#ifndef LINUX_OBC_PDECHANDLER_H_ #define LINUX_OBC_PDECHANDLER_H_ #include "PdecConfig.h" #include "fsfw/returnvalues/HasReturnvaluesIF.h" #include "fsfw_hal/common/gpio/gpioDefinitions.h" #include "fsfw_hal/linux/gpio/LinuxLibgpioIF.h" #include "fsfw/tmtcservices/AcceptsTelecommandsIF.h" #include "fsfw/storagemanager/StorageManagerIF.h" #include "fsfw/objectmanager/SystemObject.h" #include "fsfw/tasks/ExecutableObjectIF.h" /** * @brief This class controls the PDEC IP Core implemented in the programmable logic of the * Zynq-7020. All registers and memories of the PDEC IP Core are accessed via UIO * drivers. * * @details The PDEC IP Core is responsible for processing data received in form of CLTUs from the * S-Band transceiver. This comprises the BCH decoding of the CLTUs and reconstruction of * telecommand transfer frames. Finally the PDEC stores the TC segment transported with * the TC transfer frame in a register. As soon as a new TC has been received a new * frame acceptance report (FAR) will be generated. If the FAR confirms the validity of * a received TC segment, the data can be read out from the associated register. * Currently, the ground software only supports transmissions of CLTUs containing one * space packet. * Link to datasheet of PDEC IP Core: https://eive-cloud.irs.uni-stuttgart.de/index.php/ * apps/files/?dir=/EIVE_IRS/Arbeitsdaten/08_Used%20Components/CCSDS_IP_Cores&fileid=1108967 * * @author J. Meier */ class PdecHandler : public SystemObject, public ExecutableObjectIF, public HasReturnvaluesIF { public: /** * @brief Constructor * @param objectId Object ID of PDEC handler system object * @param tcDestinationId Object ID of object responsible for processing TCs. * @param gpioComIF Pointer to GPIO interace responsible for driving GPIOs. * @param pdecReset GPIO ID of GPIO connected to the reset signal of the PDEC. */ PdecHandler(object_id_t objectId, object_id_t tcDestinationId, LinuxLibgpioIF* gpioComIF, gpioId_t pdecReset); virtual ~PdecHandler(); ReturnValue_t performOperation(uint8_t operationCode = 0); ReturnValue_t initialize() override; private: static const uint8_t INTERFACE_ID = CLASS_ID::PDEC_HANDLER; static const ReturnValue_t ABANDONED_CLTU = MAKE_RETURN_CODE(0xA0); static const ReturnValue_t FRAME_DIRTY = MAKE_RETURN_CODE(0xA1); static const ReturnValue_t FRAME_ILLEGAL_ONE_REASON = MAKE_RETURN_CODE(0xA2); static const ReturnValue_t FRAME_ILLEGAL_MULTIPLE_REASONS = MAKE_RETURN_CODE(0xA2); static const ReturnValue_t AD_DISCARDED_LOCKOUT = MAKE_RETURN_CODE(0xA3); static const ReturnValue_t AD_DISCARDED_WAIT = MAKE_RETURN_CODE(0xA4); static const ReturnValue_t AD_DISCARDED_NS_VS = MAKE_RETURN_CODE(0xA5); static const ReturnValue_t NO_REPORT = MAKE_RETURN_CODE(0xA6); //! Error in version number and reserved A and B fields static const ReturnValue_t ERROR_VERSION_NUMBER = MAKE_RETURN_CODE(0xA7); //! Illegal combination of bypass and control command flag static const ReturnValue_t ILLEGAL_COMBINATION = MAKE_RETURN_CODE(0xA8); //! Spacecraft identifier did not match static const ReturnValue_t INVALID_SC_ID = MAKE_RETURN_CODE(0xA9); //! VC identifier bits 0 to 4 did not match static const ReturnValue_t INVALID_VC_ID_MSB = MAKE_RETURN_CODE(0xAA); //! VC identifier bit 5 did not match static const ReturnValue_t INVALID_VC_ID_LSB = MAKE_RETURN_CODE(0xAB); //! N(S) of BC or BD frame not set to all zeros static const ReturnValue_t NS_NOT_ZERO = MAKE_RETURN_CODE(0xAC); //! Invalid BC control command static const ReturnValue_t INVALID_BC_CC = MAKE_RETURN_CODE(0xAE); static const uint8_t SUBSYSTEM_ID = SUBSYSTEM_ID::PDEC_HANDLER; //! [EXPORT] : [COMMENT] Frame acceptance report signals an invalid frame //! P1: The frame analysis information (FrameAna field of PDEC_FAR register) //! P2: When frame declared illegal this parameter this parameter gives information about the reason (IReason field of the PDEC_FAR register) static const Event INVALID_TC_FRAME = MAKE_EVENT(1, severity::HIGH); //! [EXPORT] : [COMMENT] Read invalid FAR from PDEC after startup static const Event INVALID_FAR = MAKE_EVENT(2, severity::HIGH); static const uint8_t STAT_POSITION = 31; static const uint8_t FRAME_ANA_POSITION = 28; static const uint8_t IREASON_POSITION = 25; static const uint8_t NEW_FAR_RECEIVED = 0; static const uint32_t FRAME_ANA_MASK = 0x70000000; static const uint32_t IREASON_MASK = 0x0E000000; /** * UIO is 4 byte aligned. Thus offset is calculated with "true offset" / 4 * Example: PDEC_FAR = 0x2840 => Offset in virtual address space is 0xA10 */ static const uint32_t PDEC_FAR_OFFSET = 0xA10; static const uint32_t PDEC_BFREE_OFFSET = 0xA24; static const uint32_t PDEC_BPTR_OFFSET = 0xA25; static const uint32_t PDEC_SLEN_OFFSET = 0xA26; static const int MEMORY_MAP_SIZE = 0xF42400; static const int REGISTER_MAP_SIZE = 0x10000; static const size_t MAX_TC_SEGMENT_SIZE = 1017; static const uint8_t MAP_ID_MASK = 0x3F; static const uint32_t PHYSICAL_BASE_ADDRESS = 0x30000000; static const uint32_t MAP_ADDR_LUT_OFFSET = 0xA0; static const uint8_t MAX_MAP_ADDR = 