#include "ThermalController.h"

#include <bsp_q7s/core/defs.h>
#include <eive/objects.h>
#include <fsfw/datapool/PoolReadGuard.h>
#include <fsfw/thermal/ThermalComponentIF.h>
#include <fsfw_hal/devicehandlers/devicedefinitions/gyroL3gHelpers.h>
#include <fsfw_hal/devicehandlers/devicedefinitions/mgmLis3Helpers.h>
#include <mission/acs/gyroAdisHelpers.h>
#include <mission/acs/imtqHelpers.h>
#include <mission/acs/rwHelpers.h>
#include <mission/acs/str/strHelpers.h>
#include <mission/com/syrlinksDefs.h>
#include <mission/payload/payloadPcduDefinitions.h>
#include <mission/power/bpxBattDefs.h>
#include <mission/power/gsDefs.h>
#include <objects/systemObjectList.h>

// Enabling this should trigger a special event which in turn should trigger a system reaction.
#define LOWER_SYRLINKS_UPPER_LIMITS 0
#define LOWER_EBAND_UPPER_LIMITS 0
#define LOWER_PLOC_UPPER_LIMITS 0
#define LOWER_MGT_UPPER_LIMITS 0
#define LOWER_RW_UPPER_LIMITS 0

ThermalController::ThermalController(object_id_t objectId, HeaterHandler& heater,
                                     const std::atomic_bool& tcsBoardShortUnavailable,
                                     bool pollPcdu1Tmp)
    : ExtendedControllerBase(objectId),
      heaterHandler(heater),
      pollPcdu1Tmp(pollPcdu1Tmp),
      sensorTemperatures(this),
      susTemperatures(this),
      deviceTemperatures(this),
      heaterInfo(this),
      tcsCtrlInfo(this),
      imtqThermalSet(objects::IMTQ_HANDLER, ThermalStateCfg()),
      maxSet0PlocHspd(objects::RTD_0_IC3_PLOC_HEATSPREADER,
                      EiveMax31855::RtdCommands::EXCHANGE_SET_ID),
      maxSet1PlocMissionBrd(objects::RTD_1_IC4_PLOC_MISSIONBOARD,
                            EiveMax31855::RtdCommands::EXCHANGE_SET_ID),
      maxSet2PlCam(objects::RTD_2_IC5_4K_CAMERA, EiveMax31855::RtdCommands::EXCHANGE_SET_ID),
      maxSet3DacHspd(objects::RTD_3_IC6_DAC_HEATSPREADER,
                     EiveMax31855::RtdCommands::EXCHANGE_SET_ID),
      maxSet4Str(objects::RTD_4_IC7_STARTRACKER, EiveMax31855::RtdCommands::EXCHANGE_SET_ID),
      maxSet5Rw1MxMy(objects::RTD_5_IC8_RW1_MX_MY, EiveMax31855::RtdCommands::EXCHANGE_SET_ID),
      maxSet6Dro(objects::RTD_6_IC9_DRO, EiveMax31855::RtdCommands::EXCHANGE_SET_ID),
      maxSet7Scex(objects::RTD_7_IC10_SCEX, EiveMax31855::RtdCommands::EXCHANGE_SET_ID),
      maxSet8X8(objects::RTD_8_IC11_X8, EiveMax31855::RtdCommands::EXCHANGE_SET_ID),
      maxSet9Hpa(objects::RTD_9_IC12_HPA, EiveMax31855::RtdCommands::EXCHANGE_SET_ID),
      maxSet10EbandTx(objects::RTD_10_IC13_PL_TX, EiveMax31855::RtdCommands::EXCHANGE_SET_ID),
      maxSet11Mpa(objects::RTD_11_IC14_MPA, EiveMax31855::RtdCommands::EXCHANGE_SET_ID),
      maxSet31865Set12(objects::RTD_12_IC15_ACU, EiveMax31855::RtdCommands::EXCHANGE_SET_ID),
      maxSet13PlPcduHspd(objects::RTD_13_IC16_PLPCDU_HEATSPREADER,
                         EiveMax31855::RtdCommands::EXCHANGE_SET_ID),
      maxSet14TcsBrd(objects::RTD_14_IC17_TCS_BOARD, EiveMax31855::RtdCommands::EXCHANGE_SET_ID),
      maxSet15Imtq(objects::RTD_15_IC18_IMTQ, EiveMax31855::RtdCommands::EXCHANGE_SET_ID),
      tmp1075SetTcs0(objects::TMP1075_HANDLER_TCS_0),
      tmp1075SetTcs1(objects::TMP1075_HANDLER_TCS_1),
      tmp1075SetPlPcdu0(objects::TMP1075_HANDLER_PLPCDU_0),
      tmp1075SetIfBoard(objects::TMP1075_HANDLER_IF_BOARD),
      susSet0(objects::SUS_0_N_LOC_XFYFZM_PT_XF),
      susSet1(objects::SUS_1_N_LOC_XBYFZM_PT_XB),
      susSet2(objects::SUS_2_N_LOC_XFYBZB_PT_YB),
      susSet3(objects::SUS_3_N_LOC_XFYBZF_PT_YF),
      susSet4(objects::SUS_4_N_LOC_XMYFZF_PT_ZF),
      susSet5(objects::SUS_5_N_LOC_XFYMZB_PT_ZB),
      susSet6(objects::SUS_6_R_LOC_XFYBZM_PT_XF),
      susSet7(objects::SUS_7_R_LOC_XBYBZM_PT_XB),
      susSet8(objects::SUS_8_R_LOC_XBYBZB_PT_YB),
      susSet9(objects::SUS_9_R_LOC_XBYBZB_PT_YF),
      susSet10(objects::SUS_10_N_LOC_XMYBZF_PT_ZF),
      susSet11(objects::SUS_11_R_LOC_XBYMZB_PT_ZB),
      tcsBrdShortlyUnavailable(tcsBoardShortUnavailable) {
  if (pollPcdu1Tmp) {
    tmp1075SetPlPcdu1 = new TMP1075::Tmp1075Dataset(objects::TMP1075_HANDLER_PLPCDU_1);
  }
  resetSensorsArray();
}

ReturnValue_t ThermalController::initialize() {
  auto* camSwitcher = ObjectManager::instance()->get<HasHealthIF>(objects::CAM_SWITCHER);
  if (camSwitcher == nullptr) {
    return ObjectManagerIF::CHILD_INIT_FAILED;
  }
  camId = camSwitcher->getCommandQueue();
  return ExtendedControllerBase::initialize();
}

ReturnValue_t ThermalController::handleCommandMessage(CommandMessage* message) {
  return returnvalue::FAILED;
}

void ThermalController::performControlOperation() {
#if OBSW_THREAD_TRACING == 1
  trace::threadTrace(opCounter, "TCS Task");
#endif

  switch (internalState) {
    case InternalState::STARTUP: {
      initialCountdown.resetTimer();
      internalState = InternalState::INITIAL_DELAY;
      return;
    }
    case InternalState::INITIAL_DELAY: {
      if (initialCountdown.hasTimedOut()) {
        sif::info << "Starting thermal control operations" << std::endl;
        internalState = InternalState::READY;
        break;
      }
      return;
    }
    case InternalState::READY: {
      break;
    }
    default:
      break;
  }

  if (cycles == 40) {
    bool changedLimits = false;
#if LOWER_SYRLINKS_UPPER_LIMITS == 1
    changedLimits = true;
    sBandTransceiverLimits.cutOffLimit = 0;
    sBandTransceiverLimits.opUpperLimit = 0;
    sBandTransceiverLimits.nopUpperLimit = 0;
#endif
#if LOWER_PLOC_UPPER_LIMITS == 1
    changedLimits = true;
    plocMissionBoardLimits.cutOffLimit = 0;
    plocMissionBoardLimits.opUpperLimit = 0;
    plocMissionBoardLimits.nopUpperLimit = 0;
#endif
#if LOWER_EBAND_UPPER_LIMITS == 1
    changedLimits = true;
    hpaLimits.cutOffLimit = 0;
    hpaLimits.opUpperLimit = 0;
    hpaLimits.nopUpperLimit = 0;
#endif
#if LOWER_MGT_UPPER_LIMITS == 1
    changedLimits = true;
    mgtLimits.cutOffLimit = 0;
    mgtLimits.opUpperLimit = 0;
    mgtLimits.nopUpperLimit = 0;
#endif
#if LOWER_RW_UPPER_LIMITS == 1
    changedLimits = true;
    rwLimits.cutOffLimit = 0;
    rwLimits.opUpperLimit = 0;
    rwLimits.nopUpperLimit = 0;
#endif
    if (changedLimits) {
      sif::debug << "ThermalController: changing limits" << std::endl;
    }
  }

  if (not tcsBrdShortlyUnavailable) {
    {
      PoolReadGuard pg(&sensorTemperatures);
      if (pg.getReadResult() == returnvalue::OK) {
        copySensors();
      }
    }
  }
  {
    PoolReadGuard pg(&susTemperatures);
    if (pg.getReadResult() == returnvalue::OK) {
      copySus();
    }
  }
  {
    PoolReadGuard pg(&deviceTemperatures);
    if (pg.getReadResult() == returnvalue::OK) {
      copyDevices();
    }
  }

  tcsCtrl::HeaterSwitchStates heaterSwitchStateArray{};
  heaterHandler.getAllSwitchStates(heaterSwitchStateArray);
  {
    PoolReadGuard pg(&heaterInfo);
    std::memcpy(heaterInfo.heaterSwitchState.value, heaterSwitchStateArray.data(), 8);
    {
      PoolReadGuard pg2(&currentVecPdu2);
      if (pg.getReadResult() == returnvalue::OK and pg2.getReadResult() == returnvalue::OK) {
        heaterInfo.heaterCurrent.value = currentVecPdu2.value[PDU2::Channels::TCS_HEATER_IN];
      }
    }
  }

  cycles++;
  if (transitionWhenHeatersOff) {
    bool allSwitchersOff = true;
    for (size_t idx = 0; idx < heaterSwitchStateArray.size(); idx++) {
      if (heaterSwitchStateArray[idx] != heater::SwitchState::OFF) {
        allSwitchersOff = false;
        // if heater still ON after 3 cycles, switch OFF again
        if (transitionWhenHeatersOffCycles == 3) {
          heaterHandler.switchHeater(static_cast<heater::Switch>(idx), heater::SwitchState::OFF);
          triggerEvent(tcsCtrl::HEATER_NOT_OFF_FOR_OFF_MODE);
        }
      }
    }
    if (allSwitchersOff or transitionWhenHeatersOffCycles == 6) {
      // Finish the transition
      transitionWhenHeatersOff = false;
      resetThermalStates();
      setMode(targetMode, targetSubmode);
    } else {
      transitionWhenHeatersOffCycles++;
    }
  } else if (mode != MODE_OFF) {
    if (not tcsBrdShortlyUnavailable) {
      performThermalModuleCtrl(heaterSwitchStateArray);
    }
    heaterTransitionControl(heaterSwitchStateArray);
    heaterMaxDurationControl(heaterSwitchStateArray);
    // This dataset makes the TCS CTRL observable.
    PoolReadGuard pg(&tcsCtrlInfo);
    for (uint8_t i = 0; i < thermalStates.size(); i++) {
      tcsCtrlInfo.heatingOnVec[i] = thermalStates[i].heating;
      tcsCtrlInfo.sensorIdxUsedForTcsCtrl[i] = thermalStates[i].sensorIndex;
      tcsCtrlInfo.heaterSwitchIdx[i] = thermalStates[i].heaterSwitch;
      tcsCtrlInfo.heaterStartTimes[i] = thermalStates[i].heaterStartTime;
      tcsCtrlInfo.heaterEndTimes[i] = thermalStates[i].heaterEndTime;
    }
  }
}

