#include "AcsBoardPolling.h"

#include <fcntl.h>
#include <fsfw/globalfunctions/arrayprinter.h>
#include <fsfw/tasks/SemaphoreFactory.h>
#include <fsfw/tasks/TaskFactory.h>
#include <fsfw/timemanager/Stopwatch.h>
#include <fsfw_hal/devicehandlers/devicedefinitions/gyroL3gHelpers.h>
#include <fsfw_hal/devicehandlers/devicedefinitions/mgmLis3Helpers.h>
#include <fsfw_hal/linux/UnixFileGuard.h>
#include <fsfw_hal/linux/spi/SpiCookie.h>
#include <fsfw_hal/linux/utility.h>
#include <mission/devices/devicedefinitions/gyroAdisHelpers.h>
#include <sys/ioctl.h>

#include "devices/gpioIds.h"

using namespace returnvalue;

AcsBoardPolling::AcsBoardPolling(object_id_t objectId, SpiComIF& lowLevelComIF, GpioIF& gpioIF)
    : SystemObject(objectId), spiComIF(lowLevelComIF), gpioIF(gpioIF) {
  semaphore = SemaphoreFactory::instance()->createBinarySemaphore();
  semaphore->acquire();
  ipcLock = MutexFactory::instance()->createMutex();
}

ReturnValue_t AcsBoardPolling::performOperation(uint8_t operationCode) {
  while (true) {
    ipcLock->lockMutex(LOCK_TYPE, LOCK_TIMEOUT);
    state = InternalState::IDLE;
    ipcLock->unlockMutex();
    semaphore->acquire();
    // Give all tasks or the PST some time to submit all consecutive requests.
    TaskFactory::delayTask(2);
    {
      // Measured to take 0-1 ms in debug build.
      // Stopwatch watch;
      gyroAdisHandler(gyro0Adis);
      gyroAdisHandler(gyro2Adis);
      gyroL3gHandler(gyro1L3g);
      gyroL3gHandler(gyro3L3g);
      mgmRm3100Handler(mgm1Rm3100);
      mgmRm3100Handler(mgm3Rm3100);
      mgmLis3Handler(mgm0Lis3);
      mgmLis3Handler(mgm2Lis3);
    }
    // To prevent task being not reactivated by tardy tasks
    TaskFactory::delayTask(20);
  }
  return returnvalue::OK;
}

ReturnValue_t AcsBoardPolling::initialize() { return returnvalue::OK; }

ReturnValue_t AcsBoardPolling::initializeInterface(CookieIF* cookie) {
  SpiCookie* spiCookie = dynamic_cast<SpiCookie*>(cookie);
  if (spiCookie == nullptr) {
    return returnvalue::FAILED;
  }
  switch (spiCookie->getChipSelectPin()) {
    case (gpioIds::MGM_0_LIS3_CS): {
      mgm0Lis3.cookie = spiCookie;
      break;
    }
    case (gpioIds::MGM_1_RM3100_CS): {
      mgm1Rm3100.cookie = spiCookie;
      break;
    }
    case (gpioIds::MGM_2_LIS3_CS): {
      mgm2Lis3.cookie = spiCookie;
      break;
    }
    case (gpioIds::MGM_3_RM3100_CS): {
      mgm3Rm3100.cookie = spiCookie;
      break;
    }
    case (gpioIds::GYRO_0_ADIS_CS): {
      gyro0Adis.cookie = spiCookie;
      break;
    }
    case (gpioIds::GYRO_1_L3G_CS): {
      gyro1L3g.cookie = spiCookie;
      break;
    }
    case (gpioIds::GYRO_2_ADIS_CS): {
      gyro2Adis.cookie = spiCookie;
      break;
    }
    case (gpioIds::GYRO_3_L3G_CS): {
      gyro3L3g.cookie = spiCookie;
      break;
    }
    default: {
      sif::error << "AcsBoardPollingTask: invalid spi cookie" << std::endl;
    }
  }
  return spiComIF.initializeInterface(cookie);
}

