#include "MGMHandlerLIS3MDL.h" MGMHandlerLIS3MDL::MGMHandlerLIS3MDL(object_id_t objectId, object_id_t deviceCommunication, CookieIF* comCookie): DeviceHandlerBase(objectId, deviceCommunication, comCookie), dataset(this) { #if OBSW_ENHANCED_PRINTOUT == 1 debugDivider = new PeriodicOperationDivider(10); #endif // Set to default values right away. registers[0] = MGMLIS3MDL::CTRL_REG1_DEFAULT; registers[1] = MGMLIS3MDL::CTRL_REG2_DEFAULT; registers[2] = MGMLIS3MDL::CTRL_REG3_DEFAULT; registers[3] = MGMLIS3MDL::CTRL_REG4_DEFAULT; registers[4] = MGMLIS3MDL::CTRL_REG5_DEFAULT; } MGMHandlerLIS3MDL::~MGMHandlerLIS3MDL() { } void MGMHandlerLIS3MDL::doStartUp() { switch (internalState) { case STATE_NONE: internalState = STATE_FIRST_CONTACT; break; case STATE_FIRST_CONTACT: internalState = STATE_SETUP; break; case STATE_SETUP: internalState = STATE_CHECK_REGISTERS; break; case STATE_CHECK_REGISTERS: { // Set up cached registers which will be used to configure the MGM. if(commandExecuted) { commandExecuted = false; setMode(_MODE_TO_ON); } break; } default: break; } } void MGMHandlerLIS3MDL::doShutDown() { setMode(_MODE_POWER_DOWN); } ReturnValue_t MGMHandlerLIS3MDL::buildTransitionDeviceCommand( DeviceCommandId_t *id) { switch (internalState) { case STATE_FIRST_CONTACT: *id = MGMLIS3MDL::IDENTIFY_DEVICE; break; case STATE_SETUP: *id = MGMLIS3MDL::SETUP_MGM; break; case STATE_CHECK_REGISTERS: *id = MGMLIS3MDL::READ_CONFIG_AND_DATA; break; default: break; } return buildCommandFromCommand(*id, NULL, 0); } uint8_t MGMHandlerLIS3MDL::readCommand(uint8_t command, bool continuousCom) { command |= (1 << MGMLIS3MDL::RW_BIT); if (continuousCom == true) { command |= (1 << MGMLIS3MDL::MS_BIT); } return command; } uint8_t MGMHandlerLIS3MDL::writeCommand(uint8_t command, bool continuousCom) { command &= ~(1 << MGMLIS3MDL::RW_BIT); if (continuousCom == true) { command |= (1 << MGMLIS3MDL::MS_BIT); } return command; } void MGMHandlerLIS3MDL::setupMgm() { registers[0] = MGMLIS3MDL::CTRL_REG1_DEFAULT; registers[1] = MGMLIS3MDL::CTRL_REG2_DEFAULT; registers[2] = MGMLIS3MDL::CTRL_REG3_DEFAULT; registers[3] = MGMLIS3MDL::CTRL_REG4_DEFAULT; registers[4] = MGMLIS3MDL::CTRL_REG5_DEFAULT; prepareCtrlRegisterWrite(); } ReturnValue_t MGMHandlerLIS3MDL::buildNormalDeviceCommand( DeviceCommandId_t *id) { // Data/config register will be read in an alternating manner. if(communicationStep == CommunicationStep::DATA) { lastSentCommand = MGMLIS3MDL::READ_CONFIG_AND_DATA; *id = MGMLIS3MDL::READ_CONFIG_AND_DATA; communicationStep = CommunicationStep::TEMPERATURE; return buildCommandFromCommand(*id, NULL, 0); } else { lastSentCommand = MGMLIS3MDL::READ_TEMPERATURE; *id = MGMLIS3MDL::READ_TEMPERATURE; communicationStep = CommunicationStep::DATA; return buildCommandFromCommand(*id, NULL, 0); } } ReturnValue_t MGMHandlerLIS3MDL::buildCommandFromCommand( DeviceCommandId_t deviceCommand, const uint8_t *commandData, size_t commandDataLen) { lastSentCommand = deviceCommand; switch(deviceCommand) { case(MGMLIS3MDL::READ_CONFIG_AND_DATA): { std::memset(commandBuffer, 0, sizeof(commandBuffer)); commandBuffer[0] = readCommand(MGMLIS3MDL::CTRL_REG1, true); rawPacket = commandBuffer; rawPacketLen = MGMLIS3MDL::NR_OF_DATA_AND_CFG_REGISTERS + 1; return RETURN_OK; } case(MGMLIS3MDL::READ_TEMPERATURE): { std::memset(commandBuffer, 0, 3); commandBuffer[0] = readCommand(MGMLIS3MDL::TEMP_LOWBYTE, true); rawPacket = commandBuffer; rawPacketLen = 3; return RETURN_OK; } case(MGMLIS3MDL::IDENTIFY_DEVICE): { return identifyDevice(); } case(MGMLIS3MDL::TEMP_SENSOR_ENABLE): { return enableTemperatureSensor(commandData, commandDataLen); } case(MGMLIS3MDL::SETUP_MGM): { setupMgm(); return HasReturnvaluesIF::RETURN_OK; } case(MGMLIS3MDL::ACCURACY_OP_MODE_SET): { return setOperatingMode(commandData, commandDataLen); } default: lastSentCommand = DeviceHandlerIF::NO_COMMAND; return DeviceHandlerIF::COMMAND_NOT_IMPLEMENTED; } return HasReturnvaluesIF::RETURN_FAILED; } ReturnValue_t MGMHandlerLIS3MDL::identifyDevice() { uint32_t size = 2; commandBuffer[0] = readCommand(MGMLIS3MDL::IDENTIFY_DEVICE_REG_ADDR); commandBuffer[1] = 0x00; rawPacket = commandBuffer; rawPacketLen = size; return RETURN_OK; } ReturnValue_t MGMHandlerLIS3MDL::scanForReply(const uint8_t *start, size_t len, DeviceCommandId_t *foundId, size_t *foundLen) { *foundLen = len; if (len == MGMLIS3MDL::NR_OF_DATA_AND_CFG_REGISTERS + 1) { *foundLen = len; *foundId = MGMLIS3MDL::READ_CONFIG_AND_DATA; // Check validity by checking config registers if (start[1] != registers[0] or start[2] != registers[1] or start[3] != registers[2] or start[4] != registers[3] or start[5] != registers[4]) { return DeviceHandlerIF::INVALID_DATA; } if(mode == _MODE_START_UP) { commandExecuted = true; } } else if(len == MGMLIS3MDL::TEMPERATURE_REPLY_LEN) { *foundLen = len; *foundId = MGMLIS3MDL::READ_TEMPERATURE; } else if (len == MGMLIS3MDL::SETUP_REPLY_LEN) { *foundLen = len; *foundId = MGMLIS3MDL::SETUP_MGM; } else if (len == SINGLE_COMMAND_ANSWER_LEN) { *foundLen = len; *foundId = lastSentCommand; } else { return DeviceHandlerIF::INVALID_DATA; } // Data with SPI Interface has always this answer if (start[0] == 0b11111111) { return RETURN_OK; } else { return DeviceHandlerIF::INVALID_DATA; } } ReturnValue_t MGMHandlerLIS3MDL::interpretDeviceReply(DeviceCommandId_t id, const uint8_t *packet) { switch (id) { case MGMLIS3MDL::IDENTIFY_DEVICE: { break; } case MGMLIS3MDL::SETUP_MGM: { break; } case MGMLIS3MDL::READ_CONFIG_AND_DATA: { // TODO: Store configuration and sensor values in new local datasets. uint8_t scale = getFullScale(registers[2]); float sensitivityFactor = getSensitivityFactor(scale); int16_t mgmMeasurementRawX = packet[MGMLIS3MDL::X_HIGHBYTE_IDX] << 8 | packet[MGMLIS3MDL::X_LOWBYTE_IDX] ; int16_t mgmMeasurementRawY = packet[MGMLIS3MDL::Y_HIGHBYTE_IDX] << 8 | packet[MGMLIS3MDL::Y_LOWBYTE_IDX] ; int16_t