#include #include #include #include "OBSWConfig.h" #include "mission/config/comCfg.h" SyrlinksHandler::SyrlinksHandler(object_id_t objectId, object_id_t comIF, CookieIF* comCookie, power::Switch_t powerSwitch, FailureIsolationBase* customFdir) : DeviceHandlerBase(objectId, comIF, comCookie, customFdir), rxDataset(this), txDataset(this), temperatureSet(this), powerSwitch(powerSwitch) { if (comCookie == nullptr) { sif::warning << "SyrlinksHkHandler: Invalid com cookie" << std::endl; } } SyrlinksHandler::~SyrlinksHandler() = default; void SyrlinksHandler::doStartUp() { if (internalState == InternalState::OFF) { internalState = InternalState::ENABLE_TEMPERATURE_PROTECTION; commandExecuted = false; } if (internalState == InternalState::ENABLE_TEMPERATURE_PROTECTION) { if (commandExecuted) { // Go to normal mode immediately and disable transmitter on startup. setMode(_MODE_TO_ON); internalState = InternalState::TX_TRANSITION; commandExecuted = false; } } } void SyrlinksHandler::doShutDown() { // In any case, always disable TX first. if (internalState != InternalState::TX_TRANSITION) { internalState = InternalState::TX_TRANSITION; transState = TransitionState::SET_TX_STANDBY; commandExecuted = false; } if (internalState == InternalState::TX_TRANSITION) { if (commandExecuted) { temperatureSet.setValidity(false, true); internalState = InternalState::OFF; transState = TransitionState::IDLE; commandExecuted = false; setMode(_MODE_POWER_DOWN); } } } ReturnValue_t SyrlinksHandler::buildNormalDeviceCommand(DeviceCommandId_t* id) { switch (nextCommand) { case (syrlinks::READ_RX_STATUS_REGISTERS): *id = syrlinks::READ_RX_STATUS_REGISTERS; nextCommand = syrlinks::READ_TX_STATUS; break; case (syrlinks::READ_TX_STATUS): *id = syrlinks::READ_TX_STATUS; nextCommand = syrlinks::READ_TX_WAVEFORM; break; case (syrlinks::READ_TX_WAVEFORM): *id = syrlinks::READ_TX_WAVEFORM; nextCommand = syrlinks::READ_TX_AGC_VALUE_HIGH_BYTE; break; case (syrlinks::READ_TX_AGC_VALUE_HIGH_BYTE): *id = syrlinks::READ_TX_AGC_VALUE_HIGH_BYTE; nextCommand = syrlinks::READ_TX_AGC_VALUE_LOW_BYTE; break; case (syrlinks::READ_TX_AGC_VALUE_LOW_BYTE): *id = syrlinks::READ_TX_AGC_VALUE_LOW_BYTE; nextCommand = syrlinks::TEMP_POWER_AMPLIFIER_HIGH_BYTE; break; case (syrlinks::TEMP_POWER_AMPLIFIER_HIGH_BYTE): *id = syrlinks::TEMP_POWER_AMPLIFIER_HIGH_BYTE; nextCommand = syrlinks::TEMP_POWER_AMPLIFIER_LOW_BYTE; break; case (syrlinks::TEMP_POWER_AMPLIFIER_LOW_BYTE): *id = syrlinks::TEMP_POWER_AMPLIFIER_LOW_BYTE; nextCommand = syrlinks::TEMP_BASEBAND_BOARD_HIGH_BYTE; break; case (syrlinks::TEMP_BASEBAND_BOARD_HIGH_BYTE): *id = syrlinks::TEMP_BASEBAND_BOARD_HIGH_BYTE; nextCommand = syrlinks::TEMP_BASEBAND_BOARD_LOW_BYTE; break; case (syrlinks::TEMP_BASEBAND_BOARD_LOW_BYTE): *id = syrlinks::TEMP_BASEBAND_BOARD_LOW_BYTE; nextCommand = syrlinks::READ_RX_STATUS_REGISTERS; break; default: sif::debug << "SyrlinksHkHandler::buildNormalDeviceCommand: rememberCommandId has invalid" << "command id" << std::endl; break; } return buildCommandFromCommand(*id, nullptr, 0); } ReturnValue_t SyrlinksHandler::buildTransitionDeviceCommand(DeviceCommandId_t* id) { if(transState == TransitionState::CMD_PENDING or transState == TransitionState::DONE) { return NOTHING_TO_SEND; } switch (internalState) { case InternalState::ENABLE_TEMPERATURE_PROTECTION: { *id = syrlinks::WRITE_LCL_CONFIG; transState = TransitionState::CMD_PENDING; return buildCommandFromCommand(*id, nullptr, 0); } case