ReturnValue_t AcsBoardPolling::sendMessage(CookieIF* cookie, const uint8_t* sendData,
                                           size_t sendLen) {
  SpiCookie* spiCookie = dynamic_cast<SpiCookie*>(cookie);
  if (spiCookie == nullptr) {
    return returnvalue::FAILED;
  }
  auto handleAdisRequest = [&](GyroAdis& adis) {
    if (sendLen != sizeof(acs::Adis1650XRequest)) {
      sif::error << "AcsBoardPolling: invalid adis request send length";
      adis.replyResult = returnvalue::FAILED;
      return returnvalue::FAILED;
    }
    auto* req = reinterpret_cast<const acs::Adis1650XRequest*>(sendData);
    if (req->mode != adis.mode) {
      if (req->mode == acs::SimpleSensorMode::NORMAL) {
        adis.type = req->type;
        adis.countdown.setTimeout(adis1650x::START_UP_TIME);
        if (adis.type == adis1650x::Type::ADIS16507) {
          adis.ownReply.data.accelScaling = adis1650x::ACCELEROMETER_RANGE_16507;
        } else if (adis.type == adis1650x::Type::ADIS16505) {
          adis.ownReply.data.accelScaling = adis1650x::ACCELEROMETER_RANGE_16505;
        } else {
          sif::warning << "AcsBoardPolling: Unknown ADIS type" << std::endl;
        }
        adis.performStartup = true;
      } else if (req->mode == acs::SimpleSensorMode::OFF) {
        adis.performStartup = false;
        adis.ownReply.cfgWasSet = false;
        adis.ownReply.dataWasSet = false;
      }
      adis.mode = req->mode;
    }
    return returnvalue::OK;
  };
  auto handleL3gRequest = [&](GyroL3g& gyro) {
    if (sendLen != sizeof(acs::GyroL3gRequest)) {
      sif::error << "AcsBoardPolling: invalid l3g request send length";
      gyro.replyResult = returnvalue::FAILED;
      return returnvalue::FAILED;
    }
    auto* req = reinterpret_cast<const acs::GyroL3gRequest*>(sendData);
    if (req->mode != gyro.mode) {
      if (req->mode == acs::SimpleSensorMode::NORMAL) {
        std::memcpy(gyro.sensorCfg, req->ctrlRegs, 5);
        gyro.performStartup = true;
      } else {
        gyro.ownReply.cfgWasSet = false;
      }
      gyro.mode = req->mode;
    }
    return returnvalue::OK;
  };
  auto handleLis3Request = [&](MgmLis3& mgm) {
    if (sendLen != sizeof(acs::MgmLis3Request)) {
      sif::error << "AcsBoardPolling: invalid lis3 request send length";
      mgm.replyResult = returnvalue::FAILED;
      return returnvalue::FAILED;
    }
    auto* req = reinterpret_cast<const acs::MgmLis3Request*>(sendData);
    if (req->mode != mgm.mode) {
      if (req->mode == acs::SimpleSensorMode::NORMAL) {
        mgm.performStartup = true;
      } else {
        mgm.ownReply.dataWasSet = false;
        mgm.ownReply.temperatureWasSet = false;
      }
      mgm.mode = req->mode;
    }
    return returnvalue::OK;
  };
  auto handleRm3100Request = [&](MgmRm3100& mgm) {
    if (sendLen != sizeof(acs::MgmRm3100Request)) {
      sif::error << "AcsBoardPolling: invalid rm3100 request send length";
      mgm.replyResult = returnvalue::FAILED;
      return returnvalue::FAILED;
    }
    auto* req = reinterpret_cast<const acs::MgmRm3100Request*>(sendData);
    if (req->mode != mgm.mode) {
      if (req->mode == acs::SimpleSensorMode::NORMAL) {
        mgm.performStartup = true;
      } else {
        mgm.ownReply.dataWasRead = false;
      }
      mgm.mode = req->mode;
    }
    return returnvalue::OK;
  };
  {
    MutexGuard mg(ipcLock, LOCK_TYPE, LOCK_TIMEOUT, LOCK_CTX);
    switch (spiCookie->getChipSelectPin()) {
      case (gpioIds::MGM_0_LIS3_CS): {
        handleLis3Request(mgm0Lis3);
        break;
      }
      case (gpioIds::MGM_1_RM3100_CS): {
        handleRm3100Request(mgm1Rm3100);
        break;
      }
      case (gpioIds::MGM_2_LIS3_CS): {
        handleLis3Request(mgm2Lis3);
        break;
      }
      case (gpioIds::MGM_3_RM3100_CS): {
        handleRm3100Request(mgm3Rm3100);
        break;
      }
      case (gpioIds::GYRO_0_ADIS_CS): {
        handleAdisRequest(gyro0Adis);
        break;
      }
      case (gpioIds::GYRO_2_ADIS_CS): {
        handleAdisRequest(gyro2Adis);
        break;
      }
      case (gpioIds::GYRO_1_L3G_CS): {
        handleL3gRequest(gyro1L3g);
        break;
      }
      case (gpioIds::GYRO_3_L3G_CS): {
        handleL3gRequest(gyro3L3g);
        break;
      }
    }
    if (state == InternalState::IDLE) {
      state = InternalState::BUSY;
    }
  }
  semaphore->release();
  return returnvalue::OK;
}

