#include "UartTestClass.h" #include // Error integer and strerror() function #include // Contains file controls like O_RDWR #include #include #include #include #include // write(), read(), close() #include "OBSWConfig.h" #include "fsfw/globalfunctions/CRC.h" #include "fsfw/globalfunctions/DleEncoder.h" #include "fsfw/globalfunctions/arrayprinter.h" #include "fsfw/serviceinterface.h" #define GPS_REPLY_WIRETAPPING 0 #ifndef RPI_TEST_GPS_HANDLER #define RPI_TEST_GPS_HANDLER 0 #endif UartTestClass::UartTestClass(object_id_t objectId, ScexUartReader* reader) : TestTask(objectId), reader(reader), decodeRingBuf(4096, true) { mode = TestModes::SCEX; scexMode = ScexModes::SIMPLE; currCmd = scex::ScexCmds::FRAM; if (mode == TestModes::SCEX) { dleParser = new ScexDleParser(decodeRingBuf, dleEncoder, {encodedBuf.data(), encodedBuf.size()}, {decodedBuf.data(), decodedBuf.size()}, &foundDlePacketHandler, this); } } ReturnValue_t UartTestClass::initialize() { if (mode == TestModes::GPS) { gpsInit(); } else if (mode == TestModes::SCEX) { scexInit(); } return HasReturnvaluesIF::RETURN_OK; } ReturnValue_t UartTestClass::performOneShotAction() { return HasReturnvaluesIF::RETURN_OK; } ReturnValue_t UartTestClass::performPeriodicAction() { if (mode == TestModes::GPS) { gpsPeriodic(); } else if (mode == TestModes::SCEX) { scexPeriodic(); } return HasReturnvaluesIF::RETURN_OK; } void UartTestClass::gpsInit() { #if RPI_TEST_GPS_HANDLER == 1 int result = lwgps_init(&gpsData); if (result == 0) { sif::warning << "lwgps_init error: " << result << std::endl; } /* Get file descriptor */ serialPort = open("/dev/serial0", O_RDWR); if (serialPort < 0) { sif::warning << "open call failed with error [" << errno << ", " << strerror(errno) << std::endl; } /* Setting up UART parameters */ tty.c_cflag &= ~PARENB; // Clear parity bit tty.c_cflag &= ~CSTOPB; // Clear stop field, only one stop bit used in communication tty.c_cflag &= ~CSIZE; // Clear all the size bits tty.c_cflag |= CS8; // 8 bits per byte tty.c_cflag &= ~CRTSCTS; // Disable RTS/CTS hardware flow control tty.c_cflag |= CREAD | CLOCAL; // Turn on READ & ignore ctrl lines (CLOCAL = 1) // Use canonical mode for GPS device tty.c_lflag |= ICANON; tty.c_lflag &= ~ECHO; // Disable echo tty.c_lflag &= ~ECHOE; // Disable erasure tty.c_lflag &= ~ECHONL; // Disable new-line echo tty.c_lflag &= ~ISIG; // Disable interpretation of INTR, QUIT and SUSP tty.c_iflag &= ~(IXON | IXOFF | IXANY); // Turn off s/w flow ctrl tty.c_iflag &= ~(IGNBRK | BRKINT | PARMRK | ISTRIP | INLCR | IGNCR | ICRNL); // Disable any special handling of received bytes tty.c_oflag &= ~OPOST; // Prevent special interpretation of output bytes (e.g. newline chars) tty.c_oflag &= ~ONLCR; // Prevent conversion of newline to carriage return/line feed // Non-blocking mode tty.c_cc[VTIME] = 0; tty.c_cc[VMIN] = 0; cfsetispeed(&tty, B9600); cfsetospeed(&tty, B9600); if (tcsetattr(serialPort, TCSANOW, &tty) != 0) { sif::warning << "tcsetattr call failed with error [" << errno << ", " << strerror(errno) << std::endl; ; } // Flush received and unread data. Those are old NMEA strings which are not relevant anymore tcflush(serialPort, TCIFLUSH); #endif } void UartTestClass::gpsPeriodic() { #if RPI_TEST_GPS_HANDLER == 1 int bytesRead = 0; do { bytesRead = read(serialPort, reinterpret_cast(recBuf.data()), static_cast(recBuf.size())); if (bytesRead < 0) { sif::warning << "UartTestClass::performPeriodicAction: read call failed with error [" << errno << ", " << strerror(errno) << "]" << std::endl; break; } else if (bytesRead >= static_cast(recBuf.size())) { sif::debug << "UartTestClass::performPeriodicAction: " "recv buffer might not be large enough" << std::endl; } else if (bytesRead > 0) { // pass data to lwgps for processing #if GPS_REPLY_WIRETAPPING == 1 sif::info << recBuf.data() << std::endl; #endif int result = lwgps_process(&gpsData, recBuf.data(), bytesRead); if (result == 0) { sif::warning << "UartTestClass::performPeriodicAction: lwgps_process error" << std::endl; } recvCnt++; if (recvCnt == 6) { recvCnt = 0; sif::info << "GPS Data" << std::endl; // Print messages printf("Valid status: %d\n", gpsData.is_valid); printf("Latitude: %f degrees\n", gpsData.latitude); printf("Longitude: %f degrees\n", gpsData.longitude); printf("Altitude: %f meters\n", gpsData.altitude); } } } while (bytesRead > 0); #endif } void UartTestClass::scexInit() { if (reader == nullptr) { sif::warning << "UartTestClass::scexInit: Reader invalid" << std::endl; return; } if (scexMode == ScexModes::SIMPLE) { scexSimpleInit(); } else { #if defined(RASPBERRY_PI) std::string devname = "/dev/serial0"; #else