#ifndef MISSION_POWER_GSDEFS_H_ #define MISSION_POWER_GSDEFS_H_ #include #include #include #include #include #include #include "devices/powerSwitcherList.h" #include "fsfw/platform.h" namespace GOMSPACE { struct TableInfo { uint8_t sourceTable; uint8_t targetTable; }; enum DeviceType { PDU, ACU, P60DOCK }; enum class SpecialRequestTypes { DEFAULT_COM_IF, GET_PDU_HK, GET_PDU_CONFIG, GET_ACU_HK, GET_ACU_CONFIG, GET_P60DOCK_HK, GET_P60DOCK_CONFIG, SAVE_TABLE, LOAD_TABLE }; enum CspPorts : uint8_t { CSP_PING = 1, CSP_REBOOT = 4, P60_PORT_RPARAM_ENUM = 7, P60_PORT_GNDWDT_RESET_ENUM = 9 }; enum class Pdu { PDU1, PDU2 }; using ChannelSwitchHook = void (*)(Pdu pdu, uint8_t channel, bool on, void* args); static const uint16_t IGNORE_CHECKSUM = 0xbb0; /** The size of the header of a gomspace CSP packet. */ static const uint8_t GS_HDR_LENGTH = 12; /** CSP port to ping gomspace devices. */ static const uint8_t PING_PORT = 1; static const uint8_t REBOOT_PORT = 4; /** CSP port of gomspace devices to request or set parameters */ static const uint8_t PARAM_PORT = 7; static const uint8_t P60_PORT_GNDWDT_RESET = 9; /** * Device commands are derived from the rparam.h of the gomspace lib.. * IDs above 50 are reserved for device specific commands. */ static const DeviceCommandId_t PARAM_GET = 0; //!< [EXPORT] : [COMMAND] static const DeviceCommandId_t PING = 1; //!< [EXPORT] : [COMMAND] static const DeviceCommandId_t NONE = 2; // Set when no command is pending static const DeviceCommandId_t REBOOT = 4; //!< [EXPORT] : [COMMAND] static const DeviceCommandId_t GNDWDT_RESET = 9; //!< [EXPORT] : [COMMAND] static const DeviceCommandId_t REQUEST_HK_TABLE = 16; //!< [EXPORT] : [COMMAND] static const DeviceCommandId_t REQUEST_CONFIG_TABLE = 17; //!< [EXPORT] : [COMMAND] static const DeviceCommandId_t SAVE_TABLE_FILE = 18; static const DeviceCommandId_t SAVE_TABLE_DEFAULT = 19; static const DeviceCommandId_t LOAD_TABLE = 20; static const DeviceCommandId_t PARAM_SET = 255; //!< [EXPORT] : [COMMAND] // Not implemented yet // static const DeviceCommandId_t REQUEST_CALIB_TABLE = 18; //!< [EXPORT] : [COMMAND] //! [EXPORT] : [COMMAND] Print switch states, voltages and currents to the console //! For the ACU device, only print voltages and currents of the 6 ACU channels static const DeviceCommandId_t PRINT_SWITCH_V_I = 32; static const DeviceCommandId_t PRINT_LATCHUPS = 33; enum ParamRequestIds : uint8_t { GET = 0x00, REPLY = 0x55, SET = 0xFF, TABLE_SPEC = 0x44, // Copy memory slot to memory slot COPY = 0x77, // Load from file to slot. Load from primary slot LOAD = 0x88, // Load by name(s) LOAD_FROM_STORE = 0x89, // Save to primary slot SAVE = 0x99, // Save by name(s) SAVE_TO_STORE = 0x9a }; enum TableIds : uint8_t { BOARD_PARAMS = 0, CONFIG = 1, CALIBRATION = 2, HK = 4 }; } // namespace GOMSPACE namespace P60System { enum class BatteryModes : uint8_t { CRITICAL = 1, SAFE = 2, NORMAL = 3, FULL = 4 }; enum class SetIds : uint32_t { CORE = 1, AUX = 2, CONFIG = 3 }; } // namespace P60System namespace