedCnt << std::endl;
    sif::info << "LoggingReport: TM available count: " << this->tmAvailableCnt << std::endl;
    sif::info << "LoggingReport: Supervisor boots: " << this->supervisorBoots << std::endl;
    sif::info << "LoggingReport: MPSoC boots: " << this->mpsocBoots << std::endl;
    sif::info << "LoggingReport: MPSoC boot failed attempts: " << this->mpsocBootFailedAttempts
              << std::endl;
    sif::info << "LoggingReport: MPSoC power up: " << this->mpsocPowerup << std::endl;
    sif::info << "LoggingReport: MPSoC updates: " << this->mpsocUpdates << std::endl;
  }
};

/**
 * @brief   This dataset stores the ADC report.
 */
class AdcReport : public StaticLocalDataSet<3> {
 public:
  AdcReport(HasLocalDataPoolIF* owner) : StaticLocalDataSet(owner, ADC_REPORT_SET_ID) {}

  AdcReport(object_id_t objectId) : StaticLocalDataSet(sid_t(objectId, ADC_REPORT_SET_ID)) {}

  lp_vec_t<uint16_t, 16> adcRaw = lp_vec_t<uint16_t, 16>(sid.objectId, PoolIds::ADC_RAW, this);
  lp_vec_t<uint16_t, 16> adcEng = lp_vec_t<uint16_t, 16>(sid.objectId, PoolIds::ADC_ENG, this);

  void printSet() {
    sif::info << "---- Adc Report: Raw values ----" << std::endl;
    for (unsigned i = 0; i < 16; i++) {
      sif::info << "AdcReport: ADC raw " << i << ": " << std::dec << this->adcRaw[i] << std::endl;
    }
    for (unsigned i = 0; i < 16; i++) {
      sif::info << "AdcReport: ADC eng " << i << ": " << std::dec << this->adcEng[i] << std::endl;
    }
  }
};

namespace notimpl {

/**
 * @brief   This class packages the space packet to perform the factory reset. The op parameter is
 *          optional.
 *
 * @details: Without OP: All MRAM entries will be cleared.
 *           OP = 0x01: Only the mirror entries will be wiped.
 *           OP = 0x02: Only the circular entries will be wiped.
 */
class FactoryReset : public TcBase {
 public:
  enum class Op { CLEAR_ALL, MIRROR_ENTRIES, CIRCULAR_ENTRIES };

  /**
   * @brief   Constructor
   *
   * @param op
   */
  FactoryReset(TcParams params) : TcBase(params, Apid::TMTC_MAN, 0x11, 1) {}

  ReturnValue_t buildPacket(Op op) {
    auto res = checkSizeAndSerializeHeader();
    if (res != returnvalue::OK) {
      return res;
    }
    initPacket(op);
    return calcAndSetCrc();
  }

 private:
  void initPacket(Op op) {
    size_t packetDataLen = 2;
    switch (op) {
      case Op::MIRROR_ENTRIES:
        payloadStart[0] = 1;
        packetDataLen = 3;
        break;
      case Op::CIRCULAR_ENTRIES:
        payloadStart[0] = 2;
        packetDataLen = 3;
        break;
      default:
        break;
    }
    spParams.setFullPayloadLen(packetDataLen);
  }
};

/**
 * @brief   This class creates the command to enable or disable the NVMs connected to the
 * supervisor.
 */
class EnableNvms : public TcBase {
 public:
  /**
   * @brief   Constructor
   *
   * @param mem   The memory to boot from: NVM0 (0), NVM1 (1)
   * @param bp0   Partition pin 0
   * @param bp1   Partition pin 1
   * @param bp2   Partition pin 2
   */
  EnableNvms(TcParams params) : TcBase(params, Apid::TMTC_MAN, 0x06, 2) {}

  ReturnValue_t buildPacket(uint8_t nvm01, uint8_t nvm3) {
    auto res = checkSizeAndSerializeHeader();
    if (res != returnvalue::OK) {
      return res;
    }
    initPacket(nvm01, nvm3);
    return calcAndSetCrc();
  }

 private:
  void initPacket(uint8_t nvm01, uint8_t nvm3) {
    payloadStart[0] = nvm01;
    payloadStart[1] = nvm3;
  }
};

