#include "SensorProcessing.h" SensorProcessing::SensorProcessing() {} SensorProcessing::~SensorProcessing() {} void SensorProcessing::processMgm(const float *mgm0Value, bool mgm0valid, const float *mgm1Value, bool mgm1valid, const float *mgm2Value, bool mgm2valid, const float *mgm3Value, bool mgm3valid, const float *mgm4Value, bool mgm4valid, timeval timeAbsolute, double timeDelta, const AcsParameters::MgmHandlingParameters *mgmParameters, acsctrl::GpsDataProcessed *gpsDataProcessed, acsctrl::MgmDataProcessed *mgmDataProcessed) { // ---------------- IGRF- 13 Implementation here // ------------------------------------------------ double magIgrfModel[3] = {0.0, 0.0, 0.0}; bool gpsValid = false; if (gpsDataProcessed->source.value != acs::gps::Source::NONE) { // There seems to be a bug here, which causes the model vector to drift until infinity, if the // model class is not initialized new every time. Works for now, but should be investigated. Igrf13Model igrf13; igrf13.schmidtNormalization(); igrf13.updateCoeffGH(timeAbsolute); igrf13.magFieldComp(gpsDataProcessed->gdLongitude.value, gpsDataProcessed->gcLatitude.value, gpsDataProcessed->altitude.value, timeAbsolute, magIgrfModel); gpsValid = true; } if (not mgm0valid and not mgm1valid and not mgm2valid and not mgm3valid and (not mgm4valid or not mgmParameters->useMgm4)) { { PoolReadGuard pg(mgmDataProcessed); if (pg.getReadResult() == returnvalue::OK) { std::memcpy(mgmDataProcessed->mgm0vec.value, ZERO_VEC_F, 3 * sizeof(float)); std::memcpy(mgmDataProcessed->mgm1vec.value, ZERO_VEC_F, 3 * sizeof(float)); std::memcpy(mgmDataProcessed->mgm2vec.value, ZERO_VEC_F, 3 * sizeof(float)); std::memcpy(mgmDataProcessed->mgm3vec.value, ZERO_VEC_F, 3 * sizeof(float)); std::memcpy(mgmDataProcessed->mgm4vec.value, ZERO_VEC_F, 3 * sizeof(float)); std::memcpy(mgmDataProcessed->mgmVecTot.value, ZERO_VEC_D, 3 * sizeof(double)); std::memcpy(mgmDataProcessed->mgmVecTotDerivative.value, ZERO_VEC_D, 3 * sizeof(double)); mgmDataProcessed->setValidity(false, true); std::memcpy(mgmDataProcessed->magIgrfModel.value, magIgrfModel, 3 * sizeof(double)); mgmDataProcessed->magIgrfModel.setValid(gpsValid); } } std::memcpy(savedMgmVecTot, ZERO_VEC_D, sizeof(savedMgmVecTot)); return; } float mgm0ValueNoBias[3] = {0, 0, 0}, mgm1ValueNoBias[3] = {0, 0, 0}, mgm2ValueNoBias[3] = {0, 0, 0}, mgm3ValueNoBias[3] = {0, 0, 0}, mgm4ValueNoBias[3] = {0, 0, 0}; float mgm0ValueBody[3] = {0, 0, 0}, mgm1ValueBody[3] = {0, 0, 0}, mgm2ValueBody[3] = {0, 0, 0}, mgm3ValueBody[3] = {0, 0, 0}, mgm4ValueBody[3] = {0, 0, 0}; float mgm0ValueCalib[3] = {0, 0, 0}, mgm1ValueCalib[3] = {0, 0, 0}, mgm2ValueCalib[3] = {0, 0, 0}, mgm3ValueCalib[3] = {0, 0, 0}, mgm4ValueCalib[3] = {0, 0, 0}; float sensorFusionNumerator[3] = {0, 0, 0}, sensorFusionDenominator[3] = {0, 0, 0}; if (mgm0valid) { MatrixOperations::multiply(mgmParameters->mgm0orientationMatrix[0], mgm0Value, mgm0ValueBody, 3, 3, 1); VectorOperations::subtract(mgm0ValueBody, mgmParameters->mgm0hardIronOffset, mgm0ValueNoBias, 3); MatrixOperations::multiply(mgmParameters->mgm0softIronInverse[0], mgm0ValueNoBias, mgm0ValueCalib, 3, 3, 1); for (uint8_t i = 0; i < 3; i++) { sensorFusionNumerator[i] += mgm0ValueCalib[i] / mgmParameters->mgm02variance[i]; sensorFusionDenominator[i] += 1 / mgmParameters->mgm02variance[i]; } } if (mgm1valid) { MatrixOperations::multiply(mgmParameters->mgm1orientationMatrix[0], mgm1Value, mgm1ValueBody, 3, 3, 1); VectorOperations::subtract(mgm1ValueBody, mgmParameters->mgm1hardIronOffset, mgm1ValueNoBias, 3); MatrixOperations::multiply(mgmParameters->mgm1softIronInverse[0], mgm1ValueNoBias, mgm1ValueCalib, 3, 3, 1); for (uint8_t i = 0; i < 3; i++) { sensorFusionNumerator[i] += mgm1ValueCalib[i] / mgmParameters->mgm13variance[i]; sensorFusionDenominator[i] += 