P60Dock { static const uint16_t CONFIG_ADDRESS_OUT_EN_5V_STACK = 0x72; namespace pool { enum Ids : lp_id_t { P60_CURRENTS, P60_VOLTAGES, P60_OUTPUT_ENABLE, P60DOCK_TEMPERATURE_1, P60DOCK_TEMPERATURE_2, P60DOCK_BOOT_CAUSE, P60DOCK_BOOT_CNT, P60DOCK_UPTIME, P60DOCK_RESETCAUSE, P60DOCK_BATT_MODE, P60DOCK_HEATER_ON, P60DOCK_CONV_5V_ENABLE_STATUS, LATCHUPS, P60DOCK_DOCK_VBAT, P60DOCK_DOCK_VCC_CURRENT, // Difference between charge and discharge P60DOCK_BATTERY_CURRENT, P60DOCK_BATTERY_VOLTAGE, P60DOCK_BATTERY_TEMPERATURE_1, P60DOCK_BATTERY_TEMPERATURE_2, DEVICES_TYPE, DEVICES_STATUS, P60DOCK_DEVICE_TYPE_GROUP, P60DOCK_DEVICE_STATUS_GROUP, P60DOCK_DEARM_STATUS, P60DOCK_WDT_CNT_GND, P60DOCK_WDT_CNT_I2C, P60DOCK_WDT_CNT_CAN, P60DOCK_WDT_CNT_CSP_1, P60DOCK_WDT_CNT_CSP_2, P60DOCK_WDT_GND_LEFT, P60DOCK_WDT_I2C_LEFT, P60DOCK_WDT_CAN_LEFT, P60DOCK_WDT_CSP_LEFT_1, P60DOCK_WDT_CSP_LEFT_2, P60DOCK_BATT_CHARGE_CURRENT, P60DOCK_BATT_DISCHARGE_CURRENT, P60DOCK_ANT6_DEPL, P60DOCK_AR6_DEPL, }; } static constexpr uint8_t NUM_DEVS = 8; namespace hk { enum Index : uint8_t { ACU_VCC = 0, PDU1_VCC = 1, X3_IDLE_VCC = 2, PDU2_VCC = 3, ACU_VBAT = 4, PDU1_VBAT = 5, X3_IDLE_VBAT = 6, PDU2_VBAT = 7, STACK_VBAT = 8, STACK_3V3 = 9, STACK_5V = 10, GS3V3 = 11, GS5V = 12, CHNLS_LEN = 13 }; } enum SwitchChannels : uint8_t { ACU = 0, PDU1 = 1, X3_IDLE = 2, PDU2_VCC = 3, ACU_VBAT = 4, PDU1_VBAT = 5, X3_IDLE_VBAT = 6, PDU2_VBAT = 7, STACK_VBAT = 8, STACK_3V3 = 9, STACK_5V = 10, GS3V3 = 11, GS5V = 12 }; static const uint16_t MAX_CONFIGTABLE_ADDRESS = 408; static const uint16_t MAX_HKTABLE_ADDRESS = 187; // Sources: // GomSpace library lib/p60-dock_client/include/gs/p60-dock/param static const uint16_t HK_TABLE_SIZE = gsConstants::P60DOCK_HK_SIZE; static const uint16_t CONFIG_TABLE_SIZE = gsConstants::P60DOCK_PARAM_SIZE; static const size_t MAX_REPLY_SIZE = CONFIG_TABLE_SIZE; static const uint16_t CAL_TABLE = 0xAE; static const uint8_t HK_TABLE_ENTRIES = 100; class CoreHkSet : public StaticLocalDataSet<16> { public: CoreHkSet(HasLocalDataPoolIF* owner) : StaticLocalDataSet(owner, static_cast(::P60System::SetIds::CORE)) {} CoreHkSet(object_id_t objectId) : StaticLocalDataSet(sid_t(objectId, static_cast(::P60System::SetIds::CORE))) {} /** Measured output currents */ lp_vec_t currents = lp_vec_t(sid.objectId, pool::P60_CURRENTS, this); /** Measured output voltages */ lp_vec_t voltages = lp_vec_t(sid.objectId, pool::P60_VOLTAGES, this); /** Output enable states */ lp_vec_t outputEnables = lp_vec_t(sid.objectId, pool::P60_OUTPUT_ENABLE, this); lp_var_t bootCount = lp_var_t(sid.objectId, pool::P60DOCK_BOOT_CNT, this); lp_var_t battMode = lp_var_t(sid.objectId, pool::P60DOCK_BATT_MODE, this); // Difference between charge and discharge current lp_var_t batteryCurrent = lp_var_t(sid.objectId, pool::P60DOCK_BATTERY_CURRENT, this); lp_var_t batteryVoltage = lp_var_t(sid.objectId, pool::P60DOCK_BATTERY_VOLTAGE, this); lp_var_t temperature1 = lp_var_t(sid.objectId, pool::P60DOCK_TEMPERATURE_1, this); lp_var_t temperature2 = lp_var_t(sid.objectId, pool::P60DOCK_TEMPERATURE_2, this); }; /** * @brief This class defines a dataset for the hk table of the P60 Dock. * @details * The GS port and X3 are not required for EIVE. X3 is another slot on the P60 dock and * GS is required for a module from Gomspace which is not used. */ class HkTableDataset : public StaticLocalDataSet<32> { public: HkTableDataset(HasLocalDataPoolIF* owner) : StaticLocalDataSet(owner, static_cast(::P60System::SetIds::AUX)) {} HkTableDataset(object_id_t objectId) : StaticLocalDataSet(sid_t(objectId, static_cast(::P60System::SetIds::AUX))) {} /** Number of detected latchups on each output channel */ lp_vec_t latchups = lp_vec_t(sid.objectId, pool::LATCHUPS, this); lp_var_t bootcause = lp_var_t(sid.objectId, pool::P60DOCK_BOOT_CAUSE, this); lp_var_t uptime = lp_var_t(sid.objectId, pool::P60DOCK_UPTIME, this); lp_var_t resetcause = lp_var_t(sid.objectId, pool::P60DOCK_RESETCAUSE, this); /** Battery heater control only possible on BP4 packs */ lp_var_t heaterOn = lp_var_t(sid.objectId, pool::P60DOCK_HEATER_ON, this); lp_var_t converter5VStatus = lp_var_t(sid.objectId, pool::P60DOCK_CONV_5V_ENABLE_STATUS, this); lp_var_t dockVbatVoltageValue = lp_var_t(sid.objectId, pool::P60DOCK_DOCK_VBAT, this); lp_var_t dockVccCurrent = lp_var_t(sid.objectId, pool::P60DOCK_DOCK_VCC_CURRENT, this); lp_var_t batteryTemperature1 = lp_var_t(sid.objectId, pool::P60DOCK_BATTERY_TEMPERATURE_1, this); lp_var_t batteryTemperature2 = lp_var_t(sid.objectId, pool::P60DOCK_BATTERY_TEMPERATURE_2, this); lp_var_t dearmStatus = lp_var_t(sid.objectId, pool::P60DOCK_DEARM_STATUS, this); /** Number of reboots due to gnd, i2c, csp watchdog timeout */ lp_var_t wdtCntGnd = lp_var_t(sid.objectId, pool::P60DOCK_WDT_CNT_GND, this); lp_var_t wdtCntI2c = lp_var_t(sid.objectId, pool::P60DOCK_WDT_CNT_I2C, this); lp_var_t wdtCntCan = lp_var_t(sid.objectId, pool::P60DOCK_WDT_CNT_CAN, this); lp_var_t wdtCntCsp1 = lp_var_t(sid.objectId, pool::P60DOCK_WDT_CNT_CSP_1, this); lp_var_t wdtCntCsp2 = lp_var_t(sid.objectId, pool::P60DOCK_WDT_CNT_CSP_2, this); lp_var_t wdtGndLeft = lp_var_t(sid.objectId, pool::P60DOCK_WDT_GND_LEFT, this); lp_var_t wdtI2cLeft = lp_var_t(sid.objectId, pool::P60DOCK_WDT_I2C_LEFT, this); lp_var_t wdtCanLeft = lp_var_t(sid.objectId, pool::P60DOCK_WDT_CAN_LEFT, this); lp_var_t wdtCspLeft1 = lp_var_t(sid.objectId, pool::P60DOCK_WDT_CSP_LEFT_1, this); lp_var_t wdtCspLeft2 = lp_var_t(sid.objectId, pool::P60DOCK_WDT_CSP_LEFT_2, this); lp_var_t batteryChargeCurrent = lp_var_t(sid.objectId, pool::P60DOCK_BATT_CHARGE_CURRENT, this); lp_var_t batteryDischargeCurrent = lp_var_t(sid.objectId, pool::P60DOCK_BATT_DISCHARGE_CURRENT, this); lp_var_t ant6Depl = lp_var_t(sid.objectId, pool::P60DOCK_ANT6_DEPL, this); lp_var_t ar6Depl = lp_var_t(sid.objectId, pool::P60DOCK_AR6_DEPL, this); lp_vec_t devicesType = lp_vec_t(sid.objectId, pool::DEVICES_TYPE, this); lp_vec_t devicesStatus = lp_vec_t(sid.objectId, pool::DEVICES_STATUS, this); }; } // namespace