InternalState::TX_TRANSITION: { switch (transState) { case TransitionState::SET_TX_MODULATION: { *id = syrlinks::SET_TX_MODE_MODULATION; return buildCommandFromCommand(*id, nullptr, 0); } case TransitionState::SELECT_MODULATION_BPSK: { *id = syrlinks::SET_WAVEFORM_BPSK; return buildCommandFromCommand(*id, nullptr, 0); } case TransitionState::SELECT_MODULATION_0QPSK: { *id = syrlinks::SET_WAVEFORM_0QPSK; return buildCommandFromCommand(*id, nullptr, 0); } case TransitionState::SET_TX_CW: { *id = syrlinks::SET_TX_MODE_CW; return buildCommandFromCommand(*id, nullptr, 0); } case TransitionState::SET_TX_STANDBY: { *id = syrlinks::SET_TX_MODE_STANDBY; return buildCommandFromCommand(*id, nullptr, 0); } default: { return NOTHING_TO_SEND; } } transState = TransitionState::CMD_PENDING; break; } default: { break; } } return NOTHING_TO_SEND; } ReturnValue_t SyrlinksHandler::buildCommandFromCommand(DeviceCommandId_t deviceCommand, const uint8_t* commandData, size_t commandDataLen) { switch (deviceCommand) { case (syrlinks::RESET_UNIT): { prepareCommand(resetCommand, deviceCommand); return returnvalue::OK; } case (syrlinks::SET_TX_MODE_STANDBY): { prepareCommand(setTxModeStandby, deviceCommand); return returnvalue::OK; } case (syrlinks::SET_TX_MODE_MODULATION): { prepareCommand(setTxModeModulation, deviceCommand); return returnvalue::OK; } case (syrlinks::SET_TX_MODE_CW): { prepareCommand(setTxModeCw, deviceCommand); return returnvalue::OK; } case (syrlinks::WRITE_LCL_CONFIG): { prepareCommand(writeLclConfig, deviceCommand); return returnvalue::OK; } case (syrlinks::READ_RX_STATUS_REGISTERS): { prepareCommand(readRxStatusRegCommand, deviceCommand); return returnvalue::OK; } case (syrlinks::READ_LCL_CONFIG): { prepareCommand(readLclConfig, deviceCommand); return returnvalue::OK; } case (syrlinks::READ_TX_STATUS): { prepareCommand(readTxStatus, deviceCommand); return returnvalue::OK; } case (syrlinks::READ_TX_WAVEFORM): { prepareCommand(readTxWaveform, deviceCommand); return returnvalue::OK; } case (syrlinks::READ_TX_AGC_VALUE_HIGH_BYTE): { prepareCommand(readTxAgcValueHighByte, deviceCommand); return returnvalue::OK; } case (syrlinks::READ_TX_AGC_VALUE_LOW_BYTE): { prepareCommand(readTxAgcValueLowByte, deviceCommand); return returnvalue::OK; } case (syrlinks::TEMP_POWER_AMPLIFIER_HIGH_BYTE): { prepareCommand(tempPowerAmpBoardHighByte, deviceCommand); return returnvalue::OK; } case (syrlinks::TEMP_POWER_AMPLIFIER_LOW_BYTE): { prepareCommand(tempPowerAmpBoardLowByte, deviceCommand); return returnvalue::OK; } case (syrlinks::TEMP_BASEBAND_BOARD_HIGH_BYTE): { prepareCommand(tempBasebandBoardHighByte, deviceCommand); return returnvalue::OK; } case (syrlinks::TEMP_BASEBAND_BOARD_LOW_BYTE): { prepareCommand(tempBasebandBoardLowByte, deviceCommand); return returnvalue::OK; } case (syrlinks::SET_WAVEFORM_BPSK): { prepareCommand(configBPSK, deviceCommand); return returnvalue::OK; } case (syrlinks::SET_WAVEFORM_0QPSK): { prepareCommand(configOQPSK, deviceCommand); return returnvalue::OK; } case (syrlinks::ENABLE_DEBUG): { debugMode = true; rawPacketLen = 0; return returnvalue::OK; } case (syrlinks::DISABLE_DEBUG): { debugMode = false; rawPacketLen = 0; return returnvalue::OK; } default: return DeviceHandlerIF::COMMAND_NOT_IMPLEMENTED; } return returnvalue::FAILED; } void SyrlinksHandler::fillCommandAndReplyMap() { this->insertInCommandAndReplyMap(syrlinks::RESET_UNIT, 