ReturnValue_t ThermalController::initializeLocalDataPool(localpool::DataPool& localDataPoolMap,
                                                         LocalDataPoolManager& poolManager) {
  localDataPoolMap.emplace(tcsCtrl::SENSOR_PLOC_HEATSPREADER, new PoolEntry<float>({0.0}));
  localDataPoolMap.emplace(tcsCtrl::SENSOR_PLOC_MISSIONBOARD, new PoolEntry<float>({1.0}));
  localDataPoolMap.emplace(tcsCtrl::SENSOR_4K_CAMERA, new PoolEntry<float>({2.0}));
  localDataPoolMap.emplace(tcsCtrl::SENSOR_DAC_HEATSPREADER, new PoolEntry<float>({3.0}));
  localDataPoolMap.emplace(tcsCtrl::SENSOR_STARTRACKER, new PoolEntry<float>({4.0}));
  localDataPoolMap.emplace(tcsCtrl::SENSOR_RW1, new PoolEntry<float>({5.0}));
  localDataPoolMap.emplace(tcsCtrl::SENSOR_DRO, new PoolEntry<float>({6.0}));
  localDataPoolMap.emplace(tcsCtrl::SENSOR_SCEX, new PoolEntry<float>({7.0}));
  localDataPoolMap.emplace(tcsCtrl::SENSOR_X8, new PoolEntry<float>({8.0}));
  localDataPoolMap.emplace(tcsCtrl::SENSOR_HPA, new PoolEntry<float>({9.0}));
  localDataPoolMap.emplace(tcsCtrl::SENSOR_TX_MODUL, new PoolEntry<float>({10.0}));
  localDataPoolMap.emplace(tcsCtrl::SENSOR_MPA, new PoolEntry<float>({11.0}));
  localDataPoolMap.emplace(tcsCtrl::SENSOR_ACU, new PoolEntry<float>({12.0}));
  localDataPoolMap.emplace(tcsCtrl::SENSOR_PLPCDU_HEATSPREADER, new PoolEntry<float>({13.0}));
  localDataPoolMap.emplace(tcsCtrl::SENSOR_TCS_BOARD, new PoolEntry<float>({14.0}));
  localDataPoolMap.emplace(tcsCtrl::SENSOR_MAGNETTORQUER, new PoolEntry<float>({15.0}));
  localDataPoolMap.emplace(tcsCtrl::SENSOR_TMP1075_TCS_0, &tmp1075Tcs0);
  localDataPoolMap.emplace(tcsCtrl::SENSOR_TMP1075_TCS_1, &tmp1075Tcs1);
  localDataPoolMap.emplace(tcsCtrl::SENSOR_TMP1075_PLPCDU_0, &tmp1075PlPcdu0);
  localDataPoolMap.emplace(tcsCtrl::SENSOR_TMP1075_PLPCDU_1, &tmp1075PlPcdu1);
  localDataPoolMap.emplace(tcsCtrl::SENSOR_TMP1075_IF_BOARD, &tmp1075IfBrd);

  localDataPoolMap.emplace(tcsCtrl::SUS_0_N_LOC_XFYFZM_PT_XF, new PoolEntry<float>({0.0}));
  localDataPoolMap.emplace(tcsCtrl::SUS_6_R_LOC_XFYBZM_PT_XF, new PoolEntry<float>({0.0}));
  localDataPoolMap.emplace(tcsCtrl::SUS_1_N_LOC_XBYFZM_PT_XB, new PoolEntry<float>({0.0}));
  localDataPoolMap.emplace(tcsCtrl::SUS_7_R_LOC_XBYBZM_PT_XB, new PoolEntry<float>({0.0}));
  localDataPoolMap.emplace(tcsCtrl::SUS_2_N_LOC_XFYBZB_PT_YB, new PoolEntry<float>({0.0}));
  localDataPoolMap.emplace(tcsCtrl::SUS_8_R_LOC_XBYBZB_PT_YB, new PoolEntry<float>({0.0}));
  localDataPoolMap.emplace(tcsCtrl::SUS_3_N_LOC_XFYBZF_PT_YF, new PoolEntry<float>({0.0}));
  localDataPoolMap.emplace(tcsCtrl::SUS_9_R_LOC_XBYBZB_PT_YF, new PoolEntry<float>({0.0}));
  localDataPoolMap.emplace(tcsCtrl::SUS_4_N_LOC_XMYFZF_PT_ZF, new PoolEntry<float>({0.0}));
  localDataPoolMap.emplace(tcsCtrl::SUS_10_N_LOC_XMYBZF_PT_ZF, new PoolEntry<float>({0.0}));
  localDataPoolMap.emplace(tcsCtrl::SUS_5_N_LOC_XFYMZB_PT_ZB, new PoolEntry<float>({0.0}));
  localDataPoolMap.emplace(tcsCtrl::SUS_11_R_LOC_XBYMZB_PT_ZB, new PoolEntry<float>({0.0}));

  localDataPoolMap.emplace(tcsCtrl::COMPONENT_RW, new PoolEntry<float>({0.0}));

  localDataPoolMap.emplace(tcsCtrl::TEMP_Q7S, new PoolEntry<float>({0.0}));
  localDataPoolMap.emplace(tcsCtrl::BATTERY_TEMP_1, new PoolEntry<int16_t>({0}));
  localDataPoolMap.emplace(tcsCtrl::BATTERY_TEMP_2, new PoolEntry<int16_t>({0}));
  localDataPoolMap.emplace(tcsCtrl::BATTERY_TEMP_3, new PoolEntry<int16_t>({0}));
  localDataPoolMap.emplace(tcsCtrl::BATTERY_TEMP_4, new PoolEntry<int16_t>({0}));
  localDataPoolMap.emplace(tcsCtrl::TEMP_RW1, new PoolEntry<int32_t>({0}));
  localDataPoolMap.emplace(tcsCtrl::TEMP_RW2, new PoolEntry<int32_t>({0}));
  localDataPoolMap.emplace(tcsCtrl::TEMP_RW3, new PoolEntry<int32_t>({0}));
  localDataPoolMap.emplace(tcsCtrl::TEMP_RW4, new PoolEntry<int32_t>({0}));
  localDataPoolMap.emplace(tcsCtrl::TEMP_STAR_TRACKER, new PoolEntry<float>({0.0}));
  localDataPoolMap.emplace(tcsCtrl::TEMP_SYRLINKS_POWER_AMPLIFIER, new PoolEntry<float>({0}));
  localDataPoolMap.emplace(tcsCtrl::TEMP_SYRLINKS_BASEBAND_BOARD, new PoolEntry<float>({0}));
  localDataPoolMap.emplace(tcsCtrl::TEMP_MGT, new PoolEntry<int16_t>({0}));
  localDataPoolMap.emplace(tcsCtrl::TEMP_ACU, new PoolEntry<float>({0}));
  localDataPoolMap.emplace(tcsCtrl::TEMP_PDU1, new PoolEntry<float>({0}));
  localDataPoolMap.emplace(tcsCtrl::TEMP_PDU2, new PoolEntry<float>({0}));
  localDataPoolMap.emplace(tcsCtrl::TEMP_1_P60DOCK, new PoolEntry<float>({0}));
  localDataPoolMap.emplace(tcsCtrl::TEMP_2_P60DOCK, new PoolEntry<float>({0}));
  localDataPoolMap.emplace(tcsCtrl::TEMP_GYRO_0_SIDE_A, new PoolEntry<float>({0.0}));
  localDataPoolMap.emplace(tcsCtrl::TEMP_GYRO_1_SIDE_A, new PoolEntry<float>({0.0}));
  localDataPoolMap.emplace(tcsCtrl::TEMP_GYRO_2_SIDE_B, new PoolEntry<float>({0.0}));
  localDataPoolMap.emplace(tcsCtrl::TEMP_GYRO_3_SIDE_B, new PoolEntry<float>({0.0}));
  localDataPoolMap.emplace(tcsCtrl::TEMP_MGM_0_SIDE_A, new PoolEntry<float>({0.0}));
  localDataPoolMap.emplace(tcsCtrl::TEMP_MGM_2_SIDE_B, new PoolEntry<float>({0.0}));
  localDataPoolMap.emplace(tcsCtrl::TEMP_ADC_PAYLOAD_PCDU, new PoolEntry<float>({0.0}));
  localDataPoolMap.emplace(tcsCtrl::HEATER_SWITCH_LIST, &heaterSwitchStates);
  localDataPoolMap.emplace(tcsCtrl::HEATER_CURRENT, &heaterCurrent);
  localDataPoolMap.emplace(tcsCtrl::HEATER_ON_FOR_COMPONENT_VEC, &tcsCtrlHeaterOn);
  localDataPoolMap.emplace(tcsCtrl::SENSOR_USED_FOR_TCS_CTRL, &tcsCtrlSensorIdx);
  localDataPoolMap.emplace(tcsCtrl::HEATER_IDX_USED_FOR_TCS_CTRL, &tcsCtrlHeaterIdx);
  localDataPoolMap.emplace(tcsCtrl::HEATER_START_TIME, &tcsCtrlStartTimes);
  localDataPoolMap.emplace(tcsCtrl::HEATER_END_TIME, &tcsCtrlEndTimes);

  bool enableHkSets = false;
#if OBSW_ENABLE_PERIODIC_HK == 1
  enableHkSets = true;
#endif
  poolManager.subscribeForRegularPeriodicPacket(
      subdp::RegularHkPeriodicParams(sensorTemperatures.getSid(), enableHkSets, 120.0));
  poolManager.subscribeForRegularPeriodicPacket(
      subdp::RegularHkPeriodicParams(susTemperatures.getSid(), enableHkSets, 240.0));
  poolManager.subscribeForRegularPeriodicPacket(
      subdp::RegularHkPeriodicParams(deviceTemperatures.getSid(), enableHkSets, 120.0));
  poolManager.subscribeForDiagPeriodicPacket(
      subdp::DiagnosticsHkPeriodicParams(heaterInfo.getSid(), enableHkSets, 120.0));
  poolManager.subscribeForRegularPeriodicPacket(
      subdp::RegularHkPeriodicParams(tcsCtrlInfo.getSid(), enableHkSets, 120.0));

  return returnvalue::OK;
}

LocalPoolDataSetBase* ThermalController::getDataSetHandle(sid_t sid) {
  switch (sid.ownerSetId) {
    case tcsCtrl::SENSOR_TEMPERATURES:
      return &sensorTemperatures;
    case tcsCtrl::SUS_TEMPERATURES:
      return &susTemperatures;
    case tcsCtrl::DEVICE_TEMPERATURES:
      return &deviceTemperatures;
    case tcsCtrl::HEATER_SET:
      return &heaterInfo;
    case tcsCtrl::TCS_CTRL_INFO:
      return &tcsCtrlInfo;
    default:
      return nullptr;
  }
}

ReturnValue_t ThermalController::checkModeCommand(Mode_t mode, Submode_t submode,
                                                  uint32_t* msToReachTheMode) {
  if ((mode != MODE_OFF) and (mode != MODE_ON)) {
    return INVALID_MODE;
  }
  if (mode == MODE_ON) {
    if (submode != SUBMODE_NONE and submode != SUBMODE_NO_HEATER_CTRL) {
      return HasModesIF::INVALID_SUBMODE;
    }
    return returnvalue::OK;
  }
  if (submode != SUBMODE_NONE) {
    return INVALID_SUBMODE;
  }
  return returnvalue::OK;
}

void ThermalController::copySensors() {
  {
    PoolReadGuard pg0(&maxSet0PlocHspd, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg0.getReadResult() == returnvalue::OK) {
      sensorTemperatures.plocHeatspreader.value = maxSet0PlocHspd.temperatureCelcius.value;
      sensorTemperatures.plocHeatspreader.setValid(maxSet0PlocHspd.temperatureCelcius.isValid());
      if (not sensorTemperatures.plocHeatspreader.isValid()) {
        sensorTemperatures.plocHeatspreader.value = INVALID_TEMPERATURE;
      }
    }
  }

  {
    PoolReadGuard pg1(&maxSet1PlocMissionBrd, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg1.getReadResult() == returnvalue::OK) {
      sensorTemperatures.plocMissionboard.value = maxSet1PlocMissionBrd.temperatureCelcius.value;
      sensorTemperatures.plocMissionboard.setValid(
          maxSet1PlocMissionBrd.temperatureCelcius.isValid());
      if (not sensorTemperatures.plocMissionboard.isValid()) {
        sensorTemperatures.plocMissionboard.value = INVALID_TEMPERATURE;
      }
    }
  }

  {
    PoolReadGuard pg2(&maxSet2PlCam, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg2.getReadResult() == returnvalue::OK) {
      sensorTemperatures.payload4kCamera.value = maxSet2PlCam.temperatureCelcius.value;
      sensorTemperatures.payload4kCamera.setValid(maxSet2PlCam.temperatureCelcius.isValid());
      if (not sensorTemperatures.payload4kCamera.isValid()) {
        sensorTemperatures.payload4kCamera.value = INVALID_TEMPERATURE;
      }
    }
  }

  {
    PoolReadGuard pg3(&maxSet3DacHspd, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg3.getReadResult() == returnvalue::OK) {
      sensorTemperatures.dacHeatspreader.value = maxSet3DacHspd.temperatureCelcius.value;
      sensorTemperatures.dacHeatspreader.setValid(maxSet3DacHspd.temperatureCelcius.isValid());
      if (not sensorTemperatures.dacHeatspreader.isValid()) {
        sensorTemperatures.dacHeatspreader.value = INVALID_TEMPERATURE;
      }
    }
  }

  {
    PoolReadGuard pg4(&maxSet4Str, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg4.getReadResult() == returnvalue::OK) {
      sensorTemperatures.startracker.value = maxSet4Str.temperatureCelcius.value;
      sensorTemperatures.startracker.setValid(maxSet4Str.temperatureCelcius.isValid());
      if (not sensorTemperatures.startracker.isValid()) {
        sensorTemperatures.startracker.value = INVALID_TEMPERATURE;
      }
    }
  }