/**
 * @brief   This class creates the space packet to enable the auto TM generation
 */
class EnableAutoTm : public TcBase {
 public:
  EnableAutoTm(TcParams params) : TcBase(params) { spParams.setFullPayloadLen(PAYLOAD_LENGTH + 2); }

  ReturnValue_t buildPacket() {
    auto res = checkSizeAndSerializeHeader();
    if (res != returnvalue::OK) {
      return res;
    }
    payloadStart[0] = ENABLE;
    return calcAndSetCrc();
  }

 private:
  static const uint16_t PAYLOAD_LENGTH = 1;  // length without CRC field
  static const uint8_t ENABLE = 1;
};

/**
 * @brief   This class creates the space packet to disable the auto TM generation
 */
class DisableAutoTm : public TcBase {
 public:
  DisableAutoTm(TcParams params) : TcBase(params) {
    spParams.setFullPayloadLen(PAYLOAD_LENGTH + 2);
    // spParams.creator.setApid(APID_AUTO_TM);
    // spParams.creator.setSeqCount(DEFAULT_SEQUENCE_COUNT);
  }

  ReturnValue_t buildPacket() {
    auto res = checkSizeAndSerializeHeader();
    if (res != returnvalue::OK) {
      return res;
    }
    payloadStart[0] = DISABLE;
    return calcAndSetCrc();
  }

 private:
  static const uint16_t PAYLOAD_LENGTH = 1;  // length without CRC field
  static const uint8_t DISABLE = 0;
};

/**
 * @brief   This class creates the space packet to request the logging data from the supervisor
 */
class RequestLoggingData : public TcBase {
 public:
  /**
   * Subapid
   */
  enum class Sa : uint8_t {
    REQUEST_COUNTERS = 1,      /**< REQUEST_COUNTERS */
    REQUEST_EVENT_BUFFERS = 2, /**< REQUEST_EVENT_BUFFERS */
    CLEAR_COUNTERS = 3,        /**< CLEAR_COUNTERS */
    SET_LOGGING_TOPIC = 4      /**< SET_LOGGING_TOPIC */
  };

  RequestLoggingData(TcParams params) : TcBase(params) {
    spParams.setFullPayloadLen(PAYLOAD_LENGTH + 2);
    // spParams.creator.setApid(APID_REQUEST_LOGGING_DATA);
    // spParams.creator.setSeqCount(DEFAULT_SEQUENCE_COUNT);
  }

  /**
   * @param sa
   * @param tpc Topic
   * @return
   */
  ReturnValue_t buildPacket(Sa sa, uint8_t tpc = 0) {
    auto res = checkSizeAndSerializeHeader();
    if (res != returnvalue::OK) {
      return res;
    }
    payloadStart[0] = static_cast<uint8_t>(sa);
    payloadStart[1] = tpc;
    return calcAndSetCrc();
  }

 private:
  static const uint16_t PAYLOAD_LENGTH = 2;  // length without CRC field
  static const uint8_t TPC_OFFSET = 1;
};

typedef struct {
  // The most significant bit of msec value is set to 0x80 to indicate that full
  // time and data information is transmitted, when the time has been synced with
  // the reference. If the time has not been synced with reference, then the most
  // significant bit is set to 0x00. Only the most significant bit is used for
  // this purpose (bit 15 of the field tm_msec)
  uint16_t tm_msec;  // miliseconds 0-999;
  uint8_t tm_sec;    // seconds after the minute, 0 to 60
                     // (0 - 60 allows for the occasional leap second)
  uint8_t tm_min;    // minutes after the hour, 0 to 59
  uint8_t tm_hour;   // hours since midnight, 0 to 23
  uint8_t tm_mday;   // day of the month, 1 to 31
  uint8_t tm_mon;    // months 1 to 12
  uint8_t tm_year;   // years since 1900
} tas_time_t;

}  // namespace notimpl

}  // namespace supv

#endif /* MISSION_DEVICES_DEVICEDEFINITIONS_PLOCSVPDEFINITIONS_H_ */