mgmMeasurementRawZ = packet[MGMLIS3MDL::Z_HIGHBYTE_IDX] << 8 | packet[MGMLIS3MDL::Z_LOWBYTE_IDX] ; // Target value in microtesla float mgmX = static_cast(mgmMeasurementRawX) * sensitivityFactor * MGMLIS3MDL::GAUSS_TO_MICROTESLA_FACTOR; float mgmY = static_cast(mgmMeasurementRawY) * sensitivityFactor * MGMLIS3MDL::GAUSS_TO_MICROTESLA_FACTOR; float mgmZ = static_cast(mgmMeasurementRawZ) * sensitivityFactor * MGMLIS3MDL::GAUSS_TO_MICROTESLA_FACTOR; #if OBSW_ENHANCED_PRINTOUT == 1 if(debugDivider->checkAndIncrement()) { sif::info << "MGMHandlerLIS3: Magnetic field strength in" " microtesla:" << std::endl; // Set terminal to utf-8 if there is an issue with micro printout. sif::info << "X: " << mgmX << " \xC2\xB5T" << std::endl; sif::info << "Y: " << mgmY << " \xC2\xB5T" << std::endl; sif::info << "Z: " << mgmZ << " \xC2\xB5T" << std::endl; } #endif ReturnValue_t result = dataset.read(20); if(result == HasReturnvaluesIF::RETURN_OK) { dataset.fieldStrengthX = mgmX; dataset.fieldStrengthY = mgmY; dataset.fieldStrengthZ = mgmZ; dataset.commit(20); } break; } case MGMLIS3MDL::READ_TEMPERATURE: { int16_t tempValueRaw = packet[2] << 8 | packet[1]; float tempValue = 25.0 + ((static_cast(tempValueRaw)) / 8.0); #if OBSW_ENHANCED_PRINTOUT == 1 if(debugDivider->check()) { // Set terminal to utf-8 if there is an issue with micro printout. sif::info << "MGMHandlerLIS3: Temperature: " << tempValue<< " °C" << std::endl; } #endif ReturnValue_t result = dataset.read(20); if(result == HasReturnvaluesIF::RETURN_OK) { dataset.temperature = tempValue; dataset.commit(20); } break; } default: { return DeviceHandlerIF::UNKNOWN_DEVICE_REPLY; } } return RETURN_OK; } uint8_t MGMHandlerLIS3MDL::getFullScale(uint8_t ctrlRegister2) { bool FS0 = false; bool FS1 = false; if ((ctrlRegister2 >> 5) == 1) FS0 = true; if ((ctrlRegister2 >> 6) == 1) FS1 = true; if ((FS0 == true) && (FS1 == true)) return 16; else if ((FS0 == false) && (FS1 == true)) return 12; else if ((FS0 == true) && (FS1 == false)) return 8; else return 4; } float MGMHandlerLIS3MDL::getSensitivityFactor(uint8_t scale) { return (float) scale / (INT16_MAX); } ReturnValue_t MGMHandlerLIS3MDL::enableTemperatureSensor( const uint8_t *commandData, size_t commandDataLen) { triggerEvent(CHANGE_OF_SETUP_PARAMETER); uint32_t size = 2; commandBuffer[0] = writeCommand(MGMLIS3MDL::CTRL_REG1); if (commandDataLen > 1) { return INVALID_NUMBER_OR_LENGTH_OF_PARAMETERS; } switch (*commandData) { case (MGMLIS3MDL::ON): { commandBuffer[1] = registers[0] | (1 << 7); break; } case (MGMLIS3MDL::OFF): { commandBuffer[1] = registers[0] & ~(1 << 7); break; } default: return INVALID_COMMAND_PARAMETER; } registers[0] = commandBuffer[1]; rawPacket = commandBuffer; rawPacketLen = size; return RETURN_OK; } ReturnValue_t MGMHandlerLIS3MDL::setOperatingMode(const uint8_t *commandData, size_t commandDataLen) { triggerEvent(CHANGE_OF_SETUP_PARAMETER); if (commandDataLen != 1) { return