P60Dock /** * @brief Constants common for both PDU1 and PDU2. */ namespace PDU { namespace pool { enum Ids { // IDs for both PDUs PDU_CURRENTS, PDU_VOLTAGES, PDU_VCC, PDU_VBAT, PDU_TEMPERATURE, PDU_CONV_EN, PDU_OUT_ENABLE, PDU_BOOTCAUSE, PDU_BOOTCNT, PDU_UPTIME, PDU_RESETCAUSE, PDU_BATT_MODE, PDU_LATCHUPS, PDU_DEVICES, PDU_STATUSES, PDU_WDT_CNT_GND, PDU_WDT_CNT_I2C, PDU_WDT_CNT_CAN, PDU_WDT_CNT_CSP1, PDU_WDT_CNT_CSP2, PDU_WDT_GND_LEFT, PDU_WDT_I2C_LEFT, PDU_WDT_CAN_LEFT, PDU_WDT_CSP_LEFT1, PDU_WDT_CSP_LEFT2, OUT_ON_CNT, OUT_OFF_CNT, INIT_OUT_NORM, INIT_OUT_SAFE, INIT_ON_DLY, INIT_OFF_DLY, SAFE_OFF_DLY, CUR_LU_LIM, CUR_LIM, CUR_EMA, OUT_LINK, OUT_CONV, OUT_VOLTAGE, CONV_EN, CUR_EMA_GAIN, BATT_HWMAX, BATT_MAX, BATT_NORM, BATT_SAFE, BATT_CRIT, WDT_I2C_RST, WDT_CAN_RST, WDT_I2C, WDT_CAN, WDT_CSP, WDT_CSP_PING, WDT_CSP_CHAN, WDT_CSP_ADDR }; } static const uint16_t MAX_CONFIGTABLE_ADDRESS = 316; static const uint16_t MAX_HKTABLE_ADDRESS = 141; /** The size of the csp reply containing the housekeeping table data */ static const uint16_t HK_TABLE_SIZE = gsConstants::P60PDU_HK_SIZE; static const uint16_t CONFIG_TABLE_SIZE = gsConstants::P60PDU_PARAM_SIZE; /** When retrieving full configuration parameter table */ static const uint16_t MAX_REPLY_SIZE = CONFIG_TABLE_SIZE; static const uint8_t HK_TABLE_ENTRIES = 73; static constexpr uint8_t CHANNELS_LEN = 9; static constexpr uint8_t DEVICES_NUM = 8; class PduCoreHk : public StaticLocalDataSet<9> { public: PduCoreHk(HasLocalDataPoolIF* owner, uint32_t setId) : StaticLocalDataSet(owner, setId) {} PduCoreHk(object_id_t objectId, uint32_t setId) : StaticLocalDataSet(sid_t(objectId, setId)) {} /** Measured output currents */ lp_vec_t currents = lp_vec_t(sid.objectId, pool::PDU_CURRENTS, this); /** Measured output currents */ lp_vec_t voltages = lp_vec_t(sid.objectId, pool::PDU_VOLTAGES, this); /** Output switch states */ lp_vec_t outputEnables = lp_vec_t(sid.objectId, pool::PDU_OUT_ENABLE, this); /** Number of reboots */ lp_var_t bootcount = lp_var_t(sid.objectId, pool::PDU_BOOTCNT, this); /** Battery mode: 1 = Critical, 2 = Safe, 3 = Normal, 4 = Full */ lp_var_t battMode = lp_var_t(sid.objectId, pool::PDU_BATT_MODE, this); lp_var_t temperature = lp_var_t(sid.objectId, pool::PDU_TEMPERATURE, this); }; class PduConfig : public StaticLocalDataSet<32> { public: PduConfig(HasLocalDataPoolIF* owner, uint32_t setId) : StaticLocalDataSet(owner, setId) {} lp_vec_t outOnDelaySecs = lp_vec_t(sid.objectId, pool::OUT_ON_CNT, this); lp_vec_t outOffDelaySecs = lp_vec_t(sid.objectId, pool::OUT_OFF_CNT, this); lp_vec_t initOutNorm = lp_vec_t(sid.objectId, pool::INIT_OUT_NORM, this); lp_vec_t initOutSafe = lp_vec_t(sid.objectId, pool::INIT_OUT_SAFE, this); lp_vec_t initOnDly = lp_vec_t(sid.objectId, pool::INIT_ON_DLY, this); lp_vec_t initOffDly = lp_vec_t(sid.objectId, pool::INIT_OFF_DLY, this); lp_vec_t safeOffDly = lp_vec_t(sid.objectId, pool::SAFE_OFF_DLY, this); lp_vec_t curLuLim = lp_vec_t(sid.objectId, pool::CUR_LU_LIM, this); lp_vec_t curLim = lp_vec_t(sid.objectId, pool::CUR_LIM, this); lp_vec_t curEma = lp_vec_t(sid.objectId, pool::CUR_EMA, this); lp_vec_t outLink = lp_vec_t(sid.objectId, pool::OUT_LINK, this); lp_vec_t outConv = lp_vec_t(sid.objectId, pool::OUT_CONV, this); lp_vec_t outVoltage = lp_vec_t(sid.objectId, pool::OUT_VOLTAGE, this); lp_vec_t convEnable = lp_vec_t(sid.objectId, pool::CONV_EN, this); lp_var_t curEmaGain = lp_var_t(sid.objectId, pool::CUR_EMA_GAIN, this); lp_var_t battHwMax = lp_var_t(sid.objectId, pool::BATT_HWMAX, this); lp_var_t battMax = lp_var_t(sid.objectId, pool::BATT_MAX, this); lp_var_t battNorm = lp_var_t(sid.objectId, pool::BATT_NORM, this); lp_var_t battSafe = lp_var_t(sid.objectId, pool::BATT_SAFE, this); lp_var_t battCrit = lp_var_t(sid.objectId, pool::BATT_CRIT, this); lp_var_t wdtI2cRst = lp_var_t(sid.objectId, pool::WDT_I2C_RST, this); lp_var_t wdtCanRst = lp_var_t(sid.objectId, pool::WDT_CAN_RST, this); lp_var_t wdtI2c = lp_var_t(sid.objectId, pool::WDT_I2C, this); lp_var_t wdtCan = lp_var_t(sid.objectId, pool::WDT_CAN, this); lp_vec_t wdtCsp = lp_vec_t(sid.objectId, pool::WDT_CSP, this); lp_vec_t wdtCspPing = lp_vec_t(sid.objectId, pool::WDT_CSP_PING, this); lp_vec_t wdtCspChannel = lp_vec_t(sid.objectId, pool::WDT_CSP_CHAN, this); lp_vec_t wdtCspAddr = lp_vec_t(sid.objectId, pool::WDT_CSP_ADDR, this); }; /** * @brief This class defines a dataset for the hk table of a PDU */ class PduAuxHk : public StaticLocalDataSet<36> { public: PduAuxHk(HasLocalDataPoolIF* owner, uint32_t setId) : StaticLocalDataSet(owner, setId) {} PduAuxHk(object_id_t objectId, uint32_t setId) : StaticLocalDataSet(sid_t(objectId, setId)) {} /** Measured VCC */ lp_var_t vcc = lp_var_t(sid.objectId, pool::PDU_VCC, this); /** Measured VBAT */ lp_var_t vbat = lp_var_t(sid.objectId, pool::PDU_VBAT, this); /** Output converter enable status */ lp_vec_t converterEnable = lp_vec_t(sid.objectId, pool::PDU_CONV_EN, this); lp_var_t bootcause = lp_var_t(sid.objectId, pool::PDU_BOOTCAUSE, this); /** Uptime in seconds */ lp_var_t uptime = lp_var_t(sid.objectId, pool::PDU_UPTIME, this); lp_var_t resetcause = lp_var_t(sid.objectId, pool::PDU_RESETCAUSE, this); /** Number of detected latchups on each output channel */ lp_vec_t latchups = lp_vec_t(sid.objectId, pool::PDU_LATCHUPS, this); /** * There are 8 devices on the PDU. FRAM, ADCs, temperature sensor etc. Each device is * identified by an ID. Refer also to gs-man-nanopower-p60-pdu-200-1.pdf on pages 17 and 18. */ lp_vec_t deviceTypes = lp_vec_t(sid.objectId, pool::PDU_DEVICES, this); /** The status of each device. 