ReturnValue_t AcsBoardPolling::getSendSuccess(CookieIF* cookie) { return returnvalue::OK; }

ReturnValue_t AcsBoardPolling::requestReceiveMessage(CookieIF* cookie, size_t requestLen) {
  return returnvalue::OK;
}

ReturnValue_t AcsBoardPolling::readReceivedMessage(CookieIF* cookie, uint8_t** buffer,
                                                   size_t* size) {
  SpiCookie* spiCookie = dynamic_cast<SpiCookie*>(cookie);
  if (spiCookie == nullptr) {
    return returnvalue::FAILED;
  }
  MutexGuard mg(ipcLock, LOCK_TYPE, LOCK_TIMEOUT, LOCK_CTX);
  auto handleAdisReply = [&](GyroAdis& gyro) {
    std::memcpy(&gyro.readerReply, &gyro.ownReply, sizeof(acs::Adis1650XReply));
    *buffer = reinterpret_cast<uint8_t*>(&gyro.readerReply);
    *size = sizeof(acs::Adis1650XReply);
    return gyro.replyResult;
  };
  auto handleL3gReply = [&](GyroL3g& gyro) {
    std::memcpy(&gyro.readerReply, &gyro.ownReply, sizeof(acs::GyroL3gReply));
    *buffer = reinterpret_cast<uint8_t*>(&gyro.readerReply);
    *size = sizeof(acs::GyroL3gReply);
    return gyro.replyResult;
  };
  auto handleRm3100Reply = [&](MgmRm3100& mgm) {
    std::memcpy(&mgm.readerReply, &mgm.ownReply, sizeof(acs::MgmRm3100Reply));
    *buffer = reinterpret_cast<uint8_t*>(&mgm.readerReply);
    *size = sizeof(acs::MgmRm3100Reply);
    return mgm.replyResult;
  };
  auto handleLis3Reply = [&](MgmLis3& mgm) {
    std::memcpy(&mgm.readerReply, &mgm.ownReply, sizeof(acs::MgmLis3Reply));
    *buffer = reinterpret_cast<uint8_t*>(&mgm.readerReply);
    *size = sizeof(acs::MgmLis3Reply);
    return mgm.replyResult;
  };
  switch (spiCookie->getChipSelectPin()) {
    case (gpioIds::MGM_0_LIS3_CS): {
      return handleLis3Reply(mgm0Lis3);
    }
    case (gpioIds::MGM_1_RM3100_CS): {
      return handleRm3100Reply(mgm1Rm3100);
    }
    case (gpioIds::MGM_2_LIS3_CS): {
      return handleLis3Reply(mgm2Lis3);
    }
    case (gpioIds::MGM_3_RM3100_CS): {
      return handleRm3100Reply(mgm3Rm3100);
    }
    case (gpioIds::GYRO_0_ADIS_CS): {
      return handleAdisReply(gyro0Adis);
    }
    case (gpioIds::GYRO_2_ADIS_CS): {
      return handleAdisReply(gyro2Adis);
    }
    case (gpioIds::GYRO_1_L3G_CS): {
      return handleL3gReply(gyro1L3g);
    }
    case (gpioIds::GYRO_3_L3G_CS): {
      return handleL3gReply(gyro3L3g);
    }
  }
  return returnvalue::OK;
}