  {
    PoolReadGuard pg5(&maxSet5Rw1MxMy, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg5.getReadResult() == returnvalue::OK) {
      sensorTemperatures.rw1.value = maxSet5Rw1MxMy.temperatureCelcius.value;
      sensorTemperatures.rw1.setValid(maxSet5Rw1MxMy.temperatureCelcius.isValid());
      if (not sensorTemperatures.rw1.isValid()) {
        sensorTemperatures.rw1.value = INVALID_TEMPERATURE;
      }
    }
  }

  {
    PoolReadGuard pg6(&maxSet6Dro, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg6.getReadResult() == returnvalue::OK) {
      sensorTemperatures.dro.value = maxSet6Dro.temperatureCelcius.value;
      sensorTemperatures.dro.setValid(maxSet6Dro.temperatureCelcius.isValid());
      if (not sensorTemperatures.dro.isValid()) {
        sensorTemperatures.dro.value = INVALID_TEMPERATURE;
      }
    }
  }

  {
    PoolReadGuard pg7(&maxSet7Scex, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg7.getReadResult() == returnvalue::OK) {
      sensorTemperatures.scex.value = maxSet7Scex.temperatureCelcius.value;
      sensorTemperatures.scex.setValid(maxSet7Scex.temperatureCelcius.isValid());
      if (not sensorTemperatures.scex.isValid()) {
        sensorTemperatures.scex.value = INVALID_TEMPERATURE;
      }
    }
  }

  {
    PoolReadGuard pg8(&maxSet8X8, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg8.getReadResult() == returnvalue::OK) {
      sensorTemperatures.x8.value = maxSet8X8.temperatureCelcius.value;
      sensorTemperatures.x8.setValid(maxSet8X8.temperatureCelcius.isValid());
      if (not sensorTemperatures.x8.isValid()) {
        sensorTemperatures.x8.value = INVALID_TEMPERATURE;
      }
    }
  }

  {
    PoolReadGuard pg9(&maxSet9Hpa, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg9.getReadResult() == returnvalue::OK) {
      sensorTemperatures.hpa.value = maxSet9Hpa.temperatureCelcius.value;
      sensorTemperatures.hpa.setValid(maxSet9Hpa.temperatureCelcius.isValid());
      if (not sensorTemperatures.hpa.isValid()) {
        sensorTemperatures.hpa.value = INVALID_TEMPERATURE;
      }
    }
  }

  {
    PoolReadGuard pg10(&maxSet10EbandTx, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg10.getReadResult() == returnvalue::OK) {
      sensorTemperatures.eBandTx.value = maxSet10EbandTx.temperatureCelcius.value;
      sensorTemperatures.eBandTx.setValid(maxSet10EbandTx.temperatureCelcius.isValid());
      if (not sensorTemperatures.eBandTx.isValid()) {
        sensorTemperatures.eBandTx.value = INVALID_TEMPERATURE;
      }
    }
  }

  {
    PoolReadGuard pg11(&maxSet11Mpa, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg11.getReadResult() == returnvalue::OK) {
      sensorTemperatures.mpa.value = maxSet11Mpa.temperatureCelcius.value;
      sensorTemperatures.mpa.setValid(maxSet11Mpa.temperatureCelcius.isValid());
      if (not sensorTemperatures.mpa.isValid()) {
        sensorTemperatures.mpa.value = INVALID_TEMPERATURE;
      }
    }
  }

  {
    PoolReadGuard pg12(&maxSet31865Set12, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg12.getReadResult() == returnvalue::OK) {
      sensorTemperatures.acu.value = maxSet31865Set12.temperatureCelcius.value;
      sensorTemperatures.acu.setValid(maxSet31865Set12.temperatureCelcius.isValid());
      if (not sensorTemperatures.acu.isValid()) {
        sensorTemperatures.acu.value = INVALID_TEMPERATURE;
      }
    }
  }

  {
    PoolReadGuard pg13(&maxSet13PlPcduHspd, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg13.getReadResult() == returnvalue::OK) {
      sensorTemperatures.plpcduHeatspreader.value = maxSet13PlPcduHspd.temperatureCelcius.value;
      sensorTemperatures.plpcduHeatspreader.setValid(
          maxSet13PlPcduHspd.temperatureCelcius.isValid());
      if (not sensorTemperatures.plpcduHeatspreader.isValid()) {
        sensorTemperatures.plpcduHeatspreader.value = INVALID_TEMPERATURE;
      }
    }
  }

  {
    PoolReadGuard pg14(&maxSet14TcsBrd, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg14.getReadResult() == returnvalue::OK) {
      sensorTemperatures.tcsBoard.value = maxSet14TcsBrd.temperatureCelcius.value;
      sensorTemperatures.tcsBoard.setValid(maxSet14TcsBrd.temperatureCelcius.isValid());
      if (not sensorTemperatures.tcsBoard.isValid()) {
        sensorTemperatures.tcsBoard.value = INVALID_TEMPERATURE;
      }
    }
  }

  {
    PoolReadGuard pg15(&maxSet15Imtq, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg15.getReadResult() == returnvalue::OK) {
      sensorTemperatures.mgt.value = maxSet15Imtq.temperatureCelcius.value;
      sensorTemperatures.mgt.setValid(maxSet15Imtq.temperatureCelcius.isValid());
      if (not sensorTemperatures.mgt.isValid()) {
        sensorTemperatures.mgt.value = INVALID_TEMPERATURE;
      }
    }
  }

  {
    PoolReadGuard pg(&tmp1075SetTcs0, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg.getReadResult() == returnvalue::OK) {
      sensorTemperatures.tmp1075Tcs0.value = tmp1075SetTcs0.temperatureCelcius.value;
      sensorTemperatures.tmp1075Tcs0.setValid(tmp1075SetTcs0.temperatureCelcius.isValid());
      if (not tmp1075SetTcs0.temperatureCelcius.isValid()) {
        sensorTemperatures.tmp1075Tcs0.value = INVALID_TEMPERATURE;
      }
    }
  }

  {
    PoolReadGuard pg(&tmp1075SetTcs1, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg.getReadResult() == returnvalue::OK) {
      sensorTemperatures.tmp1075Tcs1.value = tmp1075SetTcs1.temperatureCelcius.value;
      sensorTemperatures.tmp1075Tcs1.setValid(tmp1075SetTcs1.temperatureCelcius.isValid());
      if (not tmp1075SetTcs1.temperatureCelcius.isValid()) {
        sensorTemperatures.tmp1075Tcs1.value = INVALID_TEMPERATURE;
      }
    }
  }
  {
    PoolReadGuard pg(&tmp1075SetPlPcdu0, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg.getReadResult() == returnvalue::OK) {
      sensorTemperatures.tmp1075PlPcdu0.value = tmp1075SetPlPcdu0.temperatureCelcius.value;
      sensorTemperatures.tmp1075PlPcdu0.setValid(tmp1075SetPlPcdu0.temperatureCelcius.isValid());
      if (not tmp1075SetPlPcdu0.temperatureCelcius.isValid()) {
        sensorTemperatures.tmp1075PlPcdu0.value = INVALID_TEMPERATURE;
      }
    }
  }
  // damaged on FM, and no dummies for now
  if (pollPcdu1Tmp) {
    {
      PoolReadGuard pg(tmp1075SetPlPcdu1, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
      if (pg.getReadResult() == returnvalue::OK) {
        sensorTemperatures.tmp1075PlPcdu1.value = tmp1075SetPlPcdu1->temperatureCelcius.value;
        sensorTemperatures.tmp1075PlPcdu1.setValid(tmp1075SetPlPcdu1->temperatureCelcius.isValid());
        if (not tmp1075SetPlPcdu1->temperatureCelcius.isValid()) {
          sensorTemperatures.tmp1075PlPcdu1.value = INVALID_TEMPERATURE;
        }
      }
    }
  }
  {
    PoolReadGuard pg(&tmp1075SetIfBoard, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg.getReadResult() == returnvalue::OK) {
      sensorTemperatures.tmp1075IfBrd.value = tmp1075SetIfBoard.temperatureCelcius.value;
      sensorTemperatures.tmp1075IfBrd.setValid(tmp1075SetIfBoard.temperatureCelcius.isValid());
      if (not tmp1075SetIfBoard.temperatureCelcius.isValid()) {
        sensorTemperatures.tmp1075IfBrd.value = INVALID_TEMPERATURE;
      }
    }
  }
}

void ThermalController::copySus() {
  {
    PoolReadGuard pg0(&susSet0, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg0.getReadResult() == returnvalue::OK) {
      susTemperatures.sus_0_n_loc_xfyfzm_pt_xf.value = susSet0.tempC.value;
      susTemperatures.sus_0_n_loc_xfyfzm_pt_xf.setValid(susSet0.tempC.isValid());
      if (not susTemperatures.sus_0_n_loc_xfyfzm_pt_xf.isValid()) {
        susTemperatures.sus_0_n_loc_xfyfzm_pt_xf.value = INVALID_TEMPERATURE;
      }
    }
  }

  {
    PoolReadGuard pg1(&susSet1, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg1.getReadResult() == returnvalue::OK) {
      susTemperatures.sus_6_r_loc_xfybzm_pt_xf.value = susSet1.tempC.value;
      susTemperatures.sus_6_r_loc_xfybzm_pt_xf.setValid(susSet1.tempC.isValid());
      if (not susTemperatures.sus_6_r_loc_xfybzm_pt_xf.isValid()) {
        susTemperatures.sus_6_r_loc_xfybzm_pt_xf.value = INVALID_TEMPERATURE;
      }
    }
  }

  {
    PoolReadGuard pg2(&susSet2, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg2.getReadResult() == returnvalue::OK) {
      susTemperatures.sus_1_n_loc_xbyfzm_pt_xb.value = susSet2.tempC.value;
      susTemperatures.sus_1_n_loc_xbyfzm_pt_xb.setValid(susSet2.tempC.isValid());
      if (not susTemperatures.sus_1_n_loc_xbyfzm_pt_xb.isValid()) {
        susTemperatures.sus_1_n_loc_xbyfzm_pt_xb.value = INVALID_TEMPERATURE;
      }
    }
  }

  {
    PoolReadGuard pg3(&susSet3, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg3.getReadResult() == returnvalue::OK) {
      susTemperatures.sus_7_r_loc_xbybzm_pt_xb.value = susSet3.tempC.value;
      susTemperatures.sus_7_r_loc_xbybzm_pt_xb.setValid(susSet3.tempC.isValid());
      if (not susTemperatures.sus_7_r_loc_xbybzm_pt_xb.isValid()) {
        susTemperatures.sus_7_r_loc_xbybzm_pt_xb.value = INVALID_TEMPERATURE;
      }
    }
  }

  {
    PoolReadGuard pg4(&susSet4, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg4.getReadResult() == returnvalue::OK) {
      susTemperatures.sus_2_n_loc_xfybzb_pt_yb.value = susSet4.tempC.value;
      susTemperatures.sus_2_n_loc_xfybzb_pt_yb.setValid(susSet4.tempC.isValid());
      if (not susTemperatures.sus_2_n_loc_xfybzb_pt_yb.isValid()) {
        susTemperatures.sus_2_n_loc_xfybzb_pt_yb.value = INVALID_TEMPERATURE;
      }
    }
  }

  {
    PoolReadGuard pg5(&susSet5, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg5.getReadResult() == returnvalue::OK) {
      susTemperatures.sus_8_r_loc_xbybzb_pt_yb.value = susSet5.tempC.value;
      susTemperatures.sus_8_r_loc_xbybzb_pt_yb.setValid(susSet5.tempC.isValid());
      if (not susTemperatures.sus_8_r_loc_xbybzb_pt_yb.isValid()) {
        susTemperatures.sus_8_r_loc_xbybzb_pt_yb.value = INVALID_TEMPERATURE;
      }
    }
  }

  {
    PoolReadGuard pg6(&susSet6, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg6.getReadResult() == returnvalue::OK) {
      susTemperatures.sus_3_n_loc_xfybzf_pt_yf.value = susSet6.tempC.value;
      susTemperatures.sus_3_n_loc_xfybzf_pt_yf.setValid(susSet6.tempC.isValid());
      if (not susTemperatures.sus_3_n_loc_xfybzf_pt_yf.isValid()) {
        susTemperatures.sus_3_n_loc_xfybzf_pt_yf.value = INVALID_TEMPERATURE;
      }
    }
  }

  {
    PoolReadGuard pg7(&susSet7, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg7.getReadResult() == returnvalue::OK) {
      susTemperatures.sus_9_r_loc_xbybzb_pt_yf.value = susSet7.tempC.value;
      susTemperatures.sus_9_r_loc_xbybzb_pt_yf.setValid(susSet7.tempC.isValid());
      if (not susTemperatures.sus_9_r_loc_xbybzb_pt_yf.isValid()) {
        susTemperatures.sus_9_r_loc_xbybzb_pt_yf.value = INVALID_TEMPERATURE;
      }
    }
  }