1 / mgmParameters->mgm13variance[i]; } } if (mgm2valid) { MatrixOperations::multiply(mgmParameters->mgm2orientationMatrix[0], mgm2Value, mgm2ValueBody, 3, 3, 1); VectorOperations::subtract(mgm2ValueBody, mgmParameters->mgm2hardIronOffset, mgm2ValueNoBias, 3); MatrixOperations::multiply(mgmParameters->mgm2softIronInverse[0], mgm2ValueNoBias, mgm2ValueCalib, 3, 3, 1); for (uint8_t i = 0; i < 3; i++) { sensorFusionNumerator[i] += mgm2ValueCalib[i] / mgmParameters->mgm02variance[i]; sensorFusionDenominator[i] += 1 / mgmParameters->mgm02variance[i]; } } if (mgm3valid) { MatrixOperations::multiply(mgmParameters->mgm3orientationMatrix[0], mgm3Value, mgm3ValueBody, 3, 3, 1); VectorOperations::subtract(mgm3ValueBody, mgmParameters->mgm3hardIronOffset, mgm3ValueNoBias, 3); MatrixOperations::multiply(mgmParameters->mgm3softIronInverse[0], mgm3ValueNoBias, mgm3ValueCalib, 3, 3, 1); for (uint8_t i = 0; i < 3; i++) { sensorFusionNumerator[i] += mgm3ValueCalib[i] / mgmParameters->mgm13variance[i]; sensorFusionDenominator[i] += 1 / mgmParameters->mgm13variance[i]; } } if (mgm4valid and mgmParameters->useMgm4) { float mgm4ValueUT[3]; VectorOperations::mulScalar(mgm4Value, 1e-3, mgm4ValueUT, 3); // nT to uT MatrixOperations::multiply(mgmParameters->mgm4orientationMatrix[0], mgm4ValueUT, mgm4ValueBody, 3, 3, 1); VectorOperations::subtract(mgm4ValueBody, mgmParameters->mgm4hardIronOffset, mgm4ValueNoBias, 3); MatrixOperations::multiply(mgmParameters->mgm4softIronInverse[0], mgm4ValueNoBias, mgm4ValueCalib, 3, 3, 1); for (uint8_t i = 0; i < 3; i++) { sensorFusionNumerator[i] += mgm4ValueCalib[i] / mgmParameters->mgm4variance[i]; sensorFusionDenominator[i] += 1 / mgmParameters->mgm4variance[i]; } } double mgmVecTot[3] = {0.0, 0.0, 0.0}; for (uint8_t i = 0; i < 3; i++) { mgmVecTot[i] = sensorFusionNumerator[i] / sensorFusionDenominator[i]; } if (VectorOperations::norm(mgmVecTot, 3) != 0 and mgmDataProcessed->mgmVecTot.isValid()) { lowPassFilter(mgmVecTot, mgmDataProcessed->mgmVecTot.value, mgmParameters->mgmVectorFilterWeight); } //-----------------------Mgm Rate Computation --------------------------------------------------- double mgmVecTotDerivative[3] = {0.0, 0.0, 0.0}; bool mgmVecTotDerivativeValid = false; if (timeDelta > 0 and VectorOperations::norm(savedMgmVecTot, 3) != 0) { VectorOperations::subtract(mgmVecTot, savedMgmVecTot, mgmVecTotDerivative, 3); VectorOperations::mulScalar(mgmVecTotDerivative, 1. / timeDelta, mgmVecTotDerivative, 3); mgmVecTotDerivativeValid = true; } std::memcpy(savedMgmVecTot, mgmVecTot, sizeof(savedMgmVecTot)); if (VectorOperations::norm(mgmVecTotDerivative, 3) != 0 and mgmDataProcessed->mgmVecTotDerivative.isValid()) { lowPassFilter(mgmVecTotDerivative, mgmDataProcessed->mgmVecTotDerivative.value, mgmParameters->mgmDerivativeFilterWeight); } { PoolReadGuard pg(mgmDataProcessed); if (pg.getReadResult() == returnvalue::OK) { std::memcpy(mgmDataProcessed->mgm0vec.value, mgm0ValueCalib, 3 * sizeof(float)); mgmDataProcessed->mgm0vec.setValid(mgm0valid); std::memcpy(mgmDataProcessed->mgm1vec.value, mgm1ValueCalib, 3 * sizeof(float)); mgmDataProcessed->mgm1vec.setValid(mgm1valid); std::memcpy(mgmDataProcessed->mgm2vec.value, mgm2ValueCalib, 3 * sizeof(float)); mgmDataProcessed->mgm2vec.setValid(mgm2valid); std::memcpy(mgmDataProcessed->mgm3vec.value, mgm3ValueCalib, 3 * sizeof(float)); mgmDataProcessed->mgm3vec.setValid(mgm3valid); std::memcpy(mgmDataProcessed->mgm4vec.value, mgm4ValueCalib, 3 * sizeof(float)); mgmDataProcessed->mgm4vec.setValid(mgm4valid); std::memcpy(mgmDataProcessed->mgmVecTot.value, mgmVecTot, 3 * sizeof(double)); mgmDataProcessed->mgmVecTot.setValid(true); std::memcpy(mgmDataProcessed->mgmVecTotDerivative.value, mgmVecTotDerivative, 