void AcsBoardPolling::gyroL3gHandler(GyroL3g& l3g) {
  ReturnValue_t result;
  acs::SimpleSensorMode mode = acs::SimpleSensorMode::OFF;
  bool gyroPerformStartup = false;
  {
    MutexGuard mg(ipcLock, LOCK_TYPE, LOCK_TIMEOUT, LOCK_CTX);
    mode = l3g.mode;
    gyroPerformStartup = l3g.performStartup;
  }
  if (mode == acs::SimpleSensorMode::NORMAL) {
    if (gyroPerformStartup) {
      cmdBuf[0] = l3gd20h::CTRL_REG_1 | l3gd20h::AUTO_INCREMENT_MASK;
      std::memcpy(cmdBuf.data() + 1, l3g.sensorCfg, 5);
      result = spiComIF.sendMessage(l3g.cookie, cmdBuf.data(), 6);
      if (result != returnvalue::OK) {
        l3g.replyResult = returnvalue::OK;
      }
      // Ignore useless reply and red config
      cmdBuf[0] = l3gd20h::CTRL_REG_1 | l3gd20h::AUTO_INCREMENT_MASK | l3gd20h::READ_MASK;
      std::memset(cmdBuf.data() + 1, 0, 5);
      result = spiComIF.sendMessage(l3g.cookie, cmdBuf.data(), 6);
      if (result != returnvalue::OK) {
        l3g.replyResult = returnvalue::OK;
      }
      result = spiComIF.readReceivedMessage(l3g.cookie, &rawReply, &dummy);
      if (result != returnvalue::OK) {
        l3g.replyResult = returnvalue::OK;
      }
      MutexGuard mg(ipcLock, LOCK_TYPE, LOCK_TIMEOUT, LOCK_CTX);
      // Cross check configuration as verification that communication is working
      for (uint8_t idx = 0; idx < 5; idx++) {
        if (rawReply[idx + 1] != l3g.sensorCfg[idx]) {
          sif::warning << "AcsBoardPolling: l3g config check missmatch" << std::endl;
          l3g.replyResult = returnvalue::FAILED;
          return;
        }
      }
      l3g.performStartup = false;
      l3g.ownReply.cfgWasSet = true;
      l3g.ownReply.sensitivity = l3gd20h::ctrlReg4ToSensitivity(l3g.sensorCfg[3]);
    }
    cmdBuf[0] = l3gd20h::READ_START | l3gd20h::AUTO_INCREMENT_MASK | l3gd20h::READ_MASK;
    std::memset(cmdBuf.data() + 1, 0, l3gd20h::READ_LEN);
    result = spiComIF.sendMessage(l3g.cookie, cmdBuf.data(), l3gd20h::READ_LEN + 1);
    if (result != returnvalue::OK) {
      l3g.replyResult = returnvalue::FAILED;
      return;
    }
    result = spiComIF.readReceivedMessage(l3g.cookie, &rawReply, &dummy);
    if (result != returnvalue::OK) {
      l3g.replyResult = returnvalue::FAILED;
      return;
    }
    MutexGuard mg(ipcLock, LOCK_TYPE, LOCK_TIMEOUT, LOCK_CTX);
    // The regular read function always returns the full sensor config as well. Use that
    // to verify communications.
    for (uint8_t idx = 0; idx < 5; idx++) {
      if (rawReply[idx + 1] != l3g.sensorCfg[idx]) {
        sif::warning << "AcsBoardPolling: l3g config check missmatch" << std::endl;
        l3g.replyResult = returnvalue::FAILED;
        return;
      }
    }
    l3g.ownReply.statusReg = rawReply[l3gd20h::STATUS_IDX];
    l3g.ownReply.angVelocities[0] = (rawReply[l3gd20h::OUT_X_H] << 8) | rawReply[l3gd20h::OUT_X_L];
    l3g.ownReply.angVelocities[1] = (rawReply[l3gd20h::OUT_Y_H] << 8) | rawReply[l3gd20h::OUT_Y_L];
    l3g.ownReply.angVelocities[2] = (rawReply[l3gd20h::OUT_Z_H] << 8) | rawReply[l3gd20h::OUT_Z_L];
    l3g.ownReply.tempOffsetRaw = rawReply[l3gd20h::TEMPERATURE_IDX];
  }
}

ReturnValue_t AcsBoardPolling::readAdisCfg(SpiCookie& cookie, size_t transferLen) {
  ReturnValue_t result = returnvalue::OK;
  int retval = 0;
  // Prepare transfer
  int fileDescriptor = 0;
  std::string device = spiComIF.getSpiDev();
  UnixFileGuard fileHelper(device, fileDescriptor, O_RDWR, "SpiComIF::sendMessage");
  if (fileHelper.getOpenResult() != returnvalue::OK) {
    return SpiComIF::OPENING_FILE_FAILED;
  }
  spi::SpiModes spiMode = spi::SpiModes::MODE_0;
  uint32_t spiSpeed = 0;
  cookie.getSpiParameters(spiMode, spiSpeed, nullptr);
  spiComIF.setSpiSpeedAndMode(fileDescriptor, spiMode, spiSpeed);
  cookie.assignWriteBuffer(cmdBuf.data());
  cookie.setTransferSize(2);

