/* * SensorProcessing.cpp * * Created on: 7 Mar 2022 * Author: Robin Marquardt */ #include "SensorProcessing.h" #include #include #include #include #include #include #include #include using namespace Math; // Thought: Maybe separate file for transforming of sensor values // into geometry frame and body frame SensorProcessing::SensorProcessing(AcsParameters *acsParameters_) : savedMagFieldEst { 0, 0, 0 }{ validMagField = false; validGcLatitude = false; } SensorProcessing::~SensorProcessing() { } bool SensorProcessing::processMgm(const float *mgm0Value, bool mgm0valid, const float *mgm1Value, bool mgm1valid, const float *mgm2Value, bool mgm2valid, const float *mgm3Value, bool mgm3valid, const float *mgm4Value, bool mgm4valid, timeval timeOfMgmMeasurement, const AcsParameters::MgmHandlingParameters *mgmParameters, const double gpsLatitude, const double gpsLongitude, const double gpsAltitude, bool gpsValid, double *magFieldEst, bool *outputValid, double *magFieldModel, bool*magFieldModelValid, double *magneticFieldVectorDerivative, bool *magneticFieldVectorDerivativeValid) { if (!mgm0valid && !mgm1valid && !mgm2valid && !mgm3valid && !mgm4valid) { *outputValid = false; validMagField = false; return false; } // Transforming Values to the Body Frame (actually it is the geometry frame atm) float mgm0ValueBody[3] = {0,0,0}, mgm1ValueBody[3] = {0,0,0}, mgm2ValueBody[3] = {0,0,0}, mgm3ValueBody[3] = {0,0,0}, mgm4ValueBody[3] = {0,0,0}; bool validUnit[5] = {false, false, false, false, false}; uint8_t validCount = 0; if (mgm0valid) { MatrixOperations::multiply(mgmParameters->mgm0orientationMatrix[0], mgm0Value, mgm0ValueBody, 3, 3, 1); validCount += 1; validUnit[0] = true; } if (mgm1valid) { MatrixOperations::multiply(mgmParameters->mgm1orientationMatrix[0], mgm1Value, mgm1ValueBody, 3, 3, 1); validCount += 1; validUnit[1] = true; } if (mgm2valid) { MatrixOperations::multiply(mgmParameters->mgm2orientationMatrix[0], mgm2Value, mgm2ValueBody, 3, 3, 1); validCount += 1; validUnit[2] = true; } if (mgm3valid) { MatrixOperations::multiply(mgmParameters->mgm3orientationMatrix[0], mgm3Value, mgm3ValueBody, 3, 3, 1); validCount += 1; validUnit[3] = true; } if (mgm4valid) { MatrixOperations::multiply(mgmParameters->mgm4orientationMatrix[0], mgm4Value, mgm4ValueBody, 3, 3, 1); validCount += 1; validUnit[4] = true; } /* -------- MagFieldEst: Middle Value ------- */ float mgmValues[3][5] = { { mgm0ValueBody[0], mgm1ValueBody[0], mgm2ValueBody[0], mgm3ValueBody[0], mgm4ValueBody[0] }, { mgm0ValueBody[1], mgm1ValueBody[1], mgm2ValueBody[1], mgm3ValueBody[1], mgm4ValueBody[1] }, { mgm0ValueBody[2], mgm1ValueBody[2], mgm2ValueBody[2], mgm3ValueBody[2], mgm4ValueBody[2] } }; double mgmValidValues[3][validCount]; uint8_t j = 0; for (uint8_t i = 0; i < validCount; i++) { if (validUnit[i]) { mgmValidValues[0][j] = mgmValues[0][i]; mgmValidValues[1][j] = mgmValues[1][i]; mgmValidValues[2][j] = mgmValues[2][i]; j += 1; } } //Selection Sort double mgmValidValuesSort[3][validCount]; MathOperations::selectionSort(*mgmValidValues, *mgmValidValuesSort, 3, validCount); uint8_t n = ceil(validCount/2); magFieldEst[0] = mgmValidValuesSort[0][n]; magFieldEst[1] = mgmValidValuesSort[1][n]; magFieldEst[2] = mgmValidValuesSort[2][n]; validMagField = true; //-----------------------Mag Rate Computation --------------------------------------------------- double timeDiff = timevalOperations::toDouble(timeOfMgmMeasurement - timeOfSavedMagFieldEst); for (uint8_t i = 0; i < 3; i++) { magneticFieldVectorDerivative[i] = (magFieldEst[i] - savedMagFieldEst[i]) / timeDiff; savedMagFieldEst[i] = magFieldEst[i]; } *magneticFieldVectorDerivativeValid = true; if (timeOfSavedMagFieldEst.tv_sec == 0) { magneticFieldVectorDerivative[0] = 0; magneticFieldVectorDerivative[1] = 0; magneticFieldVectorDerivative[2] = 0; *magneticFieldVectorDerivativeValid = false; } timeOfSavedMagFieldEst = timeOfMgmMeasurement; *outputValid = true; // ---------------- IGRF- 13 Implementation here ------------------------------------------------ if (!gpsValid){ *magFieldModelValid = false; } else{ // Should be existing class object which will be called and modified here. Igrf13Model igrf13; // So the line above should not be done here. Update: Can be done here as long updated coffs // stored in acsParameters ? igrf13.updateCoeffGH(timeOfMgmMeasurement); // maybe put a condition here, to only update after a full day, this // class function has around 700 steps to perform igrf13.magFieldComp(gpsLongitude, gpsLatitude, gpsAltitude, timeOfMgmMeasurement, magFieldModel); *magFieldModelValid = false; } return true; } void SensorProcessing::processSus(const float sus0Value[], bool sus0valid, const float sus1Value[], bool sus1valid, const float sus2Value[], bool sus2valid, const float sus3Value[], bool sus3valid, const float sus4Value[], bool sus4valid, const float sus5Value[], bool sus5valid, const float sus6Value[], bool sus6valid, const float sus7Value[], bool sus7valid, const float sus8Value[], bool sus8valid, const float sus9Value[], bool sus9valid, const float sus10Value[], bool sus10valid, const float sus11Value[], bool sus11valid, timeval timeOfSusMeasurement, const AcsParameters::SusHandlingParameters *susParameters, const AcsParameters::SunModelParameters *sunModelParameters, double *sunDirEst, bool *sunDirEstValid, double *sunVectorInertial, bool *sunVectorInertialValid, double *sunVectorDerivative, bool *sunVectorDerivativeValid){ if(!sus0valid && !sus1valid && !sus2valid && !sus3valid && !sus4valid && !sus5valid && !sus6valid && !sus7valid && !sus8valid && !sus9valid && !sus10valid && !sus11valid){ *sunDirEstValid = false; return; } else{ // WARNING: NOT TRANSFORMED IN BODY FRAME YET // Transformation into Geomtry Frame float sus0ValueBody[3] = {0,0,0}, sus1ValueBody[3] = {0,0,0}, sus2ValueBody[3] = {0,0,0}, sus3ValueBody[3] = {0,0,0}, sus4ValueBody[3] = {0,0,0}, sus5ValueBody[3] = {0,0,0}, sus6ValueBody[3] = {0,0,0}, sus7ValueBody[3] = {0,0,0}, sus8ValueBody[3] = {0,0,0}, sus9ValueBody[3] = {0,0,0}, sus10ValueBody[3] = {0,0,0}, sus11ValueBody[3] = {0,0,0}; if (sus0valid) { MatrixOperations::multiply(susParameters->sus0orientationMatrix[0], sus0Value, sus0ValueBody, 3, 3, 1); } if (sus1valid) { MatrixOperations::multiply(susParameters->sus1orientationMatrix[0], sus1Value, sus1ValueBody, 3, 3, 1); } if (sus2valid) { MatrixOperations::multiply(susParameters->sus2orientationMatrix[0], sus2Value, sus2ValueBody, 3, 3, 1); } if (sus3valid) { MatrixOperations::multiply(susParameters->sus3orientationMatrix[0], sus3Value, sus3ValueBody, 3, 3, 1); } if (sus4valid) { MatrixOperations::multiply(susParameters->sus4orientationMatrix[0], sus4Value, sus4ValueBody, 3, 3, 1); } if (sus5valid) { MatrixOperations::multiply(susParameters->sus5orientationMatrix[0], sus5Value, sus5ValueBody, 3, 3, 1); } if (sus6valid) { MatrixOperations::multiply(susParameters->sus6orientationMatrix[0], sus6Value, sus6ValueBody, 3, 3, 1); } if (sus7valid) { MatrixOperations::multiply(susParameters->sus7orientationMatrix[0], sus7Value, sus7ValueBody, 3, 3, 1); } if (sus8valid) { MatrixOperations::multiply(susParameters->sus8orientationMatrix[0], sus8Value, sus8ValueBody, 3, 3, 1); } if (sus9valid) { MatrixOperations::multiply(susParameters->sus9orientationMatrix[0], sus9Value, sus9ValueBody, 3, 3, 1); } if (sus10valid) { MatrixOperations::multiply(susParameters->sus10orientationMatrix[0], sus10Value, sus10ValueBody, 3, 3, 1); } if (sus11valid) { MatrixOperations::multiply(susParameters->sus11orientationMatrix[0], sus11Value, sus11ValueBody, 3, 3, 1); } /* ------ Mean Value: susDirEst ------ */ // Timo already done bool validIds[12] = {sus0valid, sus1valid, sus2valid, sus3valid, sus4valid, sus5valid, sus6valid, sus7valid, sus8valid, sus9valid, sus10valid, sus11valid}; float susValuesBody[3][12] = {{sus0ValueBody[0], sus1ValueBody[0], sus2ValueBody[0], sus3ValueBody[0], sus4ValueBody[0], sus5ValueBody[0], sus6ValueBody[0], sus7ValueBody[0], sus8ValueBody[0], sus9ValueBody[0], sus10ValueBody[0], sus11ValueBody[0]}, {sus0ValueBody[1], sus1ValueBody[1], sus2ValueBody[1], sus3ValueBody[1], sus4ValueBody[1], sus5ValueBody[1], sus6ValueBody[1], sus7ValueBody[1], sus8ValueBody[1], sus9ValueBody[1], sus10ValueBody[1], sus11ValueBody[1]}, {sus0ValueBody[2], sus1ValueBody[2], sus2ValueBody[2], sus3ValueBody[2], sus4ValueBody[2], sus5ValueBody[2], sus6ValueBody[2], sus7ValueBody[2], sus8ValueBody[2], sus9ValueBody[2], sus10ValueBody[2], sus11ValueBody[2]}}; double susMeanValue[3] = {0,0,0}; uint8_t validSusCounter = 0; for (uint8_t i = 0; i < 12; i++){ if (validIds[i]){ susMeanValue[0]+=susValuesBody[0][i]; susMeanValue[1]+=susValuesBody[1][i]; susMeanValue[2]+=susValuesBody[2][i]; validSusCounter+=1; } } double divisor = 1/validSusCounter; VectorOperations::mulScalar(susMeanValue, divisor, sunDirEst, 3); *sunDirEstValid = true; } /* -------- Sun Derivatiative --------------------- */ double timeDiff = timevalOperations::toDouble(timeOfSusMeasurement - timeOfSavedSusDirEst); for (uint8_t i = 0; i < 3; i++) { sunVectorDerivative[i] = (sunDirEst[i] - savedSunVector[i]) / timeDiff; savedSunVector[i] = sunDirEst[i]; } *sunVectorDerivativeValid = true; if (timeOfSavedSusDirEst.tv_sec == 0) { sunVectorDerivative[0] = 0; sunVectorDerivative[1] = 0; sunVectorDerivative[2] = 0; *sunVectorDerivativeValid = false; } timeOfSavedSusDirEst = timeOfSusMeasurement; /* -------- Sun Model Direction (IJK frame) ------- */ // if (useSunModel) eventuell double JD2000 = MathOperations::convertUnixToJD2000(timeOfSusMeasurement); //Julean Centuries double JC2000 = JD2000 / 36525; double meanLongitude = (sunModelParameters->omega_0 + (sunModelParameters->domega) * JC2000) * PI /180; double meanAnomaly = (sunModelParameters->m_0 + sunModelParameters->dm * JC2000) * PI / 180.; double eclipticLongitude = meanLongitude + sunModelParameters->p1 * sin(meanAnomaly) + sunModelParameters->p2 * sin(2 * meanAnomaly); double epsilon = sunModelParameters->e - (sunModelParameters->e1) * JC2000; sunVectorInertial[0] = cos(eclipticLongitude); sunVectorInertial[1] = sin(eclipticLongitude) * cos(epsilon); sunVectorInertial[2] = sin(eclipticLongitude) * sin(epsilon); *sunVectorInertialValid = true; } void SensorProcessing::processRmu(const double rmu0Value[], bool rmu0valid, const double rmu1Value[], bool rmu1valid, const double rmu2Value[], bool rmu2valid, timeval timeOfrmuMeasurement, const AcsParameters::RmuHandlingParameters *rmuParameters, double *satRatEst, bool *satRateEstValid){ if (!rmu0valid && !rmu1valid && !rmu2valid) { *satRateEstValid = false; return; } // Transforming Values to the Body Frame (actually it is the geometry frame atm) double rmu0ValueBody[3] = {0,0,0}, rmu1ValueBody[3]= {0,0,0}, rmu2ValueBody[3] = {0,0,0}; bool validUnit[3] = {false, false, false}; uint8_t validCount = 0; if (rmu0valid) { MatrixOperations::multiply(rmuParameters->rmu0orientationMatrix[0], rmu0Value, rmu0ValueBody, 3, 3, 1); validCount += 1; validUnit[0] = true; } if (rmu1valid) { MatrixOperations::multiply(rmuParameters->rmu1orientationMatrix[0], rmu1Value, rmu1ValueBody, 