INVALID_NUMBER_OR_LENGTH_OF_PARAMETERS; } switch (commandData[0]) { case MGMLIS3MDL::LOW: registers[0] = (registers[0] & (~(1 << MGMLIS3MDL::OM1))) & (~(1 << MGMLIS3MDL::OM0)); registers[3] = (registers[3] & (~(1 << MGMLIS3MDL::OMZ1))) & (~(1 << MGMLIS3MDL::OMZ0)); break; case MGMLIS3MDL::MEDIUM: registers[0] = (registers[0] & (~(1 << MGMLIS3MDL::OM1))) | (1 << MGMLIS3MDL::OM0); registers[3] = (registers[3] & (~(1 << MGMLIS3MDL::OMZ1))) | (1 << MGMLIS3MDL::OMZ0); break; case MGMLIS3MDL::HIGH: registers[0] = (registers[0] | (1 << MGMLIS3MDL::OM1)) & (~(1 << MGMLIS3MDL::OM0)); registers[3] = (registers[3] | (1 << MGMLIS3MDL::OMZ1)) & (~(1 << MGMLIS3MDL::OMZ0)); break; case MGMLIS3MDL::ULTRA: registers[0] = (registers[0] | (1 << MGMLIS3MDL::OM1)) | (1 << MGMLIS3MDL::OM0); registers[3] = (registers[3] | (1 << MGMLIS3MDL::OMZ1)) | (1 << MGMLIS3MDL::OMZ0); break; default: break; } return prepareCtrlRegisterWrite(); } void MGMHandlerLIS3MDL::fillCommandAndReplyMap() { /* * Regarding ArduinoBoard: * Actually SPI answers directly, but as commanding ArduinoBoard the * communication could be delayed * SPI always has to be triggered, so there could be no periodic answer of * the device, the device has to asked with a command, so periodic is zero. * * We dont read single registers, we just expect special * reply from he Readall_MGM */ insertInCommandAndReplyMap(MGMLIS3MDL::READ_CONFIG_AND_DATA, 1, &dataset); insertInCommandAndReplyMap(MGMLIS3MDL::READ_TEMPERATURE, 1); insertInCommandAndReplyMap(MGMLIS3MDL::SETUP_MGM, 1); insertInCommandAndReplyMap(MGMLIS3MDL::IDENTIFY_DEVICE, 1); insertInCommandAndReplyMap(MGMLIS3MDL::TEMP_SENSOR_ENABLE, 1); insertInCommandAndReplyMap(MGMLIS3MDL::ACCURACY_OP_MODE_SET, 1); } ReturnValue_t MGMHandlerLIS3MDL::prepareCtrlRegisterWrite() { commandBuffer[0] = writeCommand(MGMLIS3MDL::CTRL_REG1, true); for (size_t i = 0; i < MGMLIS3MDL::NR_OF_CTRL_REGISTERS; i++) { commandBuffer[i + 1] = registers[i]; } rawPacket = commandBuffer; rawPacketLen = MGMLIS3MDL::NR_OF_CTRL_REGISTERS + 1; // We dont have to check if this is working because we just did it return RETURN_OK; } void MGMHandlerLIS3MDL::setNormalDatapoolEntriesInvalid() { // TODO: use new distributed datapools here. } void MGMHandlerLIS3MDL::doTransition(Mode_t modeFrom, Submode_t subModeFrom) { } uint32_t MGMHandlerLIS3MDL::getTransitionDelayMs(Mode_t from, Mode_t to) { return 5000; } void MGMHandlerLIS3MDL::modeChanged(void) { internalState = STATE_NONE; } ReturnValue_t MGMHandlerLIS3MDL::initializeLocalDataPool( LocalDataPool &localDataPoolMap, LocalDataPoolManager &poolManager) { localDataPoolMap.emplace(MGMLIS3MDL::FIELD_STRENGTH_X, new PoolEntry({0.0})); localDataPoolMap.emplace(MGMLIS3MDL::FIELD_STRENGTH_Y, new PoolEntry({0.0})); localDataPoolMap.emplace(MGMLIS3MDL::FIELD_STRENGTH_Z, new PoolEntry({0.0})); localDataPoolMap.emplace(MGMLIS3MDL::TEMPERATURE_CELCIUS, new PoolEntry({0.0})); return HasReturnvaluesIF::RETURN_OK; }