  {
    PoolReadGuard pg8(&susSet8, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg8.getReadResult() == returnvalue::OK) {
      susTemperatures.sus_4_n_loc_xmyfzf_pt_zf.value = susSet8.tempC.value;
      susTemperatures.sus_4_n_loc_xmyfzf_pt_zf.setValid(susSet8.tempC.isValid());
      if (not susTemperatures.sus_4_n_loc_xmyfzf_pt_zf.isValid()) {
        susTemperatures.sus_4_n_loc_xmyfzf_pt_zf.value = INVALID_TEMPERATURE;
      }
    }
  }

  {
    PoolReadGuard pg9(&susSet9, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg9.getReadResult() == returnvalue::OK) {
      susTemperatures.sus_10_n_loc_xmybzf_pt_zf.value = susSet9.tempC.value;
      susTemperatures.sus_10_n_loc_xmybzf_pt_zf.setValid(susSet9.tempC.isValid());
      if (not susTemperatures.sus_10_n_loc_xmybzf_pt_zf.isValid()) {
        susTemperatures.sus_10_n_loc_xmybzf_pt_zf.value = INVALID_TEMPERATURE;
      }
    }
  }

  {
    PoolReadGuard pg10(&susSet10, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg10.getReadResult() == returnvalue::OK) {
      susTemperatures.sus_5_n_loc_xfymzb_pt_zb.value = susSet10.tempC.value;
      susTemperatures.sus_5_n_loc_xfymzb_pt_zb.setValid(susSet10.tempC.isValid());
      if (not susTemperatures.sus_5_n_loc_xfymzb_pt_zb.isValid()) {
        susTemperatures.sus_5_n_loc_xfymzb_pt_zb.value = INVALID_TEMPERATURE;
      }
    }
  }

  {
    PoolReadGuard pg11(&susSet11, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg11.getReadResult() == returnvalue::OK) {
      susTemperatures.sus_11_r_loc_xbymzb_pt_zb.value = susSet11.tempC.value;
      susTemperatures.sus_11_r_loc_xbymzb_pt_zb.setValid(susSet11.tempC.isValid());
      if (not susTemperatures.sus_11_r_loc_xbymzb_pt_zb.isValid()) {
        susTemperatures.sus_11_r_loc_xbymzb_pt_zb.value = INVALID_TEMPERATURE;
      }
    }
  }
}

void ThermalController::copyDevices() {
  {
    PoolReadGuard pg(&tempQ7s, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg.getReadResult() == returnvalue::OK) {
      deviceTemperatures.q7s = tempQ7s;
      deviceTemperatures.q7s.setValid(tempQ7s.isValid());
    } else {
      deviceTemperatures.q7s.setValid(false);
      deviceTemperatures.q7s = static_cast<float>(INVALID_TEMPERATURE);
    }
  }

  {
    PoolReadGuard pg(&battTemp1, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg.getReadResult() != returnvalue::OK) {
      sif::warning << "ThermalController: Failed to read battery temperature 1" << std::endl;
      deviceTemperatures.batteryTemp1.setValid(false);
      deviceTemperatures.batteryTemp1 = static_cast<float>(INVALID_TEMPERATURE);
    } else {
      deviceTemperatures.batteryTemp1 = battTemp1;
      deviceTemperatures.batteryTemp1.setValid(battTemp1.isValid());
    }
  }

  {
    PoolReadGuard pg(&battTemp2, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg.getReadResult() != returnvalue::OK) {
      sif::warning << "ThermalController: Failed to read battery temperature 2" << std::endl;
      deviceTemperatures.batteryTemp2.setValid(false);
      deviceTemperatures.batteryTemp2 = static_cast<float>(INVALID_TEMPERATURE);
    } else {
      deviceTemperatures.batteryTemp2 = battTemp2;
      deviceTemperatures.batteryTemp2.setValid(battTemp2.isValid());
    }
  }

  {
    PoolReadGuard pg(&battTemp3, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg.getReadResult() != returnvalue::OK) {
      sif::warning << "ThermalController: Failed to read battery temperature 3" << std::endl;
      deviceTemperatures.batteryTemp3.setValid(false);
      deviceTemperatures.batteryTemp3 = static_cast<float>(INVALID_TEMPERATURE);
    } else {
      deviceTemperatures.batteryTemp3 = battTemp3;
      deviceTemperatures.batteryTemp3.setValid(battTemp3.isValid());
    }
  }

  {
    PoolReadGuard pg(&battTemp4, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg.getReadResult() != returnvalue::OK) {
      sif::warning << "ThermalController: Failed to read battery temperature 4" << std::endl;
      deviceTemperatures.batteryTemp4.setValid(false);
      deviceTemperatures.batteryTemp4 = static_cast<float>(INVALID_TEMPERATURE);
    } else {
      deviceTemperatures.batteryTemp4 = battTemp4;
      deviceTemperatures.batteryTemp4.setValid(battTemp4.isValid());
    }
  }

  {
    PoolReadGuard pg(&tempRw1, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg.getReadResult() != returnvalue::OK) {
      sif::warning << "ThermalController: Failed to read reaction wheel 1 temperature" << std::endl;
      deviceTemperatures.rw1.setValid(false);
      deviceTemperatures.rw1 = static_cast<int32_t>(INVALID_TEMPERATURE);
    } else {
      deviceTemperatures.rw1.setValid(tempRw1.isValid());
      deviceTemperatures.rw1 = tempRw1;
    }
  }

  {
    PoolReadGuard pg(&tempRw2, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg.getReadResult() != returnvalue::OK) {
      sif::warning << "ThermalController: Failed to read reaction wheel 2 temperature" << std::endl;
      deviceTemperatures.rw2.setValid(false);
      deviceTemperatures.rw2 = static_cast<int32_t>(INVALID_TEMPERATURE);
    } else {
      deviceTemperatures.rw2.setValid(tempRw2.isValid());
      deviceTemperatures.rw2 = tempRw2;
    }
  }

  {
    PoolReadGuard pg(&tempRw3, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg.getReadResult() != returnvalue::OK) {
      sif::warning << "ThermalController: Failed to read reaction wheel 3 temperature" << std::endl;
      deviceTemperatures.rw3.setValid(false);
      deviceTemperatures.rw3 = static_cast<int32_t>(INVALID_TEMPERATURE);
    } else {
      deviceTemperatures.rw3.setValid(tempRw3.isValid());
      deviceTemperatures.rw3 = tempRw3;
    }
  }

  {
    PoolReadGuard pg(&tempRw4, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg.getReadResult() != returnvalue::OK) {
      sif::warning << "ThermalController: Failed to read reaction wheel 4 temperature" << std::endl;
      deviceTemperatures.rw4.setValid(false);
      deviceTemperatures.rw4 = static_cast<int32_t>(INVALID_TEMPERATURE);
    } else {
      deviceTemperatures.rw4.setValid(tempRw4.isValid());
      deviceTemperatures.rw4 = tempRw4;
    }
  }

  {
    PoolReadGuard pg(&tempStartracker, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg.getReadResult() != returnvalue::OK) {
      sif::warning << "ThermalController: Failed to read startracker temperature" << std::endl;
      deviceTemperatures.startracker.setValid(false);
      deviceTemperatures.startracker = static_cast<float>(INVALID_TEMPERATURE);
    } else {
      deviceTemperatures.startracker.setValid(tempStartracker.isValid());
      deviceTemperatures.startracker = tempStartracker;
    }
  }

  {
    PoolReadGuard pg(&tempSyrlinksPowerAmplifier, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg.getReadResult() != returnvalue::OK) {
      sif::warning << "ThermalController: Failed to read syrlinks power amplifier temperature"
                   << std::endl;
      deviceTemperatures.syrlinksPowerAmplifier.setValid(false);
      deviceTemperatures.syrlinksPowerAmplifier = static_cast<float>(INVALID_TEMPERATURE);
    } else {
      deviceTemperatures.syrlinksPowerAmplifier.setValid(tempSyrlinksPowerAmplifier.isValid());
      deviceTemperatures.syrlinksPowerAmplifier = tempSyrlinksPowerAmplifier;
    }
  }

  {
    PoolReadGuard pg(&tempSyrlinksBasebandBoard, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg.getReadResult() != returnvalue::OK) {
      sif::warning << "ThermalController: Failed to read syrlinks baseband board temperature"
                   << std::endl;
      deviceTemperatures.syrlinksBasebandBoard.setValid(false);
      deviceTemperatures.syrlinksBasebandBoard = static_cast<float>(INVALID_TEMPERATURE);
    } else {
      deviceTemperatures.syrlinksBasebandBoard.setValid(tempSyrlinksBasebandBoard.isValid());
      deviceTemperatures.syrlinksBasebandBoard = tempSyrlinksBasebandBoard;
    }
  }

  {
    PoolReadGuard pg(&tempMgt, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg.getReadResult() != returnvalue::OK) {
      sif::warning << "ThermalController: Failed to read MGT temperature" << std::endl;
      deviceTemperatures.mgt.setValid(false);
      deviceTemperatures.mgt = static_cast<int16_t>(INVALID_TEMPERATURE);
    } else {
      deviceTemperatures.mgt.setValid(tempMgt.isValid());
      deviceTemperatures.mgt = tempMgt;
    }
  }

  {
    PoolReadGuard pg(&tempAcu, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg.getReadResult() != returnvalue::OK) {
      sif::warning << "ThermalController: Failed to read ACU temperatures" << std::endl;
      deviceTemperatures.acu.setValid(false);
      deviceTemperatures.acu[0] = static_cast<float>(INVALID_TEMPERATURE);
      deviceTemperatures.acu[1] = static_cast<float>(INVALID_TEMPERATURE);
      deviceTemperatures.acu[2] = static_cast<float>(INVALID_TEMPERATURE);
    } else {
      deviceTemperatures.acu.setValid(tempAcu.isValid());
      deviceTemperatures.acu = tempAcu;
    }
  }

  {
    PoolReadGuard pg(&tempPdu1, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg.getReadResult() != returnvalue::OK) {
      sif::warning << "ThermalController: Failed to read PDU1 temperature" << std::endl;
      deviceTemperatures.pdu1.setValid(false);
      deviceTemperatures.pdu1 = static_cast<float>(INVALID_TEMPERATURE);
    } else {
      deviceTemperatures.pdu1.setValid(tempPdu1.isValid());
      deviceTemperatures.pdu1 = tempPdu1;
    }
  }

  {
    PoolReadGuard pg(&tempPdu2, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg.getReadResult() != returnvalue::OK) {
      sif::warning << "ThermalController: Failed to read PDU2 temperature" << std::endl;
      deviceTemperatures.pdu2.setValid(false);
      deviceTemperatures.pdu2 = static_cast<float>(INVALID_TEMPERATURE);
    } else {
      deviceTemperatures.pdu2.setValid(tempPdu2.isValid());
      deviceTemperatures.pdu2 = tempPdu2;
    }
  }

  {
    PoolReadGuard pg(&temp1P60dock, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg.getReadResult() != returnvalue::OK) {
      sif::warning << "ThermalController: Failed to read P60 dock temperature 1" << std::endl;
      deviceTemperatures.temp1P60dock.setValid(false);
      deviceTemperatures.temp1P60dock = static_cast<float>(INVALID_TEMPERATURE);
    } else {
      deviceTemperatures.temp1P60dock.setValid(temp1P60dock.isValid());
      deviceTemperatures.temp1P60dock = temp1P60dock;
    }
  }

  {
    PoolReadGuard pg(&temp2P60dock, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg.getReadResult() != returnvalue::OK) {
      sif::warning << "ThermalController: Failed to read P60 dock temperature 2" << std::endl;
      deviceTemperatures.temp2P60dock.setValid(false);
      deviceTemperatures.temp2P60dock = static_cast<float>(INVALID_TEMPERATURE);
    } else {
      deviceTemperatures.temp2P60dock.setValid(temp2P60dock.isValid());
      deviceTemperatures.temp2P60dock = temp2P60dock;
    }
  }

  {
    PoolReadGuard pg(&tempGyro0, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg.getReadResult() != returnvalue::OK) {
      sif::warning << "ThermalController: Failed to read gyro 0 temperature" << std::endl;
      deviceTemperatures.gyro0SideA.setValid(false);
      deviceTemperatures.gyro0SideA = static_cast<float>(INVALID_TEMPERATURE);
    } else {
      deviceTemperatures.gyro0SideA.setValid(tempGyro0.isValid());
      deviceTemperatures.gyro0SideA = tempGyro0;
    }
  }