3, 3, 1); validCount += 1; validUnit[1] = true; } if (rmu2valid) { MatrixOperations::multiply(rmuParameters->rmu2orientationMatrix[0], rmu2Value, rmu2ValueBody, 3, 3, 1); validCount += 1; validUnit[2] = true; } /* -------- SatRateEst: Middle Value ------- */ double rmuValues[3][3] = { { rmu0ValueBody[0], rmu1ValueBody[0], rmu2ValueBody[0]}, { rmu0ValueBody[1], rmu1ValueBody[1], rmu2ValueBody[1]}, { rmu0ValueBody[2], rmu1ValueBody[2], rmu2ValueBody[2]} }; double rmuValidValues[3][validCount]; uint8_t j = 0; for (uint8_t i = 0; i < validCount; i++) { if (validUnit[i]) { rmuValidValues[0][j] = rmuValues[0][i]; rmuValidValues[1][j] = rmuValues[1][i]; rmuValidValues[2][j] = rmuValues[2][i]; j += 1; } } //Selection Sort double rmuValidValuesSort[3][validCount]; MathOperations::selectionSort(*rmuValidValues, *rmuValidValuesSort, 3, validCount); uint8_t n = ceil(validCount/2); satRatEst[0] = rmuValidValuesSort[0][n]; satRatEst[1] = rmuValidValuesSort[1][n]; satRatEst[2] = rmuValidValuesSort[2][n]; *satRateEstValid = true; } void SensorProcessing::processGps(const double gps0latitude, const double gps0longitude, const bool validGps, double *gcLatitude, double *gdLongitude){ // name to convert not process if (validGps) { // Transforming from Degree to Radians and calculation geocentric lattitude from geodetic *gdLongitude = gps0longitude * PI / 180; double latitudeRad = gps0latitude * PI / 180; double eccentricityWgs84 = 0.0818195; double factor = 1 - pow(eccentricityWgs84, 2); *gcLatitude = atan(factor * tan(latitudeRad)); validGcLatitude = true; } } void SensorProcessing::process(timeval now, ACS::SensorValues *sensorValues, ACS::OutputValues *outputValues, const AcsParameters *acsParameters) { sensorValues->update(); processGps(sensorValues->gps0latitude, sensorValues->gps0longitude, sensorValues->gps0Valid, &outputValues->gcLatitude, &outputValues->gdLongitude); outputValues->mgmUpdated = processMgm(sensorValues->mgm0, sensorValues->mgm0Valid, sensorValues->mgm1, sensorValues->mgm1Valid, sensorValues->mgm2, sensorValues->mgm2Valid, sensorValues->mgm3, sensorValues->mgm3Valid, sensorValues->mgm4, sensorValues->mgm4Valid, now, &acsParameters->mgmHandlingParameters, outputValues->gcLatitude, outputValues->gdLongitude, sensorValues->gps0altitude, sensorValues->gps0Valid, outputValues->magFieldEst, &outputValues->magFieldEstValid, outputValues->magFieldModel, &outputValues->magFieldModelValid, outputValues->magneticFieldVectorDerivative, &outputValues->magneticFieldVectorDerivativeValid); // VALID outputs- PoolVariable ? processSus(sensorValues->sus0, sensorValues->sus0Valid, sensorValues->sus1, sensorValues->sus1Valid, sensorValues->sus2, sensorValues->sus2Valid, sensorValues->sus3, sensorValues->sus3Valid, sensorValues->sus4, sensorValues->sus4Valid, sensorValues->sus5, sensorValues->sus5Valid, sensorValues->sus6, sensorValues->sus6Valid, sensorValues->sus7, sensorValues->sus7Valid, sensorValues->sus8, sensorValues->sus8Valid, sensorValues->sus9, sensorValues->sus9Valid, sensorValues->sus10, sensorValues->sus10Valid, sensorValues->sus11, sensorValues->sus11Valid, now, &acsParameters->susHandlingParameters, &acsParameters->sunModelParameters, outputValues->sunDirEst, &outputValues->sunDirEstValid, outputValues->sunDirModel, &outputValues->sunDirModelValid, outputValues->sunVectorDerivative, &outputValues->sunVectorDerivativeValid); // VALID outputs ? processRmu(sensorValues->rmu0, sensorValues->rmu0Valid, sensorValues->rmu1, sensorValues->rmu1Valid, sensorValues->rmu2, sensorValues->rmu2Valid, now, &acsParameters->rmuHandlingParameters, outputValues->satRateEst, &outputValues->satRateEstValid); }