0 = None, 1 = Ok, 2 = Error, 3 = Not found */ lp_vec_t devicesStatus = lp_vec_t(sid.objectId, pool::PDU_STATUSES, this); /** Number of reboots triggered by the ground watchdog */ lp_var_t gndWdtReboots = lp_var_t(sid.objectId, pool::PDU_WDT_CNT_GND, this); /** Number of reboots triggered through the I2C watchdog. Not relevant for EIVE. */ lp_var_t i2cWdtReboots = lp_var_t(sid.objectId, pool::PDU_WDT_CNT_I2C, this); /** Number of reboots triggered through the CAN watchdog */ lp_var_t canWdtReboots = lp_var_t(sid.objectId, pool::PDU_WDT_CNT_CAN, this); /** Number of reboots triggered through the CSP watchdog */ lp_var_t csp1WdtReboots = lp_var_t(sid.objectId, pool::PDU_WDT_CNT_CSP1, this); lp_var_t csp2WdtReboots = lp_var_t(sid.objectId, pool::PDU_WDT_CNT_CSP2, this); /** Ground watchdog remaining seconds before rebooting */ lp_var_t groundWatchdogSecondsLeft = lp_var_t(sid.objectId, pool::PDU_WDT_GND_LEFT, this); /** I2C watchdog remaining seconds before rebooting. Not relevant for EIVE. */ lp_var_t i2cWatchdogSecondsLeft = lp_var_t(sid.objectId, pool::PDU_WDT_I2C_LEFT, this); /** CAN watchdog remaining seconds before rebooting. */ lp_var_t canWatchdogSecondsLeft = lp_var_t(sid.objectId, pool::PDU_WDT_CAN_LEFT, this); /** CSP watchdogs remaining pings before rebooting. */ lp_var_t csp2WatchdogPingsLeft = lp_var_t(sid.objectId, pool::PDU_WDT_CSP_LEFT1, this); lp_var_t csp1WatchdogPingsLeft = lp_var_t(sid.objectId, pool::PDU_WDT_CSP_LEFT2, this); }; } // namespace PDU namespace PDU1 { enum Channels : uint8_t { TCS_BOARD_3V3 = 0, SYRLINKS = 1, STR = 2, MGT = 3, SUS_NOMINAL = 4, SOL_CELL_EXPERIMENT = 5, PLOC = 6, ACS_A_SIDE = 7, UNUSED = 8, LEN = 9 }; /** * Addresses within configuration table to enable or disable output channels. Refer also to * gs-man-nanopower-p60-pdu-200.pdf on page 16. */ static const uint16_t CONFIG_ADDRESS_OUT_EN_TCS_BOARD_3V3 = 0x48; static const uint16_t CONFIG_ADDRESS_OUT_EN_SYRLINKS = 0x49; static const uint16_t CONFIG_ADDRESS_OUT_EN_STAR_TRACKER = 0x4A; static const uint16_t CONFIG_ADDRESS_OUT_EN_MGT = 0x4B; static const uint16_t CONFIG_ADDRESS_OUT_EN_SUS_NOMINAL = 0x4C; static const uint16_t CONFIG_ADDRESS_OUT_EN_SOLAR_CELL_EXP = 0x4D; static const uint16_t CONFIG_ADDRESS_OUT_EN_PLOC = 0x4E; static const uint16_t CONFIG_ADDRESS_OUT_EN_ACS_BOARD_SIDE_A = 0x4F; static const uint16_t CONFIG_ADDRESS_OUT_EN_CHANNEL8 = 0x50; class Pdu1CoreHk : public ::PDU::PduCoreHk { public: Pdu1CoreHk(HasLocalDataPoolIF* owner) : PduCoreHk(owner, static_cast(::P60System::SetIds::CORE)) {} Pdu1CoreHk(object_id_t objectId) : PduCoreHk(objectId, static_cast(::P60System::SetIds::CORE)) {} }; class Pdu1AuxHk : public ::PDU::PduAuxHk { public: Pdu1AuxHk(HasLocalDataPoolIF* owner) : PduAuxHk(owner, static_cast(::P60System::SetIds::AUX)) {} Pdu1AuxHk(object_id_t objectId) : PduAuxHk(objectId, static_cast(::P60System::SetIds::AUX)) {} }; class Pdu1Config : public ::PDU::PduConfig { public: Pdu1Config(HasLocalDataPoolIF* owner) : PduConfig(owner, static_cast(::P60System::SetIds::CONFIG)) {} }; } // namespace PDU1 namespace PDU2 { enum Channels : uint8_t { Q7S = 0, PAYLOAD_PCDU_CH1 = 1, RW = 2, TCS_HEATER_IN = 3, SUS_REDUNDANT = 4, DEPY_MECHANISM = 5, PAYLOAD_PCDU_CH6 = 6, ACS_B_SIDE = 7, PAYLOAD_CAMERA = 8, LEN = 9 }; /** * Addresses within configuration table to enable or disable output channels. Refer also to * gs-man-nanopower-p60-pdu-200.pdf on page 16. */ static const uint16_t