  {
    PoolReadGuard pg(&tempGyro1, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg.getReadResult() != returnvalue::OK) {
      sif::warning << "ThermalController: Failed to read gyro 1 temperature" << std::endl;
      deviceTemperatures.gyro1SideA.setValid(false);
      deviceTemperatures.gyro1SideA = static_cast<float>(INVALID_TEMPERATURE);
    } else {
      deviceTemperatures.gyro1SideA.setValid(tempGyro1.isValid());
      deviceTemperatures.gyro1SideA = tempGyro1;
    }
  }

  {
    PoolReadGuard pg(&tempGyro2, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg.getReadResult() != returnvalue::OK) {
      sif::warning << "ThermalController: Failed to read gyro 2 temperature" << std::endl;
      deviceTemperatures.gyro2SideB.setValid(false);
      deviceTemperatures.gyro2SideB = static_cast<float>(INVALID_TEMPERATURE);
    } else {
      deviceTemperatures.gyro2SideB.setValid(tempGyro2.isValid());
      deviceTemperatures.gyro2SideB = tempGyro2;
    }
  }

  {
    PoolReadGuard pg(&tempGyro3, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg.getReadResult() != returnvalue::OK) {
      sif::warning << "ThermalController: Failed to read gyro 3 temperature" << std::endl;
      deviceTemperatures.gyro3SideB.setValid(false);
      deviceTemperatures.gyro3SideB = static_cast<float>(INVALID_TEMPERATURE);
    } else {
      deviceTemperatures.gyro3SideB.setValid(tempGyro3.isValid());
      deviceTemperatures.gyro3SideB = tempGyro3;
    }
  }

  {
    PoolReadGuard pg(&tempMgm0, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg.getReadResult() != returnvalue::OK) {
      sif::warning << "ThermalController: Failed to read MGM 0 temperature" << std::endl;
      deviceTemperatures.mgm0SideA.setValid(false);
      deviceTemperatures.mgm0SideA = static_cast<float>(INVALID_TEMPERATURE);
    } else {
      deviceTemperatures.mgm0SideA.setValid(tempMgm0.isValid());
      deviceTemperatures.mgm0SideA = tempMgm0;
    }
  }

  {
    PoolReadGuard pg(&tempMgm2, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg.getReadResult() != returnvalue::OK) {
      sif::warning << "ThermalController: Failed to read MGM 2 temperature" << std::endl;
      deviceTemperatures.mgm2SideB.setValid(false);
      deviceTemperatures.mgm2SideB = static_cast<float>(INVALID_TEMPERATURE);
    } else {
      deviceTemperatures.mgm2SideB.setValid(tempMgm2.isValid());
      deviceTemperatures.mgm2SideB = tempMgm2;
    }
  }

  {
    PoolReadGuard pg(&tempAdcPayloadPcdu, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg.getReadResult() != returnvalue::OK) {
      sif::warning << "ThermalController: Failed to read payload PCDU ADC temperature" << std::endl;
      deviceTemperatures.adcPayloadPcdu.setValid(false);
      deviceTemperatures.adcPayloadPcdu = static_cast<float>(INVALID_TEMPERATURE);
    } else {
      deviceTemperatures.adcPayloadPcdu.setValid(tempAdcPayloadPcdu.isValid());
      deviceTemperatures.adcPayloadPcdu = tempAdcPayloadPcdu;
    }
  }
}

void ThermalController::ctrlAcsBoard() {
  heater::Switch switchNr = heater::HEATER_2_ACS_BRD;
  heater::Switch redSwitchNr = heater::HEATER_3_OBC_BRD;

  // A side
  ctrlCtx.thermalComponent = tcsCtrl::ACS_BOARD;
  sensors[0].first = deviceTemperatures.gyro0SideA.isValid();
  sensors[0].second = deviceTemperatures.gyro0SideA.value;
  sensors[1].first = deviceTemperatures.gyro2SideB.isValid();
  sensors[1].second = deviceTemperatures.gyro2SideB.value;
  sensors[2].first = deviceTemperatures.mgm0SideA.isValid();
  sensors[2].second = deviceTemperatures.mgm0SideA.value;
  sensors[3].first = deviceTemperatures.mgm2SideB.isValid();
  sensors[3].second = deviceTemperatures.mgm2SideB.value;
  sensors[4].first = sensorTemperatures.tcsBoard.isValid();
  sensors[4].second = sensorTemperatures.tcsBoard.value;
  numSensors = 5;
  {
    HeaterContext htrCtx(switchNr, redSwitchNr, acsBoardLimits);
    if (selectAndReadSensorTemp(htrCtx)) {
      if (chooseHeater(switchNr, redSwitchNr)) {
        checkLimitsAndCtrlHeater(htrCtx);
      }
      resetSensorsArray();
      return;
    }
  }
  resetSensorsArray();
  // B side
  sensors[0].first = deviceTemperatures.gyro2SideB.isValid();
  sensors[0].second = deviceTemperatures.gyro2SideB.value;
  sensors[1].first = deviceTemperatures.mgm2SideB.isValid();
  sensors[1].second = deviceTemperatures.mgm2SideB.value;
  sensors[2].first = deviceTemperatures.gyro3SideB.isValid();
  sensors[2].second = deviceTemperatures.gyro3SideB.value;
  sensors[3].first = sensorTemperatures.tcsBoard.isValid();
  sensors[3].second = sensorTemperatures.tcsBoard.value;
  numSensors = 4;

  {
    HeaterContext htrCtx(switchNr, redSwitchNr, acsBoardLimits);
    if (selectAndReadSensorTemp(htrCtx)) {
      if (chooseHeater(switchNr, redSwitchNr)) {
        checkLimitsAndCtrlHeater(htrCtx);
      }
    } else {
      if (chooseHeater(switchNr, redSwitchNr)) {
        if (heaterHandler.getSwitchState(switchNr)) {
          if (submode != SUBMODE_NO_HEATER_CTRL) {
            heaterSwitchHelper(switchNr, heater::SwitchState::OFF, ctrlCtx.thermalComponent);
          }
        }
      }
    }
  }
  resetSensorsArray();
}

void ThermalController::ctrlMgt() {
  ctrlCtx.thermalComponent = tcsCtrl::MGT;
  sensors[0].first = sensorTemperatures.mgt.isValid();
  sensors[0].second = sensorTemperatures.mgt.value;
  sensors[1].first = deviceTemperatures.mgt.isValid();
  sensors[1].second = deviceTemperatures.mgt.value;
  sensors[2].first = sensorTemperatures.plpcduHeatspreader.isValid();
  sensors[2].second = sensorTemperatures.plpcduHeatspreader.value;
  numSensors = 3;
  HeaterContext htrCtx(heater::HEATER_2_ACS_BRD, heater::HEATER_1_PCDU_PDU, mgtLimits);
  ctrlComponentTemperature(htrCtx);
  if (ctrlCtx.componentAboveUpperLimit and not tooHotFlags.mgtTooHotFlag) {
    triggerEvent(tcsCtrl::MGT_OVERHEATING, tempFloatToU32());
    tooHotFlags.mgtTooHotFlag = true;
  } else if (not ctrlCtx.componentAboveUpperLimit) {
    tooHotFlags.mgtTooHotFlag = false;
  }
}

void ThermalController::ctrlRw() {
  Event eventToTrigger = 0;
  bool oneIsAboveLimit = false;

  std::array<uint32_t, 4> sensorTemps{};

  // RW1
  ctrlCtx.thermalComponent = tcsCtrl::RW;
  sensors[0].first = sensorTemperatures.rw1.isValid();
  sensors[0].second = sensorTemperatures.rw1.value;
  sensors[1].first = deviceTemperatures.rw1.isValid();
  sensors[1].second = deviceTemperatures.rw1.value;
  sensors[2].first = deviceTemperatures.rw4.isValid();
  sensors[2].second = deviceTemperatures.rw4.value;
  sensors[3].first = sensorTemperatures.dro.isValid();
  sensors[3].second = sensorTemperatures.dro.value;
  numSensors = 4;
  {
    HeaterContext htrCtx(heater::HEATER_6_DRO, heater::HEATER_6_DRO, rwLimits);
    ctrlComponentTemperature(htrCtx);
    sensorTemps[0] = tempFloatToU32();
    if (ctrlCtx.componentAboveUpperLimit) {
      oneIsAboveLimit = true;
      eventToTrigger = ctrlCtx.overHeatEventToTrigger;
    }
  }

  // RW2
  ctrlCtx.thermalComponent = tcsCtrl::RW;
  sensors[0].first = deviceTemperatures.rw2.isValid();
  sensors[0].second = deviceTemperatures.rw2.value;
  sensors[1].first = deviceTemperatures.rw3.isValid();
  sensors[1].second = deviceTemperatures.rw3.value;
  sensors[2].first = sensorTemperatures.rw1.isValid();
  sensors[2].second = sensorTemperatures.rw1.value;
  sensors[3].first = sensorTemperatures.dro.isValid();
  sensors[3].second = sensorTemperatures.dro.value;
  numSensors = 4;
  {
    HeaterContext htrCtx(heater::HEATER_6_DRO, heater::HEATER_6_DRO, rwLimits);
    ctrlComponentTemperature(htrCtx);
    sensorTemps[1] = tempFloatToU32();
    if (ctrlCtx.componentAboveUpperLimit) {
      oneIsAboveLimit = true;
      if (eventToTrigger != ThermalComponentIF::COMPONENT_TEMP_OOL_HIGH) {
        eventToTrigger = ctrlCtx.overHeatEventToTrigger;
      }
    }
  }
  // RW3
  ctrlCtx.thermalComponent = tcsCtrl::RW;
  sensors[0].first = deviceTemperatures.rw3.isValid();
  sensors[0].second = deviceTemperatures.rw3.value;
  sensors[1].first = deviceTemperatures.rw4.isValid();
  sensors[1].second = deviceTemperatures.rw4.value;
  sensors[2].first = sensorTemperatures.rw1.isValid();
  sensors[2].second = sensorTemperatures.rw1.value;
  sensors[3].first = sensorTemperatures.dro.isValid();
  sensors[3].second = sensorTemperatures.dro.value;
  numSensors = 4;
  {
    HeaterContext htrCtx(heater::HEATER_6_DRO, heater::HEATER_6_DRO, rwLimits);
    ctrlComponentTemperature(htrCtx);
    sensorTemps[2] = tempFloatToU32();
    if (ctrlCtx.componentAboveUpperLimit) {
      oneIsAboveLimit = true;
      if (eventToTrigger != ThermalComponentIF::COMPONENT_TEMP_OOL_HIGH) {
        eventToTrigger = ctrlCtx.overHeatEventToTrigger;
      }
    }
  }

  // RW4
  ctrlCtx.thermalComponent = tcsCtrl::RW;
  sensors[0].first = deviceTemperatures.rw4.isValid();
  sensors[0].second = deviceTemperatures.rw4.value;
  sensors[1].first = deviceTemperatures.rw1.isValid();
  sensors[1].second = deviceTemperatures.rw1.value;
  sensors[2].first = sensorTemperatures.rw1.isValid();
  sensors[2].second = sensorTemperatures.rw1.value;
  sensors[3].first = sensorTemperatures.dro.isValid();
  sensors[3].second = sensorTemperatures.dro.value;
  numSensors = 4;
  {
    HeaterContext htrCtx(heater::HEATER_6_DRO, heater::HEATER_6_DRO, rwLimits);
    ctrlComponentTemperature(htrCtx);
    sensorTemps[3] = tempFloatToU32();
    if (ctrlCtx.componentAboveUpperLimit) {
      oneIsAboveLimit = true;
      if (eventToTrigger != ThermalComponentIF::COMPONENT_TEMP_OOL_HIGH) {
        eventToTrigger = ctrlCtx.overHeatEventToTrigger;
      }
    }
  }

  if (oneIsAboveLimit and not tooHotFlags.rwTooHotFlag) {
    EventManagerIF::triggerEvent(objects::RW1, eventToTrigger, sensorTemps[0]);
    EventManagerIF::triggerEvent(objects::RW2, eventToTrigger, sensorTemps[1]);
    EventManagerIF::triggerEvent(objects::RW3, eventToTrigger, sensorTemps[2]);
    EventManagerIF::triggerEvent(objects::RW4, eventToTrigger, sensorTemps[3]);
    tooHotFlags.rwTooHotFlag = true;
  } else if (not oneIsAboveLimit) {
    tooHotFlags.rwTooHotFlag = false;
  }
}

void ThermalController::ctrlStr() {
  ctrlCtx.thermalComponent = tcsCtrl::STR;
  sensors[0].first = sensorTemperatures.startracker.isValid();
  sensors[0].second = sensorTemperatures.startracker.value;
  sensors[1].first = deviceTemperatures.startracker.isValid();
  sensors[1].second = deviceTemperatures.startracker.value;
  sensors[2].first = sensorTemperatures.dro.isValid();
  sensors[2].second = sensorTemperatures.dro.value;
  numSensors = 3;
  HeaterContext htrCtx(heater::HEATER_5_STR, heater::HEATER_6_DRO, strLimits);
  ctrlComponentTemperature(htrCtx);
  tooHotHandlerWhichClearsOneShotFlag(objects::STAR_TRACKER, tooHotFlags.strTooHotFlag);
}