1, nullptr, syrlinks::ACK_SIZE, false, true, syrlinks::ACK_REPLY); this->insertInCommandAndReplyMap(syrlinks::SET_TX_MODE_STANDBY, 1, nullptr, syrlinks::ACK_SIZE, false, true, syrlinks::ACK_REPLY); this->insertInCommandAndReplyMap(syrlinks::SET_TX_MODE_MODULATION, 1, nullptr, syrlinks::ACK_SIZE, false, true, syrlinks::ACK_REPLY); this->insertInCommandAndReplyMap(syrlinks::SET_TX_MODE_CW, 1, nullptr, syrlinks::ACK_SIZE, false, true, syrlinks::ACK_REPLY); this->insertInCommandAndReplyMap(syrlinks::WRITE_LCL_CONFIG, 1, nullptr, syrlinks::ACK_SIZE, false, true, syrlinks::ACK_REPLY); this->insertInCommandAndReplyMap(syrlinks::SET_WAVEFORM_BPSK, 1, nullptr, syrlinks::ACK_SIZE, false, true, syrlinks::ACK_REPLY); this->insertInCommandAndReplyMap(syrlinks::SET_WAVEFORM_0QPSK, 1, nullptr, syrlinks::ACK_SIZE, false, true, syrlinks::ACK_REPLY); this->insertInCommandMap(syrlinks::ENABLE_DEBUG); this->insertInCommandMap(syrlinks::DISABLE_DEBUG); this->insertInCommandAndReplyMap(syrlinks::READ_LCL_CONFIG, 1, nullptr, syrlinks::READ_ONE_REGISTER_REPLY_SIE); this->insertInCommandAndReplyMap(syrlinks::READ_TX_STATUS, 1, &txDataset, syrlinks::READ_ONE_REGISTER_REPLY_SIE); this->insertInCommandAndReplyMap(syrlinks::READ_TX_WAVEFORM, 1, &txDataset, syrlinks::READ_ONE_REGISTER_REPLY_SIE); this->insertInCommandAndReplyMap(syrlinks::READ_TX_AGC_VALUE_HIGH_BYTE, 1, &txDataset, syrlinks::READ_ONE_REGISTER_REPLY_SIE); this->insertInCommandAndReplyMap(syrlinks::READ_TX_AGC_VALUE_LOW_BYTE, 1, &txDataset, syrlinks::READ_ONE_REGISTER_REPLY_SIE); this->insertInCommandAndReplyMap(syrlinks::TEMP_POWER_AMPLIFIER_HIGH_BYTE, 1, nullptr, syrlinks::READ_ONE_REGISTER_REPLY_SIE); this->insertInCommandAndReplyMap(syrlinks::TEMP_POWER_AMPLIFIER_LOW_BYTE, 1, nullptr, syrlinks::READ_ONE_REGISTER_REPLY_SIE); this->insertInCommandAndReplyMap(syrlinks::TEMP_BASEBAND_BOARD_HIGH_BYTE, 1, nullptr, syrlinks::READ_ONE_REGISTER_REPLY_SIE); this->insertInCommandAndReplyMap(syrlinks::TEMP_BASEBAND_BOARD_LOW_BYTE, 1, nullptr, syrlinks::READ_ONE_REGISTER_REPLY_SIE); this->insertInCommandAndReplyMap(syrlinks::READ_RX_STATUS_REGISTERS, 1, &rxDataset, syrlinks::RX_STATUS_REGISTERS_REPLY_SIZE); } ReturnValue_t SyrlinksHandler::scanForReply(const uint8_t* start, size_t remainingSize, DeviceCommandId_t* foundId, size_t* foundLen) { ReturnValue_t result = returnvalue::OK; if (*start != '<') { sif::warning << "SyrlinksHkHandler::scanForReply: Missing start frame character" << std::endl; return MISSING_START_FRAME_CHARACTER; } switch (*(start + 1)) { case ('A'): *foundLen = syrlinks::ACK_SIZE; *foundId = syrlinks::ACK_REPLY; break; case ('E'): *foundLen = syrlinks::RX_STATUS_REGISTERS_REPLY_SIZE; *foundId = syrlinks::READ_RX_STATUS_REGISTERS; break; case ('R'): *foundId = rememberCommandId; *foundLen = syrlinks::READ_ONE_REGISTER_REPLY_SIE; break; default: sif::warning << "SyrlinksHkHandler::scanForReply: Unknown reply identifier" << std::endl; result = IGNORE_FULL_PACKET; break; } return result; } ReturnValue_t SyrlinksHandler::getSwitches(const uint8_t** switches, uint8_t* numberOfSwitches) { if (powerSwitch == power::NO_SWITCH) { return DeviceHandlerBase::NO_SWITCH; } *numberOfSwitches = 1; *switches = &powerSwitch; return returnvalue::OK; } ReturnValue_t SyrlinksHandler::interpretDeviceReply(DeviceCommandId_t id, const uint8_t* packet) { ReturnValue_t result; switch (id) { case (syrlinks::ACK_REPLY): { result = verifyReply(packet, syrlinks::ACK_SIZE); if (result != returnvalue::OK) { sif::warning << "SyrlinksHkHandler::interpretDeviceReply: Acknowledgment reply has " "invalid crc" << std::endl; return CRC_FAILURE; } result = handleAckReply(packet); if (result != returnvalue::OK) { return result; } break; } case (syrlinks::READ_RX_STATUS_REGISTERS): { result = verifyReply(packet, syrlinks::RX_STATUS_REGISTERS_REPLY_SIZE); if (result != returnvalue::OK) { sif::warning << "SyrlinksHkHandler::interpretDeviceReply: Read rx status registers reply " << "has invalid crc" << std::endl; return CRC_FAILURE; } parseRxStatusRegistersReply(packet); break; } case (syrlinks::READ_LCL_CONFIG): { result = verifyReply(packet, syrlinks::READ_ONE_REGISTER_REPLY_SIE); if (result != returnvalue::OK) { sif::warning << "SyrlinksHkHandler::interpretDeviceReply: Read config lcl reply " << "has invalid crc" << std::endl; return CRC_FAILURE; } parseLclConfigReply(packet); break; } case (syrlinks::READ_TX_STATUS): { result = verifyReply(packet, syrlinks::READ_ONE_REGISTER_REPLY_SIE); if (result != returnvalue::OK) { sif::warning << "SyrlinksHkHandler::interpretDeviceReply: Read tx status reply " << "has invalid crc" << std::endl; return CRC_FAILURE; } parseTxStatusReply(packet); break; } case (syrlinks::READ_TX_WAVEFORM): { result = verifyReply(packet, syrlinks::READ_ONE_REGISTER_REPLY_SIE); if (result != returnvalue::OK) { sif::warning << "SyrlinksHkHandler::interpretDeviceReply: Read tx waveform reply " << "has invalid crc" << std::endl; return CRC_FAILURE; } parseTxWaveformReply(packet); break; } case (syrlinks::READ_TX_AGC_VALUE_HIGH_BYTE): { result = verifyReply(packet, syrlinks::READ_ONE_REGISTER_REPLY_SIE); if (result != returnvalue::OK) { sif::warning << "SyrlinksHkHandler::interpretDeviceReply: Read tx AGC high byte reply " << "has invalid crc" << std::endl; return CRC_FAILURE; } parseAgcHighByte(packet); break; } case (syrlinks::READ_TX_AGC_VALUE_LOW_BYTE): { result = verifyReply(packet, syrlinks::READ_ONE_REGISTER_REPLY_SIE); if (result != returnvalue::OK) { sif::warning << "SyrlinksHkHandler::interpretDeviceReply: Read tx AGC low byte reply " << "has invalid crc" << std::endl; return CRC_FAILURE; } parseAgcLowByte(packet); break; } case (syrlinks::TEMP_BASEBAND_BOARD_HIGH_BYTE): { result = verifyReply(packet, syrlinks::READ_ONE_REGISTER_REPLY_SIE); if (result != returnvalue::OK) { sif::warning << "SyrlinksHkHandler::interpretDeviceReply: Read temperature baseband board " << "high byte reply has invalid crc" << std::endl; return CRC_FAILURE; } rawTempBasebandBoard = convertHexStringToUint8(reinterpret_cast( packet + syrlinks::MESSAGE_HEADER_SIZE)) << 8; break; } case (syrlinks::TEMP_BASEBAND_BOARD_LOW_BYTE): { result = verifyReply(packet, syrlinks::READ_ONE_REGISTER_REPLY_SIE); if (result != returnvalue::OK) { sif::warning << "SyrlinksHkHandler::interpretDeviceReply: Read temperature baseband board" " low byte reply has invalid crc" << std::endl; return CRC_FAILURE; } rawTempBasebandBoard |= convertHexStringToUint8( reinterpret_cast(packet + syrlinks::MESSAGE_HEADER_SIZE)); tempBasebandBoard = calcTempVal(rawTempBasebandBoard); PoolReadGuard rg(&temperatureSet); temperatureSet.temperatureBasebandBoard = tempBasebandBoard; temperatureSet.temperatureBasebandBoard.setValid(true); if (debugMode) { sif::info << "Syrlinks temperature baseband board: " << tempBasebandBoard << " °C" << std::endl; } break; } case (syrlinks::TEMP_POWER_AMPLIFIER_HIGH_BYTE): { result = verifyReply(packet, syrlinks::READ_ONE_REGISTER_REPLY_SIE); if (result != returnvalue::OK) { sif::warning << "SyrlinksHkHandler::interpretDeviceReply: Read temperature power amplifier " << "board high byte reply has invalid crc" << std::endl; return CRC_FAILURE; } rawTempPowerAmplifier = 0; rawTempPowerAmplifier = convertHexStringToUint8(reinterpret_cast( packet + syrlinks::MESSAGE_HEADER_SIZE)) << 8; break; } case (syrlinks::TEMP_POWER_AMPLIFIER_LOW_BYTE): { result = verifyReply(packet, syrlinks::READ_ONE_REGISTER_REPLY_SIE); if (result != returnvalue::OK) { sif::warning << "SyrlinksHkHandler::interpretDeviceReply: Read temperature power amplifier" << " board low byte reply has invalid crc" << std::endl; return CRC_FAILURE; } rawTempPowerAmplifier |= convertHexStringToUint8( reinterpret_cast(packet + syrlinks::MESSAGE_HEADER_SIZE)); tempPowerAmplifier = calcTempVal(rawTempPowerAmplifier); PoolReadGuard rg(&temperatureSet); temperatureSet.temperaturePowerAmplifier = tempPowerAmplifier; temperatureSet.temperaturePowerAmplifier.setValid(true); if (debugMode) { sif::info << "Syrlinks temperature power amplifier board: " << tempPowerAmplifier << " °C" << std::endl; } break; } default: { sif::debug << "SyrlinksHkHandler::interpretDeviceReply: Unknown device reply id" << std::endl; return DeviceHandlerIF::UNKNOWN_DEVICE_REPLY; } } return returnvalue::OK; } LocalPoolDataSetBase* SyrlinksHandler::getDataSetHandle(sid_t sid) { if (sid == rxDataset.getSid()) { return &rxDataset; } else if (sid == txDataset.getSid()) { return &txDataset; } else if (sid == temperatureSet.getSid()) { return &temperatureSet; } else { sif::warning << "SyrlinksHkHandler::getDataSetHandle: Invalid sid" << std::endl; return nullptr; } } std::string SyrlinksHandler::convertUint16ToHexString(uint16_t intValue) { std::stringstream stream; stream << std::setfill('0') << std::setw(4) << std::hex << std::uppercase << intValue; return stream.str(); } uint8_t SyrlinksHandler::convertHexStringToUint8(const char* twoChars) { uint32_t value; std::string hexString(twoChars, 2); std::stringstream stream; stream << std::hex << hexString; stream >> value; return static_cast(value); } uint16_t SyrlinksHandler::convertHexStringToUint16(const char* fourChars) { uint16_t value = 0; value = convertHexStringToUint8(fourChars) << 8 | convertHexStringToUint8(fourChars + 2); return value; } ReturnValue_t SyrlinksHandler::parseReplyStatus(const char* status) { switch (*status) { case '0': return returnvalue::OK; case '1': sif::debug << "SyrlinksHkHandler::parseReplyStatus: Uart framing or parity error" << std::endl; return UART_FRAMIN_OR_PARITY_ERROR_ACK; case '2': sif::debug << "SyrlinksHkHandler::parseReplyStatus: Bad character detected" << std::endl; return BAD_CHARACTER_ACK; case '3': sif::debug << "SyrlinksHkHandler::parseReplyStatus: Bad parameter value (unexpected value " << "detected" << std::endl; return BAD_PARAMETER_VALUE_ACK; case '4': sif::debug << "SyrlinksHkHandler::parseReplyStatus: Bad end of frame" << std::endl; return BAD_END_OF_FRAME_ACK; case '5': sif::debug << "SyrlinksHkHandler::parseReplyStatus: Unknown command id or attempt to access" << " a protected register" << std::endl; return UNKNOWN_COMMAND_ID_ACK; case '6': sif::debug << "SyrlinksHkHandler::parseReplyStatus: Bad CRC" << std::endl; return BAD_CRC_ACK; default: sif::debug << "SyrlinksHkHandler::parseReplyStatus: Status reply contains an invalid " << "status id" << std::endl; return returnvalue::FAILED; } } ReturnValue_t SyrlinksHandler::verifyReply(const