CONFIG_ADDRESS_OUT_EN_Q7S = 0x48; static const uint16_t CONFIG_ADDRESS_OUT_EN_PAYLOAD_PCDU_CH1 = 0x49; static const uint16_t CONFIG_ADDRESS_OUT_EN_RW = 0x4A; static const uint16_t CONFIG_ADDRESS_OUT_EN_TCS_BOARD_HEATER_IN = 0x4B; static const uint16_t CONFIG_ADDRESS_OUT_EN_SUS_REDUNDANT = 0x4C; static const uint16_t CONFIG_ADDRESS_OUT_EN_DEPLOYMENT_MECHANISM = 0x4D; static const uint16_t CONFIG_ADDRESS_OUT_EN_PAYLOAD_PCDU_CH6 = 0x4E; static const uint16_t CONFIG_ADDRESS_OUT_EN_ACS_BOARD_SIDE_B = 0x4F; static const uint16_t CONFIG_ADDRESS_OUT_EN_PAYLOAD_CAMERA = 0x50; class Pdu2CoreHk : public ::PDU::PduCoreHk { public: Pdu2CoreHk(HasLocalDataPoolIF* owner) : PduCoreHk(owner, static_cast(::P60System::SetIds::CORE)) {} Pdu2CoreHk(object_id_t objectId) : PduCoreHk(objectId, static_cast(::P60System::SetIds::CORE)) {} }; class Pdu2AuxHk : public ::PDU::PduAuxHk { public: Pdu2AuxHk(HasLocalDataPoolIF* owner) : PduAuxHk(owner, static_cast(::P60System::SetIds::AUX)) {} Pdu2AuxHk(object_id_t objectId) : PduAuxHk(objectId, static_cast(::P60System::SetIds::AUX)) {} }; class Pdu2Config : public ::PDU::PduConfig { public: Pdu2Config(HasLocalDataPoolIF* owner) : PduConfig(owner, static_cast(::P60System::SetIds::CONFIG)) {} }; } // namespace PDU2 namespace ACU { namespace pool { enum Ids : lp_id_t { /** ACU Ids */ ACU_CURRENT_IN_CHANNELS, ACU_VOLTAGE_IN_CHANNELS, ACU_VCC, ACU_VBAT, ACU_TEMPERATURES, ACU_MPPT_MODE, ACU_VBOOST_IN_CHANNELS, ACU_POWER_IN_CHANNELS, ACU_DAC_ENABLES, ACU_DAC_RAW_CHANNELS, ACU_BOOTCAUSE, ACU_BOOTCNT, ACU_UPTIME, ACU_RESET_CAUSE, ACU_MPPT_TIME, ACU_MPPT_PERIOD, ACU_DEVICES, ACU_DEVICES_STATUS, ACU_WDT_CNT_GND, ACU_WDT_GND_LEFT }; } static const uint16_t MAX_CONFIGTABLE_ADDRESS = 26; static const uint16_t MAX_HKTABLE_ADDRESS = 120; static const uint8_t HK_TABLE_ENTRIES = 64; static const uint16_t HK_TABLE_SIZE = gsConstants::P60ACU_HK_SIZE; static const uint16_t CONFIG_TABLE_SIZE = gsConstants::P60ACU_PARAM_SIZE; static const size_t MAX_REPLY_SIZE = HK_TABLE_SIZE; class CoreHk : public StaticLocalDataSet<14> { public: CoreHk(HasLocalDataPoolIF* owner) : StaticLocalDataSet(owner, static_cast(::P60System::SetIds::CORE)) {} CoreHk(object_id_t objectId) : StaticLocalDataSet(sid_t(objectId, static_cast(::P60System::SetIds::CORE))) {} lp_var_t mpptMode = lp_var_t(sid.objectId, pool::ACU_MPPT_MODE, this); lp_vec_t currentInChannels = lp_vec_t(sid.objectId, pool::ACU_CURRENT_IN_CHANNELS, this); lp_vec_t voltageInChannels = lp_vec_t(sid.objectId, pool::ACU_VOLTAGE_IN_CHANNELS, this); lp_var_t vcc = lp_var_t(sid.objectId, pool::ACU_VCC, this); lp_var_t vbat = lp_var_t(sid.objectId, pool::ACU_VBAT, this); lp_vec_t vboostInChannels = lp_vec_t(sid.objectId, pool::ACU_VBOOST_IN_CHANNELS, this); lp_vec_t powerInChannels = lp_vec_t(sid.objectId, pool::ACU_POWER_IN_CHANNELS, this); lp_vec_t temperatures = lp_vec_t(sid.objectId, pool::ACU_TEMPERATURES, this); lp_var_t bootcnt = lp_var_t(sid.objectId, pool::ACU_BOOTCNT, this); lp_var_t uptime = lp_var_t(sid.objectId, pool::ACU_UPTIME, this); lp_var_t