void ThermalController::ctrlIfBoard() {
  ctrlCtx.thermalComponent = tcsCtrl::IF_BOARD;
  sensors[0].first = sensorTemperatures.tmp1075IfBrd.isValid();
  sensors[0].second = sensorTemperatures.tmp1075IfBrd.value;
  sensors[1].first = sensorTemperatures.mgt.isValid();
  sensors[1].second = sensorTemperatures.mgt.value;
  sensors[2].first = deviceTemperatures.mgm2SideB.isValid();
  sensors[2].second = deviceTemperatures.mgm2SideB.value;
  numSensors = 3;
  HeaterContext htrCtx(heater::HEATER_2_ACS_BRD, heater::HEATER_1_PCDU_PDU, ifBoardLimits);
  ctrlComponentTemperature(htrCtx);
  // TODO: special event overheating + could go back to safe mode
}

void ThermalController::ctrlTcsBoard() {
  ctrlCtx.thermalComponent = tcsCtrl::TCS_BOARD;
  sensors[0].first = sensorTemperatures.tcsBoard.isValid();
  sensors[0].second = sensorTemperatures.tcsBoard.value;
  sensors[1].first = sensorTemperatures.tmp1075Tcs0.isValid();
  sensors[1].second = sensorTemperatures.tmp1075Tcs0.value;
  sensors[2].first = sensorTemperatures.tmp1075Tcs1.isValid();
  sensors[2].second = sensorTemperatures.tmp1075Tcs1.value;
  numSensors = 3;
  HeaterContext htrCtx(heater::HEATER_3_OBC_BRD, heater::HEATER_2_ACS_BRD, tcsBoardLimits);
  ctrlComponentTemperature(htrCtx);
  // TODO: special event overheating + could go back to safe mode
}

void ThermalController::ctrlObc() {
  ctrlCtx.thermalComponent = tcsCtrl::OBC;
  sensors[0].first = deviceTemperatures.q7s.isValid();
  sensors[0].second = deviceTemperatures.q7s.value;
  sensors[1].first = sensorTemperatures.tmp1075Tcs1.isValid();
  sensors[1].second = sensorTemperatures.tmp1075Tcs1.value;
  sensors[2].first = sensorTemperatures.tmp1075Tcs0.isValid();
  sensors[2].second = sensorTemperatures.tmp1075Tcs0.value;
  numSensors = 3;
  HeaterContext htrCtx(heater::HEATER_3_OBC_BRD, heater::HEATER_2_ACS_BRD, obcLimits);
  ctrlComponentTemperature(htrCtx);
  if (ctrlCtx.componentAboveUpperLimit and not tooHotFlags.obcTooHotFlag) {
    triggerEvent(tcsCtrl::OBC_OVERHEATING, tempFloatToU32());
    tooHotFlags.obcTooHotFlag = true;
  } else if (not ctrlCtx.componentAboveUpperLimit) {
    tooHotFlags.obcTooHotFlag = false;
  }
}

void ThermalController::ctrlSBandTransceiver() {
  ctrlCtx.thermalComponent = tcsCtrl::SBAND_TRANSCEIVER;
  sensors[0].first = deviceTemperatures.syrlinksPowerAmplifier.isValid();
  sensors[0].second = deviceTemperatures.syrlinksPowerAmplifier.value;
  sensors[1].first = deviceTemperatures.syrlinksBasebandBoard.isValid();
  sensors[1].second = deviceTemperatures.syrlinksBasebandBoard.value;
  sensors[2].first = sensorTemperatures.payload4kCamera.isValid();
  sensors[2].second = sensorTemperatures.payload4kCamera.value;
  numSensors = 3;
  HeaterContext htrCtx(heater::HEATER_7_S_BAND, heater::HEATER_4_CAMERA, sBandTransceiverLimits);
  ctrlComponentTemperature(htrCtx);
  if (ctrlCtx.componentAboveUpperLimit and not tooHotFlags.syrlinksTooHotFlag) {
    triggerEvent(tcsCtrl::SYRLINKS_OVERHEATING, tempFloatToU32());
    tooHotFlags.syrlinksTooHotFlag = true;
  } else if (not ctrlCtx.componentAboveUpperLimit) {
    tooHotFlags.syrlinksTooHotFlag = false;
  }
}
void ThermalController::ctrlPcduP60Board() {
  ctrlCtx.thermalComponent = tcsCtrl::PCDUP60_BOARD;
  sensors[0].first = deviceTemperatures.temp1P60dock.isValid();
  sensors[0].second = deviceTemperatures.temp1P60dock.value;
  sensors[1].first = deviceTemperatures.temp2P60dock.isValid();
  sensors[1].second = deviceTemperatures.temp2P60dock.value;
  numSensors = 2;
  HeaterContext htrCtx(heater::HEATER_1_PCDU_PDU, heater::HEATER_2_ACS_BRD, pcduP60BoardLimits);
  ctrlComponentTemperature(htrCtx);
  if (ctrlCtx.componentAboveUpperLimit and not tooHotFlags.pcduSystemTooHotFlag) {
    triggerEvent(tcsCtrl::PCDU_SYSTEM_OVERHEATING, tempFloatToU32());
    tooHotFlags.pcduSystemTooHotFlag = true;
  } else if (not ctrlCtx.componentAboveUpperLimit) {
    tooHotFlags.pcduSystemTooHotFlag = false;
  }  // TODO: !
}

void ThermalController::ctrlPcduAcu() {
  ctrlCtx.thermalComponent = tcsCtrl::PCDUACU;
  heater::Switch switchNr = heater::HEATER_1_PCDU_PDU;
  heater::Switch redSwitchNr = heater::HEATER_2_ACS_BRD;

  if (chooseHeater(switchNr, redSwitchNr)) {
    bool sensorTempAvailable = true;
    // TODO: check
    if (deviceTemperatures.acu.value[0] != INVALID_TEMPERATURE) {
      ctrlCtx.sensorTemp = deviceTemperatures.acu.value[0];
    } else if (deviceTemperatures.acu.value[1] != INVALID_TEMPERATURE) {
      ctrlCtx.sensorTemp = deviceTemperatures.acu.value[1];
    } else if (deviceTemperatures.acu.value[2] != INVALID_TEMPERATURE) {
      ctrlCtx.sensorTemp = deviceTemperatures.acu.value[2];
    } else if (sensorTemperatures.acu.isValid()) {
      ctrlCtx.sensorTemp = sensorTemperatures.acu.value;
    } else {
      triggerEvent(tcsCtrl::NO_VALID_SENSOR_TEMPERATURE, ctrlCtx.thermalComponent);
      sensorTempAvailable = false;
    }
    if (sensorTempAvailable) {
      HeaterContext htrCtx(switchNr, redSwitchNr, pcduAcuLimits);
      checkLimitsAndCtrlHeater(htrCtx);
    }
  }
  if (ctrlCtx.componentAboveUpperLimit and not tooHotFlags.pcduSystemTooHotFlag) {
    triggerEvent(tcsCtrl::PCDU_SYSTEM_OVERHEATING, tempFloatToU32());
    tooHotFlags.pcduSystemTooHotFlag = true;
  } else if (not ctrlCtx.componentAboveUpperLimit) {
    tooHotFlags.pcduSystemTooHotFlag = false;
  }
}

void ThermalController::ctrlPcduPdu() {
  ctrlCtx.thermalComponent = tcsCtrl::PCDUPDU;
  sensors[0].first = deviceTemperatures.pdu1.isValid();
  sensors[0].second = deviceTemperatures.pdu1.value;
  sensors[1].first = deviceTemperatures.pdu2.isValid();
  sensors[1].second = deviceTemperatures.pdu2.value;
  sensors[2].first = sensorTemperatures.tmp1075Tcs0.isValid();
  sensors[2].second = sensorTemperatures.tmp1075Tcs0.value;
  numSensors = 3;
  HeaterContext htrCtx(heater::HEATER_1_PCDU_PDU, heater::HEATER_2_ACS_BRD, pcduPduLimits);
  ctrlComponentTemperature(htrCtx);
  if (ctrlCtx.componentAboveUpperLimit and not tooHotFlags.pcduSystemTooHotFlag) {
    triggerEvent(tcsCtrl::PCDU_SYSTEM_OVERHEATING, tempFloatToU32());
    tooHotFlags.pcduSystemTooHotFlag = true;
  } else if (not ctrlCtx.componentAboveUpperLimit) {
    tooHotFlags.pcduSystemTooHotFlag = false;
  }
}

void ThermalController::ctrlPlPcduBoard() {
  ctrlCtx.thermalComponent = tcsCtrl::PLPCDU_BOARD;
  sensors[0].first = sensorTemperatures.tmp1075PlPcdu0.isValid();
  sensors[0].second = sensorTemperatures.tmp1075PlPcdu0.value;
  sensors[1].first = sensorTemperatures.tmp1075PlPcdu1.isValid();
  sensors[1].second = sensorTemperatures.tmp1075PlPcdu1.value;
  sensors[2].first = deviceTemperatures.adcPayloadPcdu.isValid();
  sensors[2].second = deviceTemperatures.adcPayloadPcdu.value;
  sensors[3].first = sensorTemperatures.plpcduHeatspreader.isValid();
  sensors[3].second = sensorTemperatures.plpcduHeatspreader.value;
  numSensors = 4;
  HeaterContext htrCtx(heater::HEATER_1_PCDU_PDU, heater::HEATER_2_ACS_BRD, plPcduBoardLimits);
  ctrlComponentTemperature(htrCtx);
  tooHotHandler(objects::PLPCDU_HANDLER, tooHotFlags.eBandTooHotFlag);
}

// ToDo: remove one of the following 2
void ThermalController::ctrlPlocMissionBoard() {
  ctrlCtx.thermalComponent = tcsCtrl::PLOCMISSION_BOARD;
  sensors[0].first = sensorTemperatures.plocMissionboard.isValid();
  sensors[0].second = sensorTemperatures.plocMissionboard.value;
  sensors[1].first = sensorTemperatures.plocHeatspreader.isValid();
  sensors[1].second = sensorTemperatures.plocHeatspreader.value;
  sensors[2].first = sensorTemperatures.dacHeatspreader.isValid();
  sensors[2].second = sensorTemperatures.dacHeatspreader.value;
  numSensors = 3;
  HeaterContext htrCtx(heater::HEATER_0_PLOC_PROC_BRD, heater::HEATER_3_OBC_BRD,
                       plocMissionBoardLimits);
  ctrlComponentTemperature(htrCtx);
  tooHotHandler(objects::PLOC_SUPERVISOR_HANDLER, tooHotFlags.plocTooHotFlag);
}

void ThermalController::ctrlPlocProcessingBoard() {
  ctrlCtx.thermalComponent = tcsCtrl::PLOCPROCESSING_BOARD;
  sensors[0].first = sensorTemperatures.plocMissionboard.isValid();
  sensors[0].second = sensorTemperatures.plocMissionboard.value;
  sensors[1].first = sensorTemperatures.plocHeatspreader.isValid();
  sensors[1].second = sensorTemperatures.plocHeatspreader.value;
  sensors[2].first = sensorTemperatures.dacHeatspreader.isValid();
  sensors[2].second = sensorTemperatures.dacHeatspreader.value;
  numSensors = 3;
  HeaterContext htrCtx(heater::HEATER_0_PLOC_PROC_BRD, heater::HEATER_3_OBC_BRD,
                       plocProcessingBoardLimits);
  ctrlComponentTemperature(htrCtx);
  tooHotHandler(objects::PLOC_SUPERVISOR_HANDLER, tooHotFlags.plocTooHotFlag);
}

void ThermalController::ctrlDac() {
  ctrlCtx.thermalComponent = tcsCtrl::DAC;
  sensors[0].first = sensorTemperatures.dacHeatspreader.isValid();
  sensors[0].second = sensorTemperatures.dacHeatspreader.value;
  sensors[1].first = sensorTemperatures.plocMissionboard.isValid();
  sensors[1].second = sensorTemperatures.plocMissionboard.value;
  sensors[2].first = sensorTemperatures.plocHeatspreader.isValid();
  sensors[2].second = sensorTemperatures.plocHeatspreader.value;
  numSensors = 3;
  HeaterContext htrCtx(heater::HEATER_0_PLOC_PROC_BRD, heater::HEATER_3_OBC_BRD, dacLimits);
  ctrlComponentTemperature(htrCtx);
  tooHotHandler(objects::PLPCDU_HANDLER, tooHotFlags.eBandTooHotFlag);
}