3 * sizeof(double)); mgmDataProcessed->mgmVecTotDerivative.setValid(mgmVecTotDerivativeValid); std::memcpy(mgmDataProcessed->magIgrfModel.value, magIgrfModel, 3 * sizeof(double)); mgmDataProcessed->magIgrfModel.setValid(gpsValid); mgmDataProcessed->setValidity(true, false); } } } void SensorProcessing::processSus( const uint16_t *sus0Value, bool sus0valid, const uint16_t *sus1Value, bool sus1valid, const uint16_t *sus2Value, bool sus2valid, const uint16_t *sus3Value, bool sus3valid, const uint16_t *sus4Value, bool sus4valid, const uint16_t *sus5Value, bool sus5valid, const uint16_t *sus6Value, bool sus6valid, const uint16_t *sus7Value, bool sus7valid, const uint16_t *sus8Value, bool sus8valid, const uint16_t *sus9Value, bool sus9valid, const uint16_t *sus10Value, bool sus10valid, const uint16_t *sus11Value, bool sus11valid, timeval timeAbsolute, double timeDelta, const AcsParameters::SusHandlingParameters *susParameters, const AcsParameters::SunModelParameters *sunModelParameters, acsctrl::SusDataProcessed *susDataProcessed) { /* -------- Sun Model Direction (IJK frame) ------- */ double JD2000 = TimeSystems::convertUnixToJD2000(timeAbsolute); // Julean Centuries double sunIjkModel[3] = {0.0, 0.0, 0.0}; double JC2000 = JD2000 / 36525.; double meanLongitude = sunModelParameters->omega_0 + (sunModelParameters->domega * JC2000) * M_PI / 180.; double meanAnomaly = (sunModelParameters->m_0 + sunModelParameters->dm * JC2000) * M_PI / 180.; double eclipticLongitude = meanLongitude + sunModelParameters->p1 * sin(meanAnomaly) + sunModelParameters->p2 * sin(2 * meanAnomaly); double epsilon = sunModelParameters->e - (sunModelParameters->e1) * JC2000; sunIjkModel[0] = cos(eclipticLongitude); sunIjkModel[1] = sin(eclipticLongitude) * cos(epsilon); sunIjkModel[2] = sin(eclipticLongitude) * sin(epsilon); VectorOperations::normalize(sunIjkModel, sunIjkModel, 3); uint64_t susBrightness[12] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; if (sus0valid) { susBrightness[0] = susConverter.checkSunSensorData(sus0Value); } if (sus1valid) { susBrightness[1] = susConverter.checkSunSensorData(sus1Value); } if (sus2valid) { susBrightness[2] = susConverter.checkSunSensorData(sus2Value); } if (sus3valid) { susBrightness[3] = susConverter.checkSunSensorData(sus3Value); } if (sus4valid) { susBrightness[4] = susConverter.checkSunSensorData(sus4Value); } if (sus5valid) { susBrightness[5] = susConverter.checkSunSensorData(sus5Value); } if (sus6valid) { susBrightness[6] = susConverter.checkSunSensorData(sus6Value); } if (sus7valid) { susBrightness[7] = susConverter.checkSunSensorData(sus7Value); } if (sus8valid) { susBrightness[8] = susConverter.checkSunSensorData(sus8Value); } if (sus9valid) { susBrightness[9] = susConverter.checkSunSensorData(sus9Value); } if (sus10valid) { susBrightness[10] = susConverter.checkSunSensorData(sus10Value); } if (sus11valid) { susBrightness[11] = susConverter.checkSunSensorData(sus11Value); } bool susValid[12] = {sus0valid, sus1valid, sus2valid, sus3valid, sus4valid, sus5valid, sus6valid, sus7valid, sus8valid, sus9valid, sus10valid, sus11valid}; bool allInvalid = susConverter.checkValidity(susValid, susBrightness, susParameters->susBrightnessThreshold); if (allInvalid) { { PoolReadGuard pg(susDataProcessed); if (pg.getReadResult() == returnvalue::OK) { std::memcpy(susDataProcessed->sus0vec.value, ZERO_VEC_F, 3 * sizeof(float)); std::memcpy(susDataProcessed->sus1vec.value, ZERO_VEC_F, 3 * sizeof(float)); std::memcpy(susDataProcessed->sus2vec.value, ZERO_VEC_F, 3 * sizeof(float)); std::memcpy(susDataProcessed->sus3vec.value, ZERO_VEC_F, 3 * sizeof(float)); std::memcpy(susDataProcessed->sus4vec.value, ZERO_VEC_F, 3 * sizeof(float)); std::memcpy(susDataProcessed->sus5vec.value, ZERO_VEC_F, 