#include "SusHandler.h" #include "OBSWConfig.h" #include #include SusHandler::SusHandler(object_id_t objectId, object_id_t comIF, CookieIF * comCookie, LinuxLibgpioIF* gpioComIF, gpioId_t chipSelectId) : DeviceHandlerBase(objectId, comIF, comCookie), gpioComIF(gpioComIF), chipSelectId( chipSelectId), dataset(this) { if (comCookie == NULL) { sif::error << "SusHandler: Invalid com cookie" << std::endl; } if (gpioComIF == NULL) { sif::error << "SusHandler: Invalid GpioComIF" << std::endl; } } SusHandler::~SusHandler() { } ReturnValue_t SusHandler::performOperation(uint8_t counter) { if (counter != FIRST_WRITE) { DeviceHandlerBase::performOperation(counter); return RETURN_OK; } if (mode != MODE_NORMAL) { DeviceHandlerBase::performOperation(DeviceHandlerIF::SEND_WRITE); return RETURN_OK; } /* If device is in normale mode the communication sequence is initiated here */ if (communicationStep == CommunicationStep::IDLE) { communicationStep = CommunicationStep::WRITE_SETUP; } DeviceHandlerBase::performOperation(DeviceHandlerIF::SEND_WRITE); return RETURN_OK; } ReturnValue_t SusHandler::initialize() { ReturnValue_t result = RETURN_OK; result = DeviceHandlerBase::initialize(); if (result != RETURN_OK) { return result; } auto spiComIF = dynamic_cast(communicationInterface); if (spiComIF == nullptr) { sif::debug << "SusHandler::initialize: Invalid communication interface" << std::endl; return ObjectManagerIF::CHILD_INIT_FAILED; } spiMutex = spiComIF->getMutex(); if (spiMutex == nullptr) { sif::debug << "SusHandler::initialize: Failed to get spi mutex" << std::endl; return ObjectManagerIF::CHILD_INIT_FAILED; } return RETURN_OK; } void SusHandler::doStartUp(){ #if OBSW_SWITCH_TO_NORMAL_MODE_AFTER_STARTUP == 1 setMode(MODE_NORMAL); #else setMode(_MODE_TO_ON); #endif } void SusHandler::doShutDown(){ setMode(_MODE_POWER_DOWN); } ReturnValue_t SusHandler::buildNormalDeviceCommand( DeviceCommandId_t * id) { if (communicationStep == CommunicationStep::IDLE) { return NOTHING_TO_SEND; } if (communicationStep == CommunicationStep::WRITE_SETUP) { *id = SUS::WRITE_SETUP; communicationStep = CommunicationStep::START_CONVERSIONS; } else if (communicationStep == CommunicationStep::START_CONVERSIONS) { *id = SUS::START_CONVERSIONS; communicationStep = CommunicationStep::READ_CONVERSIONS; } else if (communicationStep == CommunicationStep::READ_CONVERSIONS) { *id = SUS::READ_CONVERSIONS; communicationStep = CommunicationStep::IDLE; } return buildCommandFromCommand(*id, nullptr, 0); } ReturnValue_t SusHandler::buildTransitionDeviceCommand( DeviceCommandId_t * id){ return HasReturnvaluesIF::RETURN_OK; } ReturnValue_t SusHandler::buildCommandFromCommand( DeviceCommandId_t deviceCommand, const uint8_t * commandData, size_t commandDataLen) { switch(deviceCommand) { case(SUS::WRITE_SETUP): { /** * The sun sensor ADC is shutdown when CS is pulled high, so each time requesting a * measurement the setup has to be rewritten. There must also be a little delay between * the transmission of the setup byte and the first conversion. Thus the conversion * will be performed in an extra step. * Because the chip select is driven manually by the SusHandler the SPI bus must be * protected with a mutex here. */ ReturnValue_t result = spiMutex->lockMutex(timeoutType, timeoutMs); if(result == MutexIF::MUTEX_TIMEOUT) { sif::error << "SusHandler::buildCommandFromCommand: Mutex timeout" << std::endl; return ERROR_LOCK_MUTEX; } else if(result != HasReturnvaluesIF::RETURN_OK) { sif::error << "SusHandler::buildCommandFromCommand: Failed to lock spi mutex" << std::endl; return ERROR_LOCK_MUTEX; } gpioComIF->pullLow(chipSelectId); cmdBuffer[0] = SUS::SETUP; rawPacket = cmdBuffer; rawPacketLen = 1; return RETURN_OK; } case(SUS::START_CONVERSIONS): { std::memset(cmdBuffer, 0, sizeof(cmdBuffer)); cmdBuffer[0] = SUS::CONVERSION; rawPacket = cmdBuffer; rawPacketLen = 2; return RETURN_OK; } case(SUS::READ_CONVERSIONS): { std::memset(cmdBuffer, 0, sizeof(cmdBuffer)); rawPacket = cmdBuffer; rawPacketLen = SUS::SIZE_READ_CONVERSIONS; return RETURN_OK; } default: return DeviceHandlerIF::COMMAND_NOT_IMPLEMENTED; } return HasReturnvaluesIF::RETURN_FAILED; } void SusHandler::fillCommandAndReplyMap() { this->insertInCommandMap(SUS::WRITE_SETUP); this->insertInCommandMap(SUS::START_CONVERSIONS); this->insertInCommandAndReplyMap(SUS::READ_CONVERSIONS, 1, &dataset, SUS::SIZE_READ_CONVERSIONS); } ReturnValue_t SusHandler::scanForReply(const uint8_t *start, size_t remainingSize, DeviceCommandId_t *foundId, size_t *foundLen) { *foundId = this->getPendingCommand(); *foundLen = remainingSize; return HasReturnvaluesIF::RETURN_OK; } ReturnValue_t SusHandler::interpretDeviceReply(DeviceCommandId_t id, const uint8_t *packet) { switch (id) { case SUS::READ_CONVERSIONS: { PoolReadGuard readSet(&dataset); dataset.temperatureCelcius = (*(packet) << 8 | *(packet + 1)) * 0.125; dataset.ain0 = (*(packet + 2) << 8 | *(packet + 3)); dataset.ain1 = (*(packet + 4) << 8 | *(packet + 5)); dataset.ain2 = (*(packet + 6) << 8 | *(packet + 7)); dataset.ain3 = (*(packet + 8) << 8 | *(packet + 9)); dataset.ain4 = (*(packet + 10) << 8 | *(packet + 11)); dataset.ain5 = (*(packet + 12) << 8 | *(packet + 13)); #if OBSW_VERBOSE_LEVEL >= 1 && OBSW_DEBUG_SUS sif::info << "SUS object id 0x" << std::hex << this->getObjectId() << ", Temperature: " << dataset.temperatureCelcius << " °C" << std::endl; sif::info << "SUS object id 0x" << std::hex << this->getObjectId() << ", AIN0: " << std::dec << dataset.ain0 << std::endl; sif::info << "SUS object id 0x" << std::hex << this->getObjectId() << ", AIN1: " << std::dec << dataset.ain1 << std::endl; sif::info << "SUS object id 0x" << std::hex << this->getObjectId() << ", AIN2: " << std::dec << dataset.ain2 << std::endl; sif::info << "SUS object id 0x" << std::hex << this->getObjectId() << ", AIN3: " << std::dec << dataset.ain3 << std::endl; sif::info << "SUS object id 0x" << std::hex << this->getObjectId() << ", AIN4: " << std::dec << dataset.ain4 << std::endl; sif::info << "SUS object id 0x" << std::hex << this->getObjectId() << ", AIN5: " << std::dec << dataset.ain5 << std::endl; #endif /** SUS can now be shutdown and thus the SPI bus released again */ gpioComIF->pullHigh(chipSelectId); ReturnValue_t result = spiMutex->unlockMutex(); if (result != RETURN_OK) { sif::error << "SusHandler::interpretDeviceReply: Failed to unlock spi mutex" << std::endl; return ERROR_UNLOCK_MUTEX; } break; } default: { sif::debug << "SusHandler::interpretDeviceReply: Unknown reply id" << std::endl; return DeviceHandlerIF::UNKNOWN_DEVICE_REPLY; } } return HasReturnvaluesIF::RETURN_OK; } void SusHandler::setNormalDatapoolEntriesInvalid(){ } uint32_t SusHandler::getTransitionDelayMs(Mode_t modeFrom, Mode_t modeTo){ return 1000; } ReturnValue_t SusHandler::initializeLocalDataPool(localpool::DataPool& localDataPoolMap, LocalDataPoolManager& poolManager) { localDataPoolMap.emplace(SUS::TEMPERATURE_C, new PoolEntry( { 0.0 })); localDataPoolMap.emplace(SUS::AIN0, new PoolEntry( { 0 })); localDataPoolMap.emplace(SUS::AIN1, new PoolEntry( { 0 })); localDataPoolMap.emplace(SUS::AIN2, new PoolEntry( { 0 })); localDataPoolMap.emplace(SUS::AIN3, new PoolEntry( { 0 })); localDataPoolMap.emplace(SUS::AIN4, new PoolEntry( { 0 })); localDataPoolMap.emplace(SUS::AIN5, new PoolEntry( { 0 })); return HasReturnvaluesIF::RETURN_OK; }