void ThermalController::ctrlCameraBody() {
  ctrlCtx.thermalComponent = tcsCtrl::CAMERA;
  sensors[0].first = sensorTemperatures.payload4kCamera.isValid();
  sensors[0].second = sensorTemperatures.payload4kCamera.value;
  sensors[1].first = sensorTemperatures.dro.isValid();
  sensors[1].second = sensorTemperatures.dro.value;
  sensors[2].first = sensorTemperatures.mpa.isValid();
  sensors[2].second = sensorTemperatures.mpa.value;
  numSensors = 3;
  HeaterContext htrCtx(heater::HEATER_4_CAMERA, heater::HEATER_6_DRO, cameraLimits);
  ctrlComponentTemperature(htrCtx);
  if (ctrlCtx.componentAboveUpperLimit and not tooHotFlags.camTooHotOneShotFlag) {
    triggerEvent(tcsCtrl::CAMERA_OVERHEATING, tempFloatToU32());
    CommandMessage msg;
    HealthMessage::setHealthMessage(&msg, HealthMessage::HEALTH_SET, HealthState::FAULTY);
    ReturnValue_t result = commandQueue->sendMessage(camId, &msg);
    if (result != returnvalue::OK) {
      sif::error << "ThermalController::ctrlCameraBody(): Sending health message failed"
                 << std::endl;
    }
    tooHotFlags.camTooHotOneShotFlag = true;
  } else if (not ctrlCtx.componentAboveUpperLimit) {
    tooHotFlags.camTooHotOneShotFlag = false;
  }
}

void ThermalController::ctrlDro() {
  ctrlCtx.thermalComponent = tcsCtrl::DRO;
  sensors[0].first = sensorTemperatures.dro.isValid();
  sensors[0].second = sensorTemperatures.dro.value;
  sensors[1].first = sensorTemperatures.payload4kCamera.isValid();
  sensors[1].second = sensorTemperatures.payload4kCamera.value;
  sensors[2].first = sensorTemperatures.mpa.isValid();
  sensors[2].second = sensorTemperatures.mpa.value;
  numSensors = 3;
  HeaterContext htrCtx(heater::HEATER_6_DRO, heater::HEATER_4_CAMERA, droLimits);
  ctrlComponentTemperature(htrCtx);
  tooHotHandler(objects::PLPCDU_HANDLER, tooHotFlags.eBandTooHotFlag);
}

void ThermalController::ctrlX8() {
  ctrlCtx.thermalComponent = tcsCtrl::X8;
  sensors[0].first = sensorTemperatures.x8.isValid();
  sensors[0].second = sensorTemperatures.x8.value;
  sensors[1].first = sensorTemperatures.hpa.isValid();
  sensors[1].second = sensorTemperatures.hpa.value;
  sensors[2].first = sensorTemperatures.eBandTx.isValid();
  sensors[2].second = sensorTemperatures.eBandTx.value;
  numSensors = 3;
  HeaterContext htrCtx(heater::HEATER_6_DRO, heater::HEATER_4_CAMERA, x8Limits);
  ctrlComponentTemperature(htrCtx);
  tooHotHandler(objects::PLPCDU_HANDLER, tooHotFlags.eBandTooHotFlag);
}

void ThermalController::ctrlTx() {
  ctrlCtx.thermalComponent = tcsCtrl::TX;
  sensors[0].first = sensorTemperatures.eBandTx.isValid();
  sensors[0].second = sensorTemperatures.eBandTx.value;
  sensors[1].first = sensorTemperatures.x8.isValid();
  sensors[1].second = sensorTemperatures.x8.value;
  sensors[2].first = sensorTemperatures.mpa.isValid();
  sensors[2].second = sensorTemperatures.mpa.value;
  numSensors = 3;
  HeaterContext htrCtx(heater::HEATER_6_DRO, heater::HEATER_4_CAMERA, txLimits);
  ctrlComponentTemperature(htrCtx);
  tooHotHandler(objects::PLPCDU_HANDLER, tooHotFlags.eBandTooHotFlag);
}

void ThermalController::ctrlMpa() {
  ctrlCtx.thermalComponent = tcsCtrl::MPA;
  sensors[0].first = sensorTemperatures.mpa.isValid();
  sensors[0].second = sensorTemperatures.mpa.value;
  sensors[1].first = sensorTemperatures.hpa.isValid();
  sensors[1].second = sensorTemperatures.hpa.value;
  sensors[2].first = sensorTemperatures.eBandTx.isValid();
  sensors[2].second = sensorTemperatures.eBandTx.value;
  numSensors = 3;
  HeaterContext htrCtx(heater::HEATER_6_DRO, heater::HEATER_4_CAMERA, mpaLimits);
  ctrlComponentTemperature(htrCtx);
  tooHotHandler(objects::PLPCDU_HANDLER, tooHotFlags.eBandTooHotFlag);
}

void ThermalController::ctrlHpa() {
  ctrlCtx.thermalComponent = tcsCtrl::HPA;
  sensors[0].first = sensorTemperatures.hpa.isValid();
  sensors[0].second = sensorTemperatures.hpa.value;
  sensors[1].first = sensorTemperatures.x8.isValid();
  sensors[1].second = sensorTemperatures.x8.value;
  sensors[2].first = sensorTemperatures.mpa.isValid();
  sensors[2].second = sensorTemperatures.mpa.value;
  numSensors = 3;
  HeaterContext htrCtx(heater::HEATER_6_DRO, heater::HEATER_4_CAMERA, hpaLimits);
  ctrlComponentTemperature(htrCtx);
  tooHotHandler(objects::PLPCDU_HANDLER, tooHotFlags.eBandTooHotFlag);
}

void ThermalController::ctrlScexBoard() {
  ctrlCtx.thermalComponent = tcsCtrl::SCEX_BOARD;
  sensors[0].first = sensorTemperatures.scex.isValid();
  sensors[0].second = sensorTemperatures.scex.value;
  sensors[1].first = sensorTemperatures.x8.isValid();
  sensors[1].second = sensorTemperatures.x8.value;
  sensors[2].first = sensorTemperatures.hpa.isValid();
  sensors[2].second = sensorTemperatures.hpa.value;
  numSensors = 3;
  HeaterContext htrCtx(heater::HEATER_6_DRO, heater::HEATER_5_STR, scexBoardLimits);
  ctrlComponentTemperature(htrCtx);
  tooHotHandlerWhichClearsOneShotFlag(objects::SCEX, tooHotFlags.scexTooHotFlag);
}

void ThermalController::performThermalModuleCtrl(
    const tcsCtrl::HeaterSwitchStates& heaterSwitchStates) {
  ctrlAcsBoard();
  ctrlMgt();
  ctrlRw();
  ctrlStr();
  ctrlIfBoard();
  ctrlTcsBoard();
  ctrlObc();
  ctrlSBandTransceiver();
  ctrlPcduP60Board();
  ctrlPcduAcu();
  ctrlPcduPdu();

  // Payload components
  std::array<bool, 2> plocInAllowedRange{};
  ctrlPlocMissionBoard();
  plocInAllowedRange.at(0) = not ctrlCtx.componentAboveUpperLimit;
  ctrlPlocProcessingBoard();
  plocInAllowedRange.at(1) = not ctrlCtx.componentAboveUpperLimit;

  if (tooHotFlags.plocTooHotFlag) {
    bool clearFlag = true;
    for (const auto& inRange : plocInAllowedRange) {
      if (not inRange) {
        clearFlag = false;
      }
    }
    if (clearFlag) {
      tooHotFlags.plocTooHotFlag = false;
    }
  }
  ctrlCameraBody();
  ctrlScexBoard();

  // E-Band
  std::array<bool, 7> eBandInAllowedRange{};
  ctrlPlPcduBoard();
  eBandInAllowedRange.at(0) = not ctrlCtx.componentAboveUpperLimit;
  ctrlDac();
  eBandInAllowedRange.at(1) = not ctrlCtx.componentAboveUpperLimit;
  ctrlDro();
  eBandInAllowedRange.at(2) = not ctrlCtx.componentAboveUpperLimit;
  ctrlX8();
  eBandInAllowedRange.at(3) = not ctrlCtx.componentAboveUpperLimit;
  ctrlHpa();
  eBandInAllowedRange.at(4) = not ctrlCtx.componentAboveUpperLimit;
  ctrlTx();
  eBandInAllowedRange.at(5) = not ctrlCtx.componentAboveUpperLimit;
  ctrlMpa();
  eBandInAllowedRange.at(6) = not ctrlCtx.componentAboveUpperLimit;

  if (tooHotFlags.eBandTooHotFlag) {
    bool clearFlag = true;
    for (const auto& inRange : eBandInAllowedRange) {
      if (not inRange) {
        clearFlag = false;
      }
    }
    if (clearFlag) {
      tooHotFlags.eBandTooHotFlag = false;
    }
  }
}

void ThermalController::ctrlComponentTemperature(HeaterContext& htrCtx) {
  if (selectAndReadSensorTemp(htrCtx)) {
    if (chooseHeater(htrCtx.switchNr, htrCtx.redSwitchNr)) {
      // Core loop for a thermal component, after sensors and heaters were selected.
      checkLimitsAndCtrlHeater(htrCtx);
    }
  } else {
    // No sensors available, so switch the heater off. We can not perform control tasks if we
    // are blind..
    if (chooseHeater(htrCtx.switchNr, htrCtx.redSwitchNr)) {
      // Also track the counter to prevent heater handler message spam. The heater handle can only
      // process 2 messages per cycle.
      if (heaterCtrlAllowed() and
          (thermalStates[ctrlCtx.thermalComponent].noSensorAvailableCounter < 3)) {
        heaterSwitchHelper(htrCtx.switchNr, heater::SwitchState::OFF, ctrlCtx.thermalComponent);
      }
    }
  }
  resetSensorsArray();
}
bool ThermalController::selectAndReadSensorTemp(HeaterContext& htrCtx) {
  for (unsigned i = 0; i < numSensors; i++) {
    if (sensors[i].first and sensors[i].second != INVALID_TEMPERATURE and
        sensors[i].second > SANITY_LIMIT_LOWER_TEMP and
        sensors[i].second < SANITY_LIMIT_UPPER_TEMP) {
      ctrlCtx.sensorTemp = sensors[i].second;
      ctrlCtx.currentSensorIndex = i;
      thermalStates[ctrlCtx.thermalComponent].noSensorAvailableCounter = 0;
      return true;
    }
  }

  thermalStates[ctrlCtx.thermalComponent].noSensorAvailableCounter++;
  if (ctrlCtx.thermalComponent != tcsCtrl::RW and ctrlCtx.thermalComponent != tcsCtrl::ACS_BOARD) {
    if (thermalStates[ctrlCtx.thermalComponent].noSensorAvailableCounter <= 3) {
      triggerEvent(tcsCtrl::NO_VALID_SENSOR_TEMPERATURE, ctrlCtx.thermalComponent);
    }
  } else {
    if (thermalStates[ctrlCtx.thermalComponent].noSensorAvailableCounter <= 8) {
      triggerEvent(tcsCtrl::NO_VALID_SENSOR_TEMPERATURE, ctrlCtx.thermalComponent);
    }
  }

  return false;
}
bool ThermalController::chooseHeater(heater::Switch& switchNr, heater::Switch redSwitchNr) {
  bool heaterAvailable = true;