  gpioId_t gpioId = cookie.getChipSelectPin();
  MutexIF::TimeoutType timeoutType = MutexIF::TimeoutType::WAITING;
  uint32_t timeoutMs = 0;
  MutexIF* mutex = spiComIF.getCsMutex();
  cookie.getMutexParams(timeoutType, timeoutMs);
  if (mutex == nullptr) {
    sif::warning << "GyroADIS16507Handler::spiSendCallback: "
                    "Mutex or GPIO interface invalid"
                 << std::endl;
    return returnvalue::FAILED;
  }

  size_t idx = 0;
  spi_ioc_transfer* transferStruct = cookie.getTransferStructHandle();
  uint64_t origTx = transferStruct->tx_buf;
  uint64_t origRx = transferStruct->rx_buf;
  while (idx < transferLen) {
    result = mutex->lockMutex(timeoutType, timeoutMs);
    if (result != returnvalue::OK) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
      sif::error << "AcsBoardPolling: Failed to lock mutex" << std::endl;
#endif
      return result;
    }
    // Pull SPI CS low. For now, no support for active high given
    if (gpioId != gpio::NO_GPIO) {
      gpioIF.pullLow(gpioId);
    }

    // Execute transfer
    // Initiate a full duplex SPI transfer.
    retval = ioctl(fileDescriptor, SPI_IOC_MESSAGE(1), cookie.getTransferStructHandle());
    if (retval < 0) {
      utility::handleIoctlError("SpiComIF::sendMessage: ioctl error.");
      result = SpiComIF::FULL_DUPLEX_TRANSFER_FAILED;
    }
#if FSFW_HAL_SPI_WIRETAPPING == 1
    comIf->performSpiWiretapping(cookie);
#endif /* FSFW_LINUX_SPI_WIRETAPPING == 1 */

    if (gpioId != gpio::NO_GPIO) {
      gpioIF.pullHigh(gpioId);
    }
    mutex->unlockMutex();

    idx += 2;
    transferStruct->tx_buf += 2;
    transferStruct->rx_buf += 2;
    if (idx < transferLen) {
      usleep(adis1650x::STALL_TIME_MICROSECONDS);
    }
  }
  transferStruct->tx_buf = origTx;
  transferStruct->rx_buf = origRx;
  cookie.setTransferSize(transferLen);
  return returnvalue::OK;
}

void AcsBoardPolling::gyroAdisHandler(GyroAdis& gyro) {
  ReturnValue_t result;
  acs::SimpleSensorMode mode = acs::SimpleSensorMode::OFF;
  bool cdHasTimedOut = false;
  bool mustPerformStartup = false;
  {
    MutexGuard mg(ipcLock, LOCK_TYPE, LOCK_TIMEOUT, LOCK_CTX);
    mode = gyro.mode;
    cdHasTimedOut = gyro.countdown.hasTimedOut();
    mustPerformStartup = gyro.performStartup;
  }
  if (mode == acs::SimpleSensorMode::NORMAL and cdHasTimedOut) {
    if (mustPerformStartup) {
      uint8_t regList[6];
      // Read configuration
      regList[0] = adis1650x::DIAG_STAT_REG;
      regList[1] = adis1650x::FILTER_CTRL_REG;
      regList[2] = adis1650x::RANG_MDL_REG;
      regList[3] = adis1650x::MSC_CTRL_REG;
      regList[4] = adis1650x::DEC_RATE_REG;
      regList[5] = adis1650x::PROD_ID_REG;
      size_t transferLen =
          adis1650x::prepareReadCommand(regList, sizeof(regList), cmdBuf.data(), cmdBuf.size());
      result = readAdisCfg(*gyro.cookie, transferLen);
      if (result != returnvalue::OK) {
        gyro.replyResult = result;
        return;
      }
      result = spiComIF.readReceivedMessage(gyro.cookie, &rawReply, &dummy);
      if (result != returnvalue::OK or rawReply == nullptr) {
        gyro.replyResult = result;
        return;
      }
      uint16_t prodId = (rawReply[12] << 8) | rawReply[13];
      if (((gyro.type == adis1650x::Type::ADIS16505) and (prodId != adis1650x::PROD_ID_16505)) or
          ((gyro.type == adis1650x::Type::ADIS16507) and (prodId != adis1650x::PROD_ID_16507))) {
        sif::warning << "AcsPollingTask: Invalid  ADIS product ID " << prodId << std::endl;
        gyro.replyResult = returnvalue::FAILED;
        return;
      }
      MutexGuard mg(ipcLock, LOCK_TYPE, LOCK_TIMEOUT, LOCK_CTX);
      gyro.ownReply.cfgWasSet = true;
      gyro.ownReply.cfg.diagStat = (rawReply[2] << 8) | rawReply[3];
      gyro.ownReply.cfg.filterSetting = (rawReply[4] << 8) | rawReply[5];
      gyro.ownReply.cfg.rangMdl = (rawReply[6] << 8) | rawReply[7];
      gyro.ownReply.cfg.mscCtrlReg = (rawReply[8] << 8) | rawReply[9];
      gyro.ownReply.cfg.decRateReg = (rawReply[10] << 8) | rawReply[11];
      gyro.ownReply.cfg.prodId = prodId;
      gyro.ownReply.data.sensitivity = adis1650x::rangMdlToSensitivity(gyro.ownReply.cfg.rangMdl);
      gyro.performStartup = false;
    }
    // Read regular registers
    std::memcpy(cmdBuf.data(), adis1650x::BURST_READ_ENABLE.data(),
                adis1650x::BURST_READ_ENABLE.size());
    std::memset(cmdBuf.data() + 2, 0, 10 * 2);
    result = spiComIF.sendMessage(gyro.cookie, cmdBuf.data(), adis1650x::SENSOR_READOUT_SIZE);
    if (result != returnvalue::OK) {
      gyro.replyResult = returnvalue::FAILED;
      return;
    }
    result = spiComIF.readReceivedMessage(gyro.cookie, &rawReply, &dummy);
    if (result != returnvalue::OK or rawReply == nullptr) {
      gyro.replyResult = returnvalue::FAILED;
      return;
    }
    uint16_t checksum = (rawReply[20] << 8) | rawReply[21];