3 * sizeof(float)); std::memcpy(susDataProcessed->sus6vec.value, ZERO_VEC_F, 3 * sizeof(float)); std::memcpy(susDataProcessed->sus7vec.value, ZERO_VEC_F, 3 * sizeof(float)); std::memcpy(susDataProcessed->sus8vec.value, ZERO_VEC_F, 3 * sizeof(float)); std::memcpy(susDataProcessed->sus9vec.value, ZERO_VEC_F, 3 * sizeof(float)); std::memcpy(susDataProcessed->sus10vec.value, ZERO_VEC_F, 3 * sizeof(float)); std::memcpy(susDataProcessed->sus11vec.value, ZERO_VEC_F, 3 * sizeof(float)); std::memcpy(susDataProcessed->susVecTot.value, ZERO_VEC_D, 3 * sizeof(double)); std::memcpy(susDataProcessed->susVecTotDerivative.value, ZERO_VEC_D, 3 * sizeof(double)); susDataProcessed->setValidity(false, true); std::memcpy(susDataProcessed->sunIjkModel.value, sunIjkModel, 3 * sizeof(double)); susDataProcessed->sunIjkModel.setValid(true); } } std::memcpy(savedSusVecTot, ZERO_VEC_D, sizeof(savedSusVecTot)); return; } float susVecSensor[12][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}}; float susVecBody[12][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}}; if (susValid[0]) { susConverter.calculateSunVector(susVecSensor[0], sus0Value); MatrixOperations::multiply(susParameters->sus0orientationMatrix[0], susVecSensor[0], susVecBody[0], 3, 3, 1); } if (susValid[1]) { susConverter.calculateSunVector(susVecSensor[1], sus1Value); MatrixOperations::multiply(susParameters->sus1orientationMatrix[0], susVecSensor[1], susVecBody[1], 3, 3, 1); } if (susValid[2]) { susConverter.calculateSunVector(susVecSensor[2], sus2Value); MatrixOperations::multiply(susParameters->sus2orientationMatrix[0], susVecSensor[2], susVecBody[2], 3, 3, 1); } if (susValid[3]) { susConverter.calculateSunVector(susVecSensor[3], sus3Value); MatrixOperations::multiply(susParameters->sus3orientationMatrix[0], susVecSensor[3], susVecBody[3], 3, 3, 1); } if (susValid[4]) { susConverter.calculateSunVector(susVecSensor[4], sus4Value); MatrixOperations::multiply(susParameters->sus4orientationMatrix[0], susVecSensor[4], susVecBody[4], 3, 3, 1); } if (susValid[5]) { susConverter.calculateSunVector(susVecSensor[5], sus5Value); MatrixOperations::multiply(susParameters->sus5orientationMatrix[0], susVecSensor[5], susVecBody[5], 3, 3, 1); } if (susValid[6]) { susConverter.calculateSunVector(susVecSensor[6], sus6Value); MatrixOperations::multiply(susParameters->sus6orientationMatrix[0], susVecSensor[6], susVecBody[6], 3, 3, 1); } if (susValid[7]) { susConverter.calculateSunVector(susVecSensor[7], sus7Value); MatrixOperations::multiply(susParameters->sus7orientationMatrix[0], susVecSensor[7], susVecBody[7], 3, 3, 1); } if (susValid[8]) { susConverter.calculateSunVector(susVecSensor[8], sus8Value); MatrixOperations::multiply(susParameters->sus8orientationMatrix[0], susVecSensor[8], susVecBody[8], 3, 3, 1); } if (susValid[9]) { susConverter.calculateSunVector(susVecSensor[9], sus9Value); MatrixOperations::multiply(susParameters->sus9orientationMatrix[0], susVecSensor[9], susVecBody[9], 3, 3, 1); } if (susValid[10]) { susConverter.calculateSunVector(susVecSensor[10], sus10Value); MatrixOperations::multiply(susParameters->sus10orientationMatrix[0], susVecSensor[10], susVecBody[10], 3, 3, 1); } if (susValid[11]) { susConverter.calculateSunVector(susVecSensor[11], sus11Value); MatrixOperations::multiply(susParameters->sus11orientationMatrix[0], susVecSensor[11], susVecBody[11], 3, 3, 1); } double susMeanValue[3] = {0, 0, 0}; for (uint8_t i = 0; i < 12; i++) { susMeanValue[0] += susVecBody[i][0]; susMeanValue[1] += susVecBody[i][1]; susMeanValue[2] += susVecBody[i][2]; } double susVecTot[3] = {0.0, 0.0, 0.0}; VectorOperations::normalize(susMeanValue, susVecTot, 3); if (VectorOperations::norm(susVecTot, 3) != 0 and