  HasHealthIF::HealthState mainHealth = heaterHandler.getHealth(switchNr);
  heater::SwitchState mainState = heaterHandler.getSwitchState(switchNr);
  HasHealthIF::HealthState redHealth = heaterHandler.getHealth(redSwitchNr);
  if (mainHealth == HasHealthIF::EXTERNAL_CONTROL and mainState == heater::SwitchState::ON) {
    return false;
  }
  if (mainHealth != HasHealthIF::HEALTHY) {
    if (redHealth == HasHealthIF::HEALTHY) {
      switchNr = redSwitchNr;
      ctrlCtx.redSwitchNrInUse = true;
    } else {
      heaterAvailable = false;
      // Special case: Ground might command/do something with the heaters, so prevent spam.
      if (not(mainHealth == EXTERNAL_CONTROL and redHealth == EXTERNAL_CONTROL)) {
        triggerEvent(tcsCtrl::NO_HEALTHY_HEATER_AVAILABLE, switchNr, redSwitchNr);
      }
    }
  } else {
    ctrlCtx.redSwitchNrInUse = false;
  }

  return heaterAvailable;
}

void ThermalController::heaterCtrlTempTooHighHandler(HeaterContext& htrCtx, const char* whatLimit) {
  if (not heaterCtrlAllowed()) {
    return;
  }
  if (htrCtx.switchState == heater::SwitchState::ON) {
    sif::info << "TCS: Component " << static_cast<int>(ctrlCtx.thermalComponent)
              << " too warm, above " << whatLimit << ", switching off heater" << std::endl;
    heaterSwitchHelper(htrCtx.switchNr, heater::SwitchState::OFF, ctrlCtx.thermalComponent);
    heaterStates[htrCtx.switchNr].switchTransition = true;
    heaterStates[htrCtx.switchNr].target = heater::SwitchState::OFF;
  }
  if (heaterHandler.getSwitchState(htrCtx.redSwitchNr) == heater::SwitchState::ON) {
    heaterSwitchHelper(htrCtx.redSwitchNr, heater::SwitchState::OFF, ctrlCtx.thermalComponent);
    heaterStates[htrCtx.redSwitchNr].switchTransition = true;
    heaterStates[htrCtx.redSwitchNr].target = heater::SwitchState::OFF;
  }
}

void ThermalController::checkLimitsAndCtrlHeater(HeaterContext& htrCtx) {
  ctrlCtx.componentAboveCutOffLimit = false;
  ctrlCtx.componentAboveUpperLimit = false;
  // Stay passive during switch transitions, wait for heater switching to complete. Otherwise,
  // still check whether components are out of range, which might be important information for the
  // top level control loop.
  if (heaterStates[htrCtx.switchNr].switchTransition) {
    htrCtx.doHeaterHandling = false;
    heaterCtrlCheckUpperLimits(htrCtx);
    return;
  }

  htrCtx.switchState =
      static_cast<heater::SwitchState>(heaterInfo.heaterSwitchState[htrCtx.switchNr]);
  // Heater off
  if (htrCtx.switchState == heater::SwitchState::OFF) {
    if (ctrlCtx.sensorTemp < htrCtx.tempLimit.opLowerLimit and heaterCtrlAllowed()) {
      sif::info << "TCS: Heater " << static_cast<int>(ctrlCtx.thermalComponent) << " ON"
                << std::endl;
      heaterSwitchHelper(htrCtx.switchNr, heater::SwitchState::ON, ctrlCtx.thermalComponent);
    } else {
      // Even if heater control is now allowed, we can update the state.
      thermalStates[ctrlCtx.thermalComponent].heating = false;
    }
    heaterCtrlCheckUpperLimits(htrCtx);
    return;
  }

  // Heater on
  if (htrCtx.switchState == heater::SwitchState::ON) {
    if (thermalStates[ctrlCtx.thermalComponent].heating) {
      // We are already in a heating cycle, so need to check whether heating task is complete.
      if (ctrlCtx.sensorTemp >= htrCtx.tempLimit.opLowerLimit + TEMP_OFFSET and
          heaterCtrlAllowed()) {
        sif::info << "TCS: Heater " << static_cast<int>(ctrlCtx.thermalComponent) << " OFF"
                  << std::endl;
        heaterSwitchHelper(htrCtx.switchNr, heater::SwitchState::OFF, ctrlCtx.thermalComponent);
        heaterStates[htrCtx.switchNr].switchTransition = true;
        heaterStates[htrCtx.switchNr].target = heater::SwitchState::OFF;
      }
      return;
    }
    // This can happen if heater is used as alternative heater (no regular heating cycle), so we
    // should still check the upper limits.
    bool tooHighHandlerAlreadyCalled = heaterCtrlCheckUpperLimits(htrCtx);
    if (ctrlCtx.sensorTemp >= htrCtx.tempLimit.cutOffLimit) {
      ctrlCtx.componentAboveCutOffLimit = true;
      if (not tooHighHandlerAlreadyCalled) {
        heaterCtrlTempTooHighHandler(htrCtx, "CutOff-Limit");
      }
    }
  }
}

bool ThermalController::heaterCtrlCheckUpperLimits(HeaterContext& htrCtx) {
  if (ctrlCtx.sensorTemp >= htrCtx.tempLimit.nopUpperLimit) {
    ctrlCtx.componentAboveUpperLimit = true;
    if (htrCtx.doHeaterHandling) {
      heaterCtrlTempTooHighHandler(htrCtx, "NOP-Limit");
    }
    ctrlCtx.overHeatEventToTrigger = ThermalComponentIF::COMPONENT_TEMP_OOL_HIGH;
    return true;
  } else if (ctrlCtx.sensorTemp >= htrCtx.tempLimit.opUpperLimit) {
    ctrlCtx.componentAboveUpperLimit = true;
    if (htrCtx.doHeaterHandling) {
      heaterCtrlTempTooHighHandler(htrCtx, "OP-Limit");
    }
    ctrlCtx.overHeatEventToTrigger = ThermalComponentIF::COMPONENT_TEMP_HIGH;
    return true;
  }
  return false;
}

void ThermalController::resetSensorsArray() {
  for (auto& validValuePair : sensors) {
    validValuePair.first = false;
    validValuePair.second = INVALID_TEMPERATURE;
  }
  ctrlCtx.thermalComponent = tcsCtrl::NONE;
}

void ThermalController::heaterTransitionControl(
    const tcsCtrl::HeaterSwitchStates& currentHeaterStates) {
  for (unsigned i = 0; i < heater::Switch::NUMBER_OF_SWITCHES; i++) {
    if (heaterStates[i].switchTransition) {
      if (currentHeaterStates[i] == heaterStates[i].target) {
        // Required for max heater period control
        if (currentHeaterStates[i] == heater::SwitchState::ON) {
          heaterStates[i].heaterOnMaxBurnTime.setTimeout(MAX_HEATER_ON_DURATIONS_MS[i]);
          heaterStates[i].heaterOnMaxBurnTime.resetTimer();
          heaterStates[i].trackHeaterMaxBurnTime = true;
        } else {
          heaterStates[i].trackHeaterMaxBurnTime = false;
          // The heater might still be one for some thermal components, so cross-check
          // those components
          crossCheckHeaterStateOfComponentsWhenHeaterGoesOff(static_cast<heater::Switch>(i));
        }
        heaterStates[i].switchTransition = false;
        heaterStates[i].heaterSwitchControlCycles = 0;
        continue;
      }
      if (heaterStates[i].heaterSwitchControlCycles > 5) {
        heaterStates[i].switchTransition = false;
        heaterStates[i].heaterSwitchControlCycles = 0;
      }
      heaterStates[i].heaterSwitchControlCycles++;
    }
  }
}

void ThermalController::heaterMaxDurationControl(
    const tcsCtrl::HeaterSwitchStates& currentHeaterStates) {
  for (unsigned i = 0; i < heater::Switch::NUMBER_OF_SWITCHES; i++) {
    // Right now, we only track the maximum duration for heater which were commanded by the TCS
    // controller.
    if (heaterHandler.getHealth(static_cast<heater::Switch>(i)) != HasHealthIF::EXTERNAL_CONTROL and
        currentHeaterStates[i] == heater::SwitchState::ON and
        heaterStates[i].trackHeaterMaxBurnTime and
        heaterStates[i].heaterOnMaxBurnTime.hasTimedOut()) {
      heaterStates[i].switchTransition = false;
      heaterStates[i].heaterSwitchControlCycles = 0;
      heaterStates[i].trackHeaterMaxBurnTime = false;
      triggerEvent(tcsCtrl::TCS_HEATER_MAX_BURN_TIME_REACHED, static_cast<uint32_t>(i),
                   MAX_HEATER_ON_DURATIONS_MS[i]);
      heaterSwitchHelper(static_cast<heater::Switch>(i), heater::SwitchState::OFF, std::nullopt);
      // The heater might still be one for some thermal components, so cross-check
      // those components
      crossCheckHeaterStateOfComponentsWhenHeaterGoesOff(static_cast<heater::Switch>(i));
    }
  }
}

uint32_t ThermalController::tempFloatToU32() const {
  auto sensorTempAsFloat = static_cast<float>(ctrlCtx.sensorTemp);
  uint32_t tempRaw = 0;
  size_t dummyLen = 0;
  SerializeAdapter::serialize(&sensorTempAsFloat, reinterpret_cast<uint8_t*>(&tempRaw), &dummyLen,
                              sizeof(tempRaw), SerializeIF::Endianness::NETWORK);
  return tempRaw;
}

void ThermalController::setMode(Mode_t mode, Submode_t submode) {
  if (mode == MODE_OFF) {
    transitionWhenHeatersOff = false;
  }
  this->mode = mode;
  this->submode = submode;
  modeHelper.modeChanged(mode, submode);
  announceMode(false);
}

bool ThermalController::tooHotHandler(object_id_t object, bool& oneShotFlag) {
  if (ctrlCtx.componentAboveUpperLimit and not oneShotFlag) {
    // Too hot -> returns true
    EventManagerIF::triggerEvent(object, ctrlCtx.overHeatEventToTrigger, tempFloatToU32());
    oneShotFlag = true;
    return true;
  }
  return false;
}

bool ThermalController::heaterCtrlAllowed() const { return submode != SUBMODE_NO_HEATER_CTRL; }

void ThermalController::resetThermalStates() {
  for (auto& thermalState : thermalStates) {
    thermalState.heating = false;
    thermalState.noSensorAvailableCounter = 0;
    thermalState.heaterStartTime = 0;
    thermalState.heaterEndTime = 0;
    thermalState.sensorIndex = 0;
    thermalState.heaterSwitch = heater::Switch::NUMBER_OF_SWITCHES;
  }
}

void ThermalController::heaterSwitchHelper(heater::Switch switchNr, heater::SwitchState targetState,
                                           std::optional<unsigned> componentIdx) {
  timeval currentTime;
  Clock::getClock(&currentTime);
  if (targetState == heater::SwitchState::ON) {
    heaterHandler.switchHeater(switchNr, targetState);
    heaterStates[switchNr].target = heater::SwitchState::ON;
    heaterStates[switchNr].switchTransition = true;
    if (componentIdx.has_value()) {
      unsigned componentIdxVal = componentIdx.value();
      thermalStates[componentIdxVal].sensorIndex = ctrlCtx.currentSensorIndex;
      thermalStates[componentIdxVal].heaterSwitch = switchNr;
      thermalStates[componentIdxVal].heating = true;
      thermalStates[componentIdxVal].heaterStartTime = currentTime.tv_sec;
    }
    triggerEvent(tcsCtrl::TCS_SWITCHING_HEATER_ON, static_cast<uint32_t>(ctrlCtx.thermalComponent),
                 static_cast<uint32_t>(switchNr));
  } else {
    heaterHandler.switchHeater(switchNr, targetState);
    if (componentIdx.has_value()) {
      thermalStates[componentIdx.value()].heating = false;
      thermalStates[componentIdx.value()].heaterEndTime = currentTime.tv_sec;
    }
    triggerEvent(tcsCtrl::TCS_SWITCHING_HEATER_OFF, static_cast<uint32_t>(ctrlCtx.thermalComponent),
                 static_cast<uint32_t>(switchNr));
  }
}

void ThermalController::heaterSwitchHelperAllOff() {
  timeval currentTime;
  Clock::getClock(&currentTime);
  size_t idx = 0;
  for (; idx < heater::Switch::NUMBER_OF_SWITCHES; idx++) {
    heaterHandler.switchHeater(static_cast<heater::Switch>(idx), heater::SwitchState::OFF);
  }
  for (idx = 0; idx < thermalStates.size(); idx++) {
    thermalStates[idx].heating = false;
    thermalStates[idx].heaterEndTime = currentTime.tv_sec;
  }
}

ThermalController::~ThermalController() {
  if (tmp1075SetPlPcdu1 != nullptr) {
    delete tmp1075SetPlPcdu1;
  }
}

void ThermalController::crossCheckHeaterStateOfComponentsWhenHeaterGoesOff(
    heater::Switch switchIdx) {
  for (unsigned j = 0; j < thermalStates.size(); j++) {
    if (thermalStates[j].heating and thermalStates[j].heaterSwitch == switchIdx) {
      timeval currentTime;
      Clock::getClock(&currentTime);
      thermalStates[j].heating = false;
      thermalStates[j].heaterEndTime = currentTime.tv_sec;
    }
  }
}

void ThermalController::tooHotHandlerWhichClearsOneShotFlag(object_id_t object, bool& oneShotFlag) {
  // Clear the one shot flag is the component is in acceptable temperature range.
  if (not tooHotHandler(object, oneShotFlag) and not ctrlCtx.componentAboveUpperLimit) {
    oneShotFlag = false;
  }
}

void ThermalController::startTransition(Mode_t mode_, Submode_t submode_) {
  triggerEvent(CHANGING_MODE, mode_, submode_);
  // For MODE_OFF and the no heater control submode, we command all switches to off before
  // completing the transition. This ensures a consistent state when commanding these modes.
  if ((mode_ == MODE_OFF) or ((mode_ == MODE_ON) and (submode_ == SUBMODE_NO_HEATER_CTRL))) {
    heaterSwitchHelperAllOff();
    transitionWhenHeatersOff = true;
    targetMode = mode_;
    targetSubmode = submode_;
    transitionWhenHeatersOffCycles = 0;
  } else {
    setMode(mode_, submode_);
  }
}