uint8_t* packet, uint8_t size) { int result = 0; /* Calculate crc from received packet */ uint16_t crc = CRC::crc16ccitt(packet, size - syrlinks::SIZE_CRC_AND_TERMINATION, CRC_INITIAL_VALUE); std::string recalculatedCrc = convertUint16ToHexString(crc); const char* startOfCrc = reinterpret_cast(packet + size - syrlinks::SIZE_CRC_AND_TERMINATION); const char* endOfCrc = reinterpret_cast(packet + size - 1); std::string replyCrc(startOfCrc, endOfCrc); result = recalculatedCrc.compare(replyCrc); if (result != 0) { return returnvalue::FAILED; } return returnvalue::OK; } void SyrlinksHandler::parseRxStatusRegistersReply(const uint8_t* packet) { PoolReadGuard readHelper(&rxDataset); uint16_t offset = syrlinks::MESSAGE_HEADER_SIZE; rxDataset.rxStatus = convertHexStringToUint8(reinterpret_cast(packet + offset)); offset += 2; rxDataset.rxSensitivity = convertHexStringTo32bit(reinterpret_cast(packet + offset), 6); offset += 6; rxDataset.rxFrequencyShift = convertHexStringTo32bit(reinterpret_cast(packet + offset), 6); offset += 6; rxDataset.rxIqPower = convertHexStringToUint16(reinterpret_cast(packet + offset)); offset += 4; rxDataset.rxAgcValue = convertHexStringToUint16(reinterpret_cast(packet + offset)); offset += 4; offset += 2; // reserved register rxDataset.rxDemodEb = convertHexStringTo32bit(reinterpret_cast(packet + offset), 6); offset += 6; rxDataset.rxDemodN0 = convertHexStringTo32bit(reinterpret_cast(packet + offset), 6); offset += 6; rxDataset.rxDataRate = convertHexStringToUint8(reinterpret_cast(packet + offset)); rxDataset.setValidity(true, true); if (debugMode) { #if OBSW_VERBOSE_LEVEL >= 1 sif::info << "Syrlinks RX Status: 0x" << std::hex << (unsigned int)rxDataset.rxStatus.value << std::endl; sif::info << "Syrlinks RX Sensitivity: " << std::dec << rxDataset.rxSensitivity << std::endl; sif::info << "Syrlinks RX Frequency Shift: " << rxDataset.rxFrequencyShift << std::endl; sif::info << "Syrlinks RX IQ Power: " << rxDataset.rxIqPower << std::endl; sif::info << "Syrlinks RX AGC Value: " << rxDataset.rxAgcValue << std::endl; sif::info << "Syrlinks RX Demod Eb: " << rxDataset.rxDemodEb << std::endl; sif::info << "Syrlinks RX Demod N0: " << rxDataset.rxDemodN0 << std::endl; sif::info << "Syrlinks RX Datarate: " << (unsigned int)rxDataset.rxDataRate.value << std::endl; #endif } } void SyrlinksHandler::parseLclConfigReply(const uint8_t* packet) { uint16_t offset = syrlinks::MESSAGE_HEADER_SIZE; uint8_t lclConfig = convertHexStringToUint8(reinterpret_cast(packet + offset)); if (debugMode) { sif::info << "SyrlinksHkHandler::parseRxStatusRegistersReply: Lcl config: " << static_cast(lclConfig) << std::endl; } } void SyrlinksHandler::parseTxStatusReply(const uint8_t* packet) { PoolReadGuard readHelper(&txDataset); uint16_t offset = syrlinks::MESSAGE_HEADER_SIZE; txDataset.txStatus = convertHexStringToUint8(reinterpret_cast(packet + offset)); txDataset.txStatus.setValid(true); if (debugMode) { sif::info << "Syrlinks TX Status: 0x" << std::hex << (unsigned int)txDataset.txStatus.value << std::endl; } } void SyrlinksHandler::parseTxWaveformReply(const uint8_t* packet) { PoolReadGuard readHelper(&txDataset); uint16_t offset = syrlinks::MESSAGE_HEADER_SIZE; txDataset.txWaveform = convertHexStringToUint8(reinterpret_cast(packet + offset)); txDataset.txWaveform.setValid(true); if (debugMode) { sif::info << "Syrlinks TX Waveform: 0x" << std::hex << (unsigned int)txDataset.txWaveform.value << std::endl; } } void