susDataProcessed->susVecTot.isValid()) { lowPassFilter(susVecTot, susDataProcessed->susVecTot.value, susParameters->susVectorFilterWeight); } /* -------- Sun Derivatiative --------------------- */ double susVecTotDerivative[3] = {0.0, 0.0, 0.0}; bool susVecTotDerivativeValid = false; if (timeDelta > 0 and VectorOperations::norm(savedSusVecTot, 3) != 0) { VectorOperations::subtract(susVecTot, savedSusVecTot, susVecTotDerivative, 3); VectorOperations::mulScalar(susVecTotDerivative, 1. / timeDelta, susVecTotDerivative, 3); susVecTotDerivativeValid = true; } std::memcpy(savedSusVecTot, susVecTot, sizeof(savedSusVecTot)); if (VectorOperations::norm(susVecTotDerivative, 3) != 0 and susDataProcessed->susVecTotDerivative.isValid()) { lowPassFilter(susVecTotDerivative, susDataProcessed->susVecTotDerivative.value, susParameters->susRateFilterWeight); } { PoolReadGuard pg(susDataProcessed); if (pg.getReadResult() == returnvalue::OK) { std::memcpy(susDataProcessed->sus0vec.value, susVecBody[0], 3 * sizeof(float)); susDataProcessed->sus0vec.setValid(sus0valid); std::memcpy(susDataProcessed->sus1vec.value, susVecBody[1], 3 * sizeof(float)); susDataProcessed->sus1vec.setValid(sus1valid); std::memcpy(susDataProcessed->sus2vec.value, susVecBody[2], 3 * sizeof(float)); susDataProcessed->sus2vec.setValid(sus2valid); std::memcpy(susDataProcessed->sus3vec.value, susVecBody[3], 3 * sizeof(float)); susDataProcessed->sus3vec.setValid(sus3valid); std::memcpy(susDataProcessed->sus4vec.value, susVecBody[4], 3 * sizeof(float)); susDataProcessed->sus4vec.setValid(sus4valid); std::memcpy(susDataProcessed->sus5vec.value, susVecBody[5], 3 * sizeof(float)); susDataProcessed->sus5vec.setValid(sus5valid); std::memcpy(susDataProcessed->sus6vec.value, susVecBody[6], 3 * sizeof(float)); susDataProcessed->sus6vec.setValid(sus6valid); std::memcpy(susDataProcessed->sus7vec.value, susVecBody[7], 3 * sizeof(float)); susDataProcessed->sus7vec.setValid(sus7valid); std::memcpy(susDataProcessed->sus8vec.value, susVecBody[8], 3 * sizeof(float)); susDataProcessed->sus8vec.setValid(sus8valid); std::memcpy(susDataProcessed->sus9vec.value, susVecBody[9], 3 * sizeof(float)); susDataProcessed->sus9vec.setValid(sus9valid); std::memcpy(susDataProcessed->sus10vec.value, susVecBody[10], 3 * sizeof(float)); susDataProcessed->sus10vec.setValid(sus10valid); std::memcpy(susDataProcessed->sus11vec.value, susVecBody[11], 3 * sizeof(float)); susDataProcessed->sus11vec.setValid(sus11valid); std::memcpy(susDataProcessed->susVecTot.value, susVecTot, 3 * sizeof(double)); susDataProcessed->susVecTot.setValid(true); std::memcpy(susDataProcessed->susVecTotDerivative.value, susVecTotDerivative, 3 * sizeof(double)); susDataProcessed->susVecTotDerivative.setValid(susVecTotDerivativeValid); std::memcpy(susDataProcessed->sunIjkModel.value, sunIjkModel, 3 * sizeof(double)); susDataProcessed->sunIjkModel.setValid(true); susDataProcessed->setValidity(true, false); } } } void SensorProcessing::processGyr( const double gyr0axXvalue, bool gyr0axXvalid, const double gyr0axYvalue, bool gyr0axYvalid, const double gyr0axZvalue, bool gyr0axZvalid, const double gyr1axXvalue, bool gyr1axXvalid, const double gyr1axYvalue, bool gyr1axYvalid, const double gyr1axZvalue, bool gyr1axZvalid, const double gyr2axXvalue, bool gyr2axXvalid, const double gyr2axYvalue, bool gyr2axYvalid, const double gyr2axZvalue, bool gyr2axZvalid, const double gyr3axXvalue, bool gyr3axXvalid, const double gyr3axYvalue, bool gyr3axYvalid, const double gyr3axZvalue, bool gyr3axZvalid, const AcsParameters::GyrHandlingParameters *gyrParameters, acsctrl::GyrDataProcessed *gyrDataProcessed) { bool gyr0valid = (gyr0axXvalid && gyr0axYvalid && gyr0axZvalid); bool gyr1valid = (gyr1axXvalid && gyr1axYvalid && gyr1axZvalid); bool gyr2valid = (gyr2axXvalid && gyr2axYvalid && gyr2axZvalid); bool gyr3valid = (gyr3axXvalid && gyr3axYvalid && gyr3axZvalid); if (!gyr0valid && !gyr1valid && !gyr2valid && !gyr3valid) { { PoolReadGuard pg(gyrDataProcessed); if (pg.getReadResult() == returnvalue::OK) { std::memcpy(gyrDataProcessed->gyr0vec.value, ZERO_VEC_D, 3 * sizeof(double)); std::memcpy(gyrDataProcessed->gyr1vec.value, ZERO_VEC_D, 3 * sizeof(double)); std::memcpy(gyrDataProcessed->gyr2vec.value, ZERO_VEC_D, 3 * sizeof(double)); std::memcpy(gyrDataProcessed->gyr3vec.value, ZERO_VEC_D, 3 * sizeof(double)); std::memcpy(gyrDataProcessed->gyrVecTot.value, ZERO_VEC_D, 3 * sizeof(double)); gyrDataProcessed->setValidity(false, true); } } return; } // Transforming Values to the Body Frame (actually it is the geometry frame atm) double gyr0ValueBody[3] = {0, 0, 0}, gyr1ValueBody[3] = {0, 0, 0}, gyr2ValueBody[3] = {0, 0, 0}, gyr3ValueBody[3] = {0, 0, 0}; float sensorFusionNumerator[3] = {0, 0, 0}, sensorFusionDenominator[3] = {0, 0, 0}; if (gyr0valid) { double gyr0Value[3] = {gyr0axXvalue, gyr0axYvalue, gyr0axZvalue}; VectorOperations::subtract(gyr0Value, gyrParameters->gyr0bias, gyr0Value, 3); MatrixOperations::multiply(gyrParameters->gyr0orientationMatrix[0], gyr0Value, gyr0ValueBody, 3, 3, 1); VectorOperations::mulScalar(gyr0ValueBody, M_PI / 180, gyr0ValueBody, 3); for (uint8_t i = 0; i < 3; i++) { sensorFusionNumerator[i] += gyr0ValueBody[i] / gyrParameters->gyr02variance[i]; sensorFusionDenominator[i] += 1 / gyrParameters->gyr02variance[i]; } } if (gyr1valid) { double gyr1Value[3] = {gyr1axXvalue, gyr1axYvalue, gyr1axZvalue}; VectorOperations::subtract(gyr1Value, gyrParameters->gyr1bias, gyr1Value, 3); MatrixOperations::multiply(gyrParameters->gyr1orientationMatrix[0], gyr1Value, gyr1ValueBody, 3, 3, 1); VectorOperations::mulScalar(gyr1ValueBody, M_PI / 180, gyr1ValueBody, 3); for (uint8_t i = 0; i < 3; i++) { sensorFusionNumerator[i] += gyr1ValueBody[i] / gyrParameters->gyr13variance[i]; sensorFusionDenominator[i] += 1 / gyrParameters->gyr13variance[i]; } } if (gyr2valid) { double gyr2Value[3] = {gyr2axXvalue, gyr2axYvalue, gyr2axZvalue}; VectorOperations::subtract(gyr2Value, gyrParameters->gyr2bias, gyr2Value, 3); MatrixOperations::multiply(gyrParameters->gyr2orientationMatrix[0], gyr2Value, gyr2ValueBody, 3, 3, 1); VectorOperations::mulScalar(gyr2ValueBody, M_PI / 180, gyr2ValueBody, 3); for (uint8_t i = 0; i < 3; i++) { sensorFusionNumerator[i] += gyr2ValueBody[i] / gyrParameters->gyr02variance[i]; sensorFusionDenominator[i] += 1 / gyrParameters->gyr02variance[i]; } } if (gyr3valid) { double gyr3Value[3] = {gyr3axXvalue, gyr3axYvalue, gyr3axZvalue}; VectorOperations::subtract(gyr3Value, gyrParameters->gyr3bias, gyr3Value, 3); MatrixOperations::multiply(gyrParameters->gyr3orientationMatrix[0], gyr3Value, gyr3ValueBody, 3, 3, 1); VectorOperations::mulScalar(gyr3ValueBody, M_PI / 180, gyr3ValueBody, 3); for (uint8_t i = 0; i < 3; i++) { sensorFusionNumerator[i] += gyr3ValueBody[i] / gyrParameters->gyr13variance[i]; sensorFusionDenominator[i] += 1 / gyrParameters->gyr13variance[i]; } } /* -------- SatRateEst: Middle Value ------- */ // take ADIS measurements, if both avail // if just one ADIS measurement avail, perform sensor fusion double gyrVecTot[3] = {0.0, 0.0, 0.0}; if ((gyr0valid && gyr2valid) && gyrParameters->preferAdis == true) { double gyr02ValuesSum[3]; VectorOperations::add(gyr0ValueBody, gyr2ValueBody, gyr02ValuesSum, 3); VectorOperations::mulScalar(gyr02ValuesSum, .5, gyrVecTot, 3); } else { for (uint8_t i = 0; i < 3; i++) { gyrVecTot[i] = sensorFusionNumerator[i] / sensorFusionDenominator[i]; } } if (VectorOperations::norm(gyrVecTot, 3) != 0 and gyrDataProcessed->gyrVecTot.isValid()) { lowPassFilter(gyrVecTot, gyrDataProcessed->gyrVecTot.value, gyrParameters->gyrFilterWeight); } { PoolReadGuard