    // Now verify the read checksum with the expected checksum according to datasheet p. 20
    uint16_t calcChecksum = 0;
    for (size_t idx = 2; idx < 20; idx++) {
      calcChecksum += rawReply[idx];
    }
    if (checksum != calcChecksum) {
      sif::warning << "AcsPollingTask: Invalid ADIS reply checksum" << std::endl;
      gyro.replyResult = returnvalue::FAILED;
      return;
    }

    auto burstMode = adis1650x::burstModeFromMscCtrl(gyro.ownReply.cfg.mscCtrlReg);
    if (burstMode != adis1650x::BurstModes::BURST_16_BURST_SEL_0) {
      sif::error << "GyroADIS1650XHandler::interpretDeviceReply: Analysis for select burst mode"
                    " not implemented!"
                 << std::endl;
      gyro.replyResult = returnvalue::FAILED;
      return;
    }

    MutexGuard mg(ipcLock, LOCK_TYPE, LOCK_TIMEOUT, LOCK_CTX);
    gyro.ownReply.dataWasSet = true;
    gyro.ownReply.cfg.diagStat = rawReply[2] << 8 | rawReply[3];
    gyro.ownReply.data.angVelocities[0] = (rawReply[4] << 8) | rawReply[5];
    gyro.ownReply.data.angVelocities[1] = (rawReply[6] << 8) | rawReply[7];
    gyro.ownReply.data.angVelocities[2] = (rawReply[8] << 8) | rawReply[9];

    gyro.ownReply.data.accelerations[0] = (rawReply[10] << 8) | rawReply[11];
    gyro.ownReply.data.accelerations[1] = (rawReply[12] << 8) | rawReply[13];
    gyro.ownReply.data.accelerations[2] = (rawReply[14] << 8) | rawReply[15];