63; // Writing this to the map address in the look up table will invalidate a MAP ID. static const uint8_t NO_DESTINATION = 0; static const uint8_t VALID_POSITION = 6; static const uint8_t PARITY_POSITION = 7; // Expected value stored in FAR register after reset static const uint32_t FAR_RESET = 0x7FE0; /** * TCs with map addresses (also know as Map IDs) assigned to this channel will be stored in * the PDEC memory. */ static const uint32_t PM_BUFFER = 7; enum class FrameAna_t: uint8_t { ABANDONED_CLTU, FRAME_DIRTY, FRAME_ILLEGAL, FRAME_ILLEGAL_MULTI_REASON, AD_DISCARDED_LOCKOUT, AD_DISCARDED_WAIT, AD_DISCARDED_NS_VR, FRAME_ACCEPTED }; enum class IReason_t: uint8_t { NO_REPORT, ERROR_VERSION_NUMBER, ILLEGAL_COMBINATION, INVALID_SC_ID, INVALID_VC_ID_LSB, INVALID_VC_ID_MSB, NS_NOT_ZERO, INCORRECT_BC_CC }; typedef struct PdecParams { uint8_t versionId : 2 ; uint8_t bypassFlag : 1; uint8_t controlCommandFlag : 1; uint8_t reservedFieldA : 2; uint16_t spacecraftId : 10; uint8_t virtualChannelId : 6; uint8_t dummy : 2; uint8_t positiveWindow; uint8_t negativeWindow; //Authentication unit not used for EIVE uint8_t auMapIdPointer = 0; // De-randomizing enabled uint8_t derandomiserConfig = 1; // Only used when AU is enabled. Enables the use of an external recovery lac counter. // The AU requires a lac counter to generate the signature. uint8_t recoveryLacConfig = 0; } PdecParams_t; enum class State: uint8_t { INIT, RUNNING, WAIT_FOR_RECOVERY }; /** * @brief Opens UIO device assigned to AXI to AHB converter giving access to the PDEC * registers. The register base address will be mapped into the virtual address space. */ ReturnValue_t getRegisterAddress(); /** * @brief Opens UIO device assigned to the base address of the PDEC memory space and maps the * physical address into the virtual address space. */ ReturnValue_t getMemoryBaseAddress(); /** * @brief This functions writes the configuration parameters to the configuration * section of the PDEC. */ void writePdecConfig(); /** * @brief Reading the FAR resets the set stat flag which signals a new TC. Without clearing * this flag no new TC will be excepted. After start up the flag is set and needs * to be reset. * Stat flag 0 - new TC received * Stat flag 1 - old TC (ready to receive next TC) */ ReturnValue_t resetFarStatFlag(); /** * @brief Releases the PDEC from reset state. PDEC will start with loading the written * configuration parameters. */ ReturnValue_t releasePdec(); /** * @brief Reads the FAR register and checks if a new TC has been received. */ bool newTcReceived(); /** * @brief Analyzes the FramAna field (frame analysis data) of a FAR report. * * @return True if frame valid, otherwise false. */ bool checkFrameAna(uint32_t pdecFar); /** * @brief This function handles the IReason field of the frame analysis report. * * @details In case frame as been declared illegal for multiple reasons, the reason with the * lowest value will be shown. */ void handleIReason(uint32_t pdecFar, ReturnValue_t parameter1); /** * @brief Handles the reception of new TCs. Reads the pointer to the storage location of the * new TC segment, extracts the PUS packet and forwards the data to the object * responsible for processing the TC. */ void handleNewTc(); /** * @brief Function reads the last received TC segment from the PDEC memory and copies * the data to the tcSegement array. * * @param tcLength The length of the received TC. * */ ReturnValue_t readTc(uint32_t& tcLength); /** * @brief This function calculates the entry for the configuration of the MAP ID routing. * * @param mapAddr The MAP ID to configure * @param moduleId The destination module where all TCs with the map id mapAddr will be routed * to. * * @details The PDEC has different modules where the TCs can be routed to. A lookup table is * used which links the MAP ID field to the destination module. The entry for this * lookup table is created by this function and must be stored in the configuration * memory region of the PDEC. The entry has a specific format */ uint8_t calcMapAddrEntry(uint8_t moduleId); /** * @brief This functions calculates the odd parity of the bits in number. * * @param number The number from which to calculate the odd parity. */ uint8_t getOddParity(uint8_t number); object_id_t tcDestinationId; AcceptsTelecommandsIF* tcDestination = nullptr; LinuxLibgpioIF* gpioComIF = nullptr; StorageManagerIF* tcStore = nullptr; State state = State::INIT; /** * Reset signal is required to hold PDEC in reset state until the configuration has been * written to the appropriate memory space. * Can also be used to reboot PDEC in case of erros. */ gpioId_t pdecReset = gpio::NO_GPIO; /** * Pointer pointing to base address of the PDEC memory space. * This address is equivalent with the base address of the section named configuration area in * the PDEC datasheet. */ uint32_t* memoryBaseAddress = nullptr; // Pointer pointing to base address of register space uint32_t* registerBaseAddress = nullptr; uint32_t pdecFar = 0; uint8_t tcSegment[1017]; }; #endif /* LINUX_OBC_PDECHANDLER_H_ */