mpptTime = lp_var_t(sid.objectId, pool::ACU_MPPT_TIME, this); lp_var_t mpptPeriod = lp_var_t(sid.objectId, pool::ACU_MPPT_PERIOD, this); }; /** * @brief This class defines a dataset for the hk table of the ACU. */ class AuxHk : public StaticLocalDataSet<12> { public: AuxHk(HasLocalDataPoolIF* owner) : StaticLocalDataSet(owner, static_cast(::P60System::SetIds::AUX)) {} AuxHk(object_id_t objectId) : StaticLocalDataSet(sid_t(objectId, static_cast(::P60System::SetIds::AUX))) {} lp_vec_t dacEnables = lp_vec_t(sid.objectId, pool::ACU_DAC_ENABLES, this); lp_vec_t dacRawChannelVals = lp_vec_t(sid.objectId, pool::ACU_DAC_RAW_CHANNELS, this); lp_var_t bootCause = lp_var_t(sid.objectId, pool::ACU_BOOTCAUSE, this); lp_var_t resetCause = lp_var_t(sid.objectId, pool::ACU_RESET_CAUSE, this); lp_var_t wdtCntGnd = lp_var_t(sid.objectId, pool::ACU_WDT_CNT_GND, this); lp_var_t wdtGndLeft = lp_var_t(sid.objectId, pool::ACU_WDT_GND_LEFT, this); /** * There are 8 devices on the PDU. FRAM, ADCs, temperature sensor etc. Each device is * identified by an ID. Refer also to gs-man-nanopower-p60-pdu-200-1.pdf on pages 17 and 18. */ lp_vec_t deviceTypes = lp_vec_t(sid.objectId, pool::ACU_DEVICES, this); /** The status of each device. 0 = None, 1 = Ok, 2 = Error, 3 = Not found */ lp_vec_t devicesStatus = lp_vec_t(sid.objectId, pool::ACU_DEVICES_STATUS, this); }; } // namespace ACU namespace pcdu { enum PoolIds : uint32_t { PDU1_SWITCHES, PDU2_SWITCHES, P60DOCK_SWITCHES }; /* Switches are uint8_t datatype and go from 0 to 255 */ enum Switches : power::Switch_t { PDU1_CH0_TCS_BOARD_3V3, PDU1_CH1_SYRLINKS_12V, PDU1_CH2_STAR_TRACKER_5V, PDU1_CH3_MGT_5V, PDU1_CH4_SUS_NOMINAL_3V3, PDU1_CH5_SOLAR_CELL_EXP_5V, PDU1_CH6_PLOC_12V, PDU1_CH7_ACS_A_SIDE_3V3, PDU1_CH8_UNOCCUPIED, PDU2_CH0_Q7S, PDU2_CH1_PL_PCDU_BATT_0_14V8, PDU2_CH2_RW_5V, PDU2_CH3_TCS_BOARD_HEATER_IN_8V, PDU2_CH4_SUS_REDUNDANT_3V3, PDU2_CH5_DEPLOYMENT_MECHANISM_8V, PDU2_CH6_PL_PCDU_BATT_1_14V8, PDU2_CH7_ACS_BOARD_SIDE_B_3V3, PDU2_CH8_PAYLOAD_CAMERA, P60_DOCK_5V_STACK, NUMBER_OF_SWITCHES }; static const uint8_t ON = 1; static const uint8_t OFF = 0; // Output states after reboot of the PDUs const std::array INIT_SWITCHES_PDU1 = { // Because the TE0720 is not connected to the PCDU, this switch is always on #ifdef TE0720_1CFA ON, #else OFF, #endif OFF, OFF, OFF, OFF, OFF, OFF, OFF, OFF, }; const std::array INIT_SWITCHES_PDU2 = {ON, OFF, OFF, OFF, OFF, OFF, OFF, OFF, OFF}; static constexpr uint32_t SWITCHER_SET_ID = 0; class SwitcherStates : public StaticLocalDataSet { public: SwitcherStates(HasLocalDataPoolIF* owner) : StaticLocalDataSet(owner, SWITCHER_SET_ID) {} SwitcherStates(object_id_t objectId) : StaticLocalDataSet(sid_t(objectId, SWITCHER_SET_ID)) {} lp_vec_t pdu1Switches = lp_vec_t(sid.objectId, PDU1_SWITCHES, this); lp_vec_t pdu2Switches = lp_vec_t(sid.objectId, PDU2_SWITCHES, this); lp_var_t p60Dock5VStack = lp_var_t(sid.objectId, P60DOCK_SWITCHES, this); }; } // namespace pcdu #endif /* MISSION_POWER_GSDEFS_H_ */