std::string devname = "/dev/ul-scex"; #endif uartCookie = new UartCookie(this->getObjectId(), devname, UartBaudRate::RATE_57600, 4096); reader->setDebugMode(true); ReturnValue_t result = reader->initializeInterface(uartCookie); if (result != HasReturnvaluesIF::RETURN_OK) { sif::warning << "UartTestClass::gpsPeriodic: Initializing SCEX reader " "UART IF failed" << std::endl; } } } void UartTestClass::scexPeriodic() { if (reader == nullptr) { return; } if (scexMode == ScexModes::SIMPLE) { scexSimplePeriodic(); } else { size_t len = 0; prepareScexCmd(scex::ScexCmds::PING, false, cmdBuf.data(), &len); reader->sendMessage(uartCookie, cmdBuf.data(), len); } } void UartTestClass::scexSimpleInit() { #if defined(RASPBERRY_PI) std::string devname = "/dev/serial0"; #else std::string devname = "/dev/ul-scex"; #endif /* Get file descriptor */ serialPort = open(devname.c_str(), O_RDWR); if (serialPort < 0) { sif::warning << "open call failed with error [" << errno << ", " << strerror(errno) << std::endl; return; } // Setting up UART parameters tty.c_cflag &= ~PARENB; // Clear parity bit tty.c_cflag &= ~CSTOPB; // Clear stop field, only one stop bit used in communication tty.c_cflag &= ~CSIZE; // Clear all the size bits tty.c_cflag |= CS8; // 8 bits per byte tty.c_cflag &= ~CRTSCTS; // Disable RTS/CTS hardware flow control tty.c_cflag |= CREAD | CLOCAL; // Turn on READ & ignore ctrl lines (CLOCAL = 1) // Use non-canonical mode and clear echo flag tty.c_lflag &= ~(ICANON | ECHO); // Non-blocking mode, read until either line is 0.1 second idle or maximum of 255 bytes are // received in one go tty.c_cc[VTIME] = 10; // In units of 0.1 seconds tty.c_cc[VMIN] = 255; // Read up to 255 bytes // Q7S UART Lite has fixed baud rate. For other linux systems, set baud rate here. #if !defined(XIPHOS_Q7S) if (cfsetispeed(&tty, B57600) != 0) { sif::warning << "UartTestClass::scexInit: Setting baud rate failed" << std::endl; } #endif if (tcsetattr(serialPort, TCSANOW, &tty) != 0) { sif::warning << "tcsetattr call failed with error [" << errno << ", " << strerror(errno) << std::endl; } // Flush received and unread data tcflush(serialPort, TCIOFLUSH); } void UartTestClass::scexSimplePeriodic() { using namespace scex; ReturnValue_t result = RETURN_OK; if (not cmdSent) { // Flush received and unread data tcflush(serialPort, TCIFLUSH); uint8_t tmpCmdBuf[32] = {}; size_t len = 0; sif::info << "UartTestClass::scexSimplePeriodic: Sending command to SCEX" << std::endl; prepareScexCmd(currCmd, false, tmpCmdBuf, &len); result = dleEncoder.encode(tmpCmdBuf, len, cmdBuf.data(), cmdBuf.size(), &encodedLen, true); if (result != HasReturnvaluesIF::RETURN_OK) { sif::warning << "UartTestClass::scexInit: Encoding failed" << std::endl; return; } if (result != 0) { return; }; size_t bytesWritten = write(serialPort, cmdBuf.data(), encodedLen); if (bytesWritten != encodedLen) { sif::warning << "Sending command to solar experiment failed" << std::endl; } cmdSent = true; cmdDone = false; } if (not cmdDone) { // Read back reply immediately int bytesRead = 0; do { bytesRead = read(serialPort, reinterpret_cast(recBuf.data()), static_cast(recBuf.size())); if (bytesRead == 0) { sif::warning << "Reading SCEX: Timeout or no bytes read" << std::endl; } else if (bytesRead < 0) { sif::warning << "UartTestClass::performPeriodicAction: read call failed with error [" << errno << ", " << strerror(errno) << "]" << std::endl; break; } else if (bytesRead >= static_cast(recBuf.size())) { sif::debug << "UartTestClass::performPeriodicAction: recv buffer might not be large enough" << std::endl; } else if (bytesRead > 0) { dleParser->passData(recBuf.data(), bytesRead); if (currCmd == ScexCmds::PING) { cmdDone = true; cmdSent = false; } } } while (bytesRead > 0); } } int UartTestClass::prepareScexCmd(scex::ScexCmds cmd, bool tempCheck, uint8_t* cmdBuf, size_t* len) { using namespace scex; // Send ping command cmdBuf[0] = scex::createCmdByte(cmd, false); // These two fields are the packet counter and the total packet count. Those are 1 and 1 for each // telecommand so far cmdBuf[1] = 1; cmdBuf[2] = 1; uint16_t userDataLen = 0; cmdBuf[3] = (userDataLen >> 8) & 0xff; cmdBuf[4] = userDataLen & 0xff; uint16_t crc = CRC::crc16ccitt(cmdBuf, 5); cmdBuf[5] = (crc >> 8) & 0xff; cmdBuf[6] = crc & 0xff; *len = 7; return 0; } void UartTestClass::foundDlePacketHandler(uint8_t* packet, size_t len, void* args) { UartTestClass* obj = reinterpret_cast(args); obj->handleFoundDlePacket(packet, len); } void UartTestClass::handleFoundDlePacket(uint8_t* packet, size_t len) { sif::info << "Detected DLE encoded packet with decoded size " << len << std::endl; }