pg(gyrDataProcessed); if (pg.getReadResult() == returnvalue::OK) { std::memcpy(gyrDataProcessed->gyr0vec.value, gyr0ValueBody, 3 * sizeof(double)); gyrDataProcessed->gyr0vec.setValid(gyr0valid); std::memcpy(gyrDataProcessed->gyr1vec.value, gyr1ValueBody, 3 * sizeof(double)); gyrDataProcessed->gyr1vec.setValid(gyr1valid); std::memcpy(gyrDataProcessed->gyr2vec.value, gyr2ValueBody, 3 * sizeof(double)); gyrDataProcessed->gyr2vec.setValid(gyr2valid); std::memcpy(gyrDataProcessed->gyr3vec.value, gyr3ValueBody, 3 * sizeof(double)); gyrDataProcessed->gyr3vec.setValid(gyr3valid); std::memcpy(gyrDataProcessed->gyrVecTot.value, gyrVecTot, 3 * sizeof(double)); gyrDataProcessed->gyrVecTot.setValid(true); gyrDataProcessed->setValidity(true, false); } } } void SensorProcessing::processGps(const double gpsLatitude, const double gpsLongitude, const double gpsAltitude, const double timeDelta, const bool validGps, const AcsParameters::GpsParameters *gpsParameters, acsctrl::GpsDataProcessed *gpsDataProcessed) { // init variables double gdLongitude = 0, gdLatitude = 0, gcLatitude = 0, altitude = 0, posSatE[3] = {0, 0, 0}, gpsVelocityE[3] = {0, 0, 0}; uint8_t gpsSource = acs::gps::Source::NONE; // We do not trust the GPS and therefore it shall die here if SPG4 is running if (gpsDataProcessed->source.value == acs::gps::Source::SPG4 and gpsParameters->useSpg4) { CoordinateTransformations::latLongAltFromCartesian(gpsDataProcessed->gpsPosition.value, gdLatitude, gdLongitude, altitude); double factor = 1 - pow(ECCENTRICITY_WGS84, 2); gcLatitude = atan(factor * tan(gdLatitude)); { PoolReadGuard pg(gpsDataProcessed); if (pg.getReadResult() == returnvalue::OK) { gpsDataProcessed->gdLongitude.value = gdLongitude; gpsDataProcessed->gcLatitude.value = gcLatitude; gpsDataProcessed->altitude.value = altitude; gpsDataProcessed->setValidity(true, true); } } return; } else if (validGps) { // Transforming from Degree to Radians and calculation geocentric latitude from geodetic gdLongitude = gpsLongitude * M_PI / 180.; double latitudeRad = gpsLatitude * M_PI / 180.; double factor = 1 - pow(ECCENTRICITY_WGS84, 2); gcLatitude = atan(factor * tan(latitudeRad)); // Altitude FDIR if (gpsAltitude > gpsParameters->maximumFdirAltitude || gpsAltitude < gpsParameters->minimumFdirAltitude) { altitude = gpsParameters->fdirAltitude; } else { altitude = gpsAltitude; } // Calculation of the satellite velocity in earth fixed frame double deltaDistance[3] = {0, 0, 0}; CoordinateTransformations::cartesianFromLatLongAlt(latitudeRad, gdLongitude, altitude, posSatE); if (validSavedPosSatE and timeDelta < (gpsParameters->timeDiffVelocityMax) and timeDelta > 0) { VectorOperations::subtract(posSatE, savedPosSatE, deltaDistance, 3); VectorOperations::mulScalar(deltaDistance, 1. / timeDelta, gpsVelocityE, 3); } savedPosSatE[0] = posSatE[0]; savedPosSatE[1] = posSatE[1]; savedPosSatE[2] = posSatE[2]; validSavedPosSatE = true; gpsSource = acs::gps::Source::GPS; } { PoolReadGuard pg(gpsDataProcessed); if (pg.getReadResult() == returnvalue::OK) { gpsDataProcessed->gdLongitude.value = gdLongitude; gpsDataProcessed->gcLatitude.value = gcLatitude; gpsDataProcessed->altitude.value = altitude; std::memcpy(gpsDataProcessed->gpsPosition.value, posSatE, 3 * sizeof(double)); std::memcpy(gpsDataProcessed->gpsVelocity.value, gpsVelocityE, 3 * sizeof(double)); gpsDataProcessed->setValidity(validGps, true); gpsDataProcessed->source.value = gpsSource; gpsDataProcessed->source.setValid(true); } } } void SensorProcessing::process(timeval timeAbsolute, double timeDelta, ACS::SensorValues *sensorValues, acsctrl::MgmDataProcessed *mgmDataProcessed, acsctrl::SusDataProcessed *susDataProcessed, acsctrl::GyrDataProcessed *gyrDataProcessed, acsctrl::GpsDataProcessed *gpsDataProcessed, const AcsParameters *acsParameters) { sensorValues->update(); processGps( sensorValues->gpsSet.latitude.value, sensorValues->gpsSet.longitude.value, sensorValues->gpsSet.altitude.value, sensorValues->gpsSet.unixSeconds.value, (sensorValues->gpsSet.latitude.isValid() && sensorValues->gpsSet.longitude.isValid() && sensorValues->gpsSet.altitude.isValid() && sensorValues->gpsSet.unixSeconds.isValid()), &acsParameters->gpsParameters, gpsDataProcessed); processMgm(sensorValues->mgm0Lis3Set.fieldStrengths.value, sensorValues->mgm0Lis3Set.fieldStrengths.isValid(), sensorValues->mgm1Rm3100Set.fieldStrengths.value, sensorValues->mgm1Rm3100Set.fieldStrengths.isValid(), sensorValues->mgm2Lis3Set.fieldStrengths.value, sensorValues->mgm2Lis3Set.fieldStrengths.isValid(), sensorValues->mgm3Rm3100Set.fieldStrengths.value, sensorValues->mgm3Rm3100Set.fieldStrengths.isValid(), sensorValues->imtqMgmSet.mtmRawNt.value, sensorValues->imtqMgmSet.mtmRawNt.isValid(), timeAbsolute, timeDelta, &acsParameters->mgmHandlingParameters, gpsDataProcessed, mgmDataProcessed); processSus(sensorValues->susSets[0].channels.value, sensorValues->susSets[0].channels.isValid(), sensorValues->susSets[1].channels.value, sensorValues->susSets[1].channels.isValid(), sensorValues->susSets[2].channels.value, sensorValues->susSets[2].channels.isValid(), sensorValues->susSets[3].channels.value, sensorValues->susSets[3].channels.isValid(), sensorValues->susSets[4].channels.value, sensorValues->susSets[4].channels.isValid(), sensorValues->susSets[5].channels.value, sensorValues->susSets[5].channels.isValid(), sensorValues->susSets[6].channels.value, sensorValues->susSets[6].channels.isValid(), sensorValues->susSets[7].channels.value, sensorValues->susSets[7].channels.isValid(), sensorValues->susSets[8].channels.value, sensorValues->susSets[8].channels.isValid(), sensorValues->susSets[9].channels.value, sensorValues->susSets[9].channels.isValid(), sensorValues->susSets[10].channels.value, sensorValues->susSets[10].channels.isValid(), sensorValues->susSets[11].channels.value, sensorValues->susSets[11].channels.isValid(), timeAbsolute, timeDelta, &acsParameters->susHandlingParameters, &acsParameters->sunModelParameters, susDataProcessed); processGyr( sensorValues->gyr0AdisSet.angVelocX.value, sensorValues->gyr0AdisSet.angVelocX.isValid(), sensorValues->gyr0AdisSet.angVelocY.value, sensorValues->gyr0AdisSet.angVelocY.isValid(), sensorValues->gyr0AdisSet.angVelocZ.value, sensorValues->gyr0AdisSet.angVelocZ.isValid(), sensorValues->gyr1L3gSet.angVelocX.value, sensorValues->gyr1L3gSet.angVelocX.isValid(), sensorValues->gyr1L3gSet.angVelocY.value, sensorValues->gyr1L3gSet.angVelocY.isValid(), sensorValues->gyr1L3gSet.angVelocZ.value, sensorValues->gyr1L3gSet.angVelocZ.isValid(), sensorValues->gyr2AdisSet.angVelocX.value, sensorValues->gyr2AdisSet.angVelocX.isValid(), sensorValues->gyr2AdisSet.angVelocY.value, sensorValues->gyr2AdisSet.angVelocY.isValid(), sensorValues->gyr2AdisSet.angVelocZ.value, sensorValues->gyr2AdisSet.angVelocZ.isValid(), sensorValues->gyr3L3gSet.angVelocX.value, sensorValues->gyr3L3gSet.angVelocX.isValid(), sensorValues->gyr3L3gSet.angVelocY.value, sensorValues->gyr3L3gSet.angVelocY.isValid(), sensorValues->gyr3L3gSet.angVelocZ.value, sensorValues->gyr3L3gSet.angVelocZ.isValid(), &acsParameters->gyrHandlingParameters, gyrDataProcessed); } void SensorProcessing::lowPassFilter(double *newValue, double *oldValue, const double weight) { double leftSide[3] = {0, 0, 0}, rightSide[3] = {0, 0, 0}; VectorOperations::mulScalar(newValue, (1 - weight), leftSide, 3); VectorOperations::mulScalar(oldValue, weight, rightSide, 3); VectorOperations::add(leftSide, rightSide, newValue, 3); }