    gyro.ownReply.data.temperatureRaw = (rawReply[16] << 8) | rawReply[17];
  }
}

void AcsBoardPolling::mgmLis3Handler(MgmLis3& mgm) {
  ReturnValue_t result;
  acs::SimpleSensorMode mode = acs::SimpleSensorMode::OFF;
  bool mustPerformStartup = false;
  {
    MutexGuard mg(ipcLock, LOCK_TYPE, LOCK_TIMEOUT, LOCK_CTX);
    mode = mgm.mode;
    mustPerformStartup = mgm.performStartup;
  }
  if (mode == acs::SimpleSensorMode::NORMAL) {
    if (mustPerformStartup) {
      // To check valid communication, read back identification
      // register which should always be the same value.
      cmdBuf[0] = mgmLis3::readCommand(mgmLis3::IDENTIFY_DEVICE_REG_ADDR);
      cmdBuf[1] = 0x00;
      result = spiComIF.sendMessage(mgm.cookie, cmdBuf.data(), 2);
      if (result != OK) {
        mgm.replyResult = result;
        return;
      }
      result = spiComIF.readReceivedMessage(mgm.cookie, &rawReply, &dummy);
      if (result != OK) {
        mgm.replyResult = result;
        return;
      }
      if (rawReply[1] != mgmLis3::DEVICE_ID) {
        sif::error << "AcsPollingTask: invalid MGM lis3 device ID" << std::endl;
        mgm.replyResult = result;
        return;
      }
      mgm.cfg[0] = mgmLis3::CTRL_REG1_DEFAULT;
      mgm.cfg[1] = mgmLis3::CTRL_REG2_DEFAULT;
      mgm.cfg[2] = mgmLis3::CTRL_REG3_DEFAULT;
      mgm.cfg[3] = mgmLis3::CTRL_REG4_DEFAULT;
      mgm.cfg[4] = mgmLis3::CTRL_REG5_DEFAULT;
      cmdBuf[0] = mgmLis3::writeCommand(mgmLis3::CTRL_REG1, true);
      std::memcpy(cmdBuf.data() + 1, mgm.cfg, 5);
      result = spiComIF.sendMessage(mgm.cookie, cmdBuf.data(), 6);
      if (result != OK) {
        mgm.replyResult = result;
        return;
      }
      // Done here. We can always read back config and data during periodic handling
      mgm.performStartup = false;
    }
    cmdBuf[0] = mgmLis3::readCommand(mgmLis3::CTRL_REG1, true);
    std::memset(cmdBuf.data() + 1, 0, mgmLis3::NR_OF_DATA_AND_CFG_REGISTERS);
    result =
        spiComIF.sendMessage(mgm.cookie, cmdBuf.data(), mgmLis3::NR_OF_DATA_AND_CFG_REGISTERS + 1);
    if (result != returnvalue::OK) {
      mgm.replyResult = result;
      return;
    }
    result = spiComIF.readReceivedMessage(mgm.cookie, &rawReply, &dummy);
    if (result != returnvalue::OK) {
      mgm.replyResult = result;
      return;
    }
    // Verify communication by re-checking config
    if (rawReply[1] != mgm.cfg[0] or rawReply[2] != mgm.cfg[1] or rawReply[3] != mgm.cfg[2] or
        rawReply[4] != mgm.cfg[3] or rawReply[5] != mgm.cfg[4]) {
      mgm.replyResult = result;
      return;
    }
    {
      MutexGuard mg(ipcLock, LOCK_TYPE, LOCK_TIMEOUT, LOCK_CTX);
      mgm.ownReply.dataWasSet = true;
      mgm.ownReply.sensitivity = mgmLis3::getSensitivityFactor(mgmLis3::getSensitivity(mgm.cfg[1]));
      mgm.ownReply.mgmValuesRaw[0] =
          (rawReply[mgmLis3::X_HIGHBYTE_IDX] << 8) | rawReply[mgmLis3::X_LOWBYTE_IDX];
      mgm.ownReply.mgmValuesRaw[1] =
          (rawReply[mgmLis3::Y_HIGHBYTE_IDX] << 8) | rawReply[mgmLis3::Y_LOWBYTE_IDX];
      mgm.ownReply.mgmValuesRaw[2] =
          (rawReply[mgmLis3::Z_HIGHBYTE_IDX] << 8) | rawReply[mgmLis3::Z_LOWBYTE_IDX];
    }
    // Read tempetature
    cmdBuf[0] = mgmLis3::readCommand(mgmLis3::TEMP_LOWBYTE, true);
    result = spiComIF.sendMessage(mgm.cookie, cmdBuf.data(), 3);
    if (result != returnvalue::OK) {
      mgm.replyResult = result;
      return;
    }
    result = spiComIF.readReceivedMessage(mgm.cookie, &rawReply, &dummy);
    if (result != returnvalue::OK) {
      mgm.replyResult = result;
      return;
    }
    MutexGuard mg(ipcLock, LOCK_TYPE, LOCK_TIMEOUT, LOCK_CTX);
    mgm.ownReply.temperatureWasSet = true;
    mgm.ownReply.temperatureRaw = (rawReply[2] << 8) | rawReply[1];
  }
}