SyrlinksHandler::parseAgcLowByte(const uint8_t* packet) { PoolReadGuard readHelper(&txDataset); uint16_t offset = syrlinks::MESSAGE_HEADER_SIZE; txDataset.txAgcValue = agcValueHighByte << 8 | convertHexStringToUint8(reinterpret_cast(packet + offset)); txDataset.txAgcValue.setValid(true); if (debugMode) { sif::info << "Syrlinks TX AGC Value: " << txDataset.txAgcValue << std::endl; } } void SyrlinksHandler::parseAgcHighByte(const uint8_t* packet) { PoolReadGuard readHelper(&txDataset); uint16_t offset = syrlinks::MESSAGE_HEADER_SIZE; agcValueHighByte = convertHexStringToUint8(reinterpret_cast(packet + offset)); } uint32_t SyrlinksHandler::getTransitionDelayMs(Mode_t modeFrom, Mode_t modeTo) { return 2500; } ReturnValue_t SyrlinksHandler::initializeLocalDataPool(localpool::DataPool& localDataPoolMap, LocalDataPoolManager& poolManager) { localDataPoolMap.emplace(syrlinks::RX_STATUS, new PoolEntry({0})); localDataPoolMap.emplace(syrlinks::RX_SENSITIVITY, new PoolEntry({0})); localDataPoolMap.emplace(syrlinks::RX_FREQUENCY_SHIFT, new PoolEntry({0})); localDataPoolMap.emplace(syrlinks::RX_IQ_POWER, new PoolEntry({0})); localDataPoolMap.emplace(syrlinks::RX_AGC_VALUE, new PoolEntry({0})); localDataPoolMap.emplace(syrlinks::RX_DEMOD_EB, new PoolEntry({0})); localDataPoolMap.emplace(syrlinks::RX_DEMOD_N0, new PoolEntry({0})); localDataPoolMap.emplace(syrlinks::RX_DATA_RATE, new PoolEntry({0})); localDataPoolMap.emplace(syrlinks::TX_STATUS, new PoolEntry({0})); localDataPoolMap.emplace(syrlinks::TX_WAVEFORM, new PoolEntry({0})); localDataPoolMap.emplace(syrlinks::TX_AGC_VALUE, new PoolEntry({0})); localDataPoolMap.emplace(syrlinks::TEMP_BASEBAND_BOARD, new PoolEntry({0})); localDataPoolMap.emplace(syrlinks::TEMP_POWER_AMPLIFIER, new PoolEntry({0})); bool enableHkSets = false; #if OBSW_ENABLE_PERIODIC_HK == 1 enableHkSets = true; #endif poolManager.subscribeForDiagPeriodicPacket( subdp::DiagnosticsHkPeriodicParams(txDataset.getSid(), enableHkSets, 60.0)); poolManager.subscribeForDiagPeriodicPacket( subdp::DiagnosticsHkPeriodicParams(rxDataset.getSid(), enableHkSets, 60.0)); poolManager.subscribeForRegularPeriodicPacket( subdp::RegularHkPeriodicParams(temperatureSet.getSid(), enableHkSets, 60.0)); return returnvalue::OK; } void SyrlinksHandler::setModeNormal() { setMode(_MODE_TO_NORMAL); } float SyrlinksHandler::calcTempVal(uint16_t raw) { return 0.126984 * raw - 67.87; } ReturnValue_t SyrlinksHandler::handleAckReply(const uint8_t* packet) { ReturnValue_t result = parseReplyStatus(reinterpret_cast(packet + syrlinks::MESSAGE_HEADER_SIZE)); switch (rememberCommandId) { case (syrlinks::WRITE_LCL_CONFIG): { if (isTransitionalMode()) { if (result != returnvalue::OK) { internalState = InternalState::OFF; } else if (result == returnvalue::OK) { commandExecuted = true; } } break; } case (syrlinks::SET_WAVEFORM_BPSK): case (syrlinks::SET_WAVEFORM_0QPSK): { if (result == returnvalue::OK and isTransitionalMode()) { transState = TransitionState::SET_TX_MODULATION; commandExecuted = true; } break; } case (syrlinks::SET_TX_MODE_STANDBY): { if (result == returnvalue::OK and isTransitionalMode()) { transState = TransitionState::DONE; commandExecuted = true; } break; } case (syrlinks::SET_TX_MODE_MODULATION): { if (result == returnvalue::OK and isTransitionalMode()) { transState = TransitionState::DONE; commandExecuted = true; } break; } case (syrlinks::SET_TX_MODE_CW): { if (result == returnvalue::OK and isTransitionalMode()) { commandExecuted = true; transState = TransitionState::DONE; } break; } default: { sif::error << "Syrlinks: Unexpected ACK reply" << std::endl; } } switch (rememberCommandId) { case (syrlinks::SET_TX_MODE_STANDBY): { triggerEvent(syrlinks::TX_OFF, 0, 0); break; } case (syrlinks::SET_TX_MODE_MODULATION): case (syrlinks::SET_TX_MODE_CW): { triggerEvent(syrlinks::TX_ON, getSubmode(), static_cast(com::getCurrentDatarate())); break; } } return result; } ReturnValue_t SyrlinksHandler::isModeCombinationValid(Mode_t mode, Submode_t submode) { if (mode == HasModesIF::MODE_ON or mode == DeviceHandlerIF::MODE_NORMAL) { if (submode >= com::Submode::NUM_SUBMODES or submode < com::Submode::RX_ONLY) { return HasModesIF::INVALID_SUBMODE; } return returnvalue::OK; } return DeviceHandlerBase::isModeCombinationValid(mode, submode); } ReturnValue_t SyrlinksHandler::getParameter(uint8_t domainId, uint8_t uniqueId, ParameterWrapper* parameterWrapper, const ParameterWrapper* newValues, uint16_t startAtIndex) { return DeviceHandlerBase::getParameter(domainId, uniqueId, parameterWrapper, newValues, startAtIndex); } void SyrlinksHandler::prepareCommand(std::string command, DeviceCommandId_t commandId) { command.copy(reinterpret_cast(commandBuffer), command.size(), 0); rawPacketLen = command.size(); rememberCommandId = commandId; rawPacket = commandBuffer; } void SyrlinksHandler::setDebugMode(bool enable) { this->debugMode = enable; } void SyrlinksHandler::doTransition(Mode_t modeFrom, Submode_t subModeFrom) { Mode_t tgtMode = getBaseMode(getMode()); if (transState == TransitionState::DONE) { internalState = InternalState::IDLE; transState = TransitionState::IDLE; DeviceHandlerBase::doTransition(modeFrom, subModeFrom); return; } auto txStandbyHandler = [&]() { txDataset.setReportingEnabled(false); poolManager.changeCollectionInterval(temperatureSet.getSid(), 60.0); transState = TransitionState::SET_TX_STANDBY; internalState = InternalState::TX_TRANSITION; }; auto txOnHandler = [&](TransitionState tgtTransitionState) { txDataset.setReportingEnabled(true); poolManager.changeCollectionInterval(txDataset.getSid(), 10.0); poolManager.changeCollectionInterval(temperatureSet.getSid(), 5.0); internalState = InternalState::TX_TRANSITION; transState = tgtTransitionState; }; if (tgtMode == HasModesIF::MODE_ON or tgtMode == DeviceHandlerIF::MODE_NORMAL) { if(getSubmode() == subModeFrom) { DeviceHandlerBase::doTransition(modeFrom, subModeFrom); } switch (getSubmode()) { case (com::Submode::RX_AND_TX_DEFAULT_DATARATE): { auto currentDatarate = com::getCurrentDatarate(); if (currentDatarate == com::Datarate::LOW_RATE_MODULATION_BPSK) { txOnHandler(TransitionState::SELECT_MODULATION_BPSK); } else if (currentDatarate == com::Datarate::HIGH_RATE_MODULATION_0QPSK) { txOnHandler(TransitionState::SELECT_MODULATION_0QPSK); } break; } case (com::Submode::RX_AND_TX_LOW_DATARATE): { txOnHandler(TransitionState::SELECT_MODULATION_BPSK); break; } case (com::Submode::RX_AND_TX_HIGH_DATARATE): { txOnHandler(TransitionState::SELECT_MODULATION_0QPSK); break; } case (com::Submode::RX_ONLY): { txStandbyHandler(); return; } case (com::Submode::RX_AND_TX_CW): { txOnHandler(TransitionState::SET_TX_CW); break; } default: { sif::error << "SyrlinksHandler: Unexpected submode " << getSubmode() << std::endl; DeviceHandlerBase::doTransition(modeFrom, subModeFrom); } } } else if (tgtMode == HasModesIF::MODE_OFF) { txStandbyHandler(); } DeviceHandlerBase::doTransition(modeFrom, subModeFrom); }