void AcsBoardPolling::mgmRm3100Handler(MgmRm3100& mgm) {
  ReturnValue_t result;
  acs::SimpleSensorMode mode = acs::SimpleSensorMode::OFF;
  bool mustPerformStartup = false;
  {
    MutexGuard mg(ipcLock, LOCK_TYPE, LOCK_TIMEOUT, LOCK_CTX);
    mode = mgm.mode;
    mustPerformStartup = mgm.performStartup;
  }
  if (mode == acs::SimpleSensorMode::NORMAL) {
    if (mustPerformStartup) {
      // Configure CMM first
      cmdBuf[0] = mgmRm3100::CMM_REGISTER;
      cmdBuf[1] = mgmRm3100::CMM_VALUE;
      result = spiComIF.sendMessage(mgm.cookie, cmdBuf.data(), 2);
      if (result != OK) {
        mgm.replyResult = result;
        return;
      }
      // Read back register
      cmdBuf[0] = mgmRm3100::CMM_REGISTER | mgmRm3100::READ_MASK;
      cmdBuf[1] = 0;
      result = spiComIF.sendMessage(mgm.cookie, cmdBuf.data(), 2);
      if (result != OK) {
        mgm.replyResult = result;
        return;
      }
      result = spiComIF.readReceivedMessage(mgm.cookie, &rawReply, &dummy);
      if (result != OK) {
        mgm.replyResult = result;
        return;
      }
      if (rawReply[1] != mgmRm3100::CMM_VALUE) {
        sif::error << "AcsBoardPolling: MGM RM3100 read back CMM invalid" << std::endl;
        mgm.replyResult = result;
        return;
      }
      // Configure TMRC register
      cmdBuf[0] = mgmRm3100::TMRC_REGISTER;
      // hardcoded for now
      cmdBuf[1] = mgm.tmrcValue;
      result = spiComIF.sendMessage(mgm.cookie, cmdBuf.data(), 2);
      if (result != OK) {
        mgm.replyResult = result;
        return;
      }
      // Read back and verify value
      cmdBuf[0] = mgmRm3100::TMRC_REGISTER | mgmRm3100::READ_MASK;
      cmdBuf[1] = 0;
      result = spiComIF.sendMessage(mgm.cookie, cmdBuf.data(), 2);
      if (result != OK) {
        mgm.replyResult = result;
        return;
      }
      result = spiComIF.readReceivedMessage(mgm.cookie, &rawReply, &dummy);
      if (result != OK) {
        mgm.replyResult = result;
        return;
      }
      if (rawReply[1] != mgm.tmrcValue) {
        sif::error << "AcsBoardPolling: MGM RM3100 read back TMRC invalid" << std::endl;
        mgm.replyResult = result;
        return;
      }
      mgm.performStartup = false;
    }
    // Regular read operation
    cmdBuf[0] = mgmRm3100::MEASUREMENT_REG_START | mgmRm3100::READ_MASK;
    std::memset(cmdBuf.data() + 1, 0, 9);
    result = spiComIF.sendMessage(mgm.cookie, cmdBuf.data(), 10);
    if (result != OK) {
      mgm.replyResult = result;
      return;
    }
    result = spiComIF.readReceivedMessage(mgm.cookie, &rawReply, &dummy);
    if (result != OK) {
      mgm.replyResult = result;
      return;
    }
    MutexGuard mg(ipcLock, LOCK_TYPE, LOCK_TIMEOUT, LOCK_CTX);
    for (uint8_t idx = 0; idx < 3; idx++) {
      // Hardcoded, but note that the gain depends on the cycle count
      // value which is configurable!
      mgm.ownReply.scaleFactors[idx] = 1.0 / mgmRm3100::DEFAULT_GAIN;
    }
    mgm.ownReply.dataWasRead = true;
    // Bitshift trickery to account for 24 bit signed value.
    mgm.ownReply.mgmValuesRaw[0] =
        ((rawReply[1] << 24) | (rawReply[2] << 16) | (rawReply[3] << 8)) >> 8;
    mgm.ownReply.mgmValuesRaw[1] =
        ((rawReply[4] << 24) | (rawReply[5] << 16) | (rawReply[6] << 8)) >> 8;
    mgm.ownReply.mgmValuesRaw[2] =
        ((rawReply[7] << 24) | (rawReply[8] << 16) | (rawReply[9] << 8)) >> 8;
  }
}