#include #include #include "GyroADIS16507Handler.h" #if OBSW_ADIS16507_LINUX_COM_IF == 1 #include "fsfw_hal/linux/utility.h" #include "fsfw_hal/linux/spi/SpiCookie.h" #include "fsfw_hal/linux/spi/SpiComIF.h" #include "fsfw_hal/linux/UnixFileGuard.h" #include #include #endif GyroADIS16507Handler::GyroADIS16507Handler(object_id_t objectId, object_id_t deviceCommunication, CookieIF * comCookie): DeviceHandlerBase(objectId, deviceCommunication, comCookie), primaryDataset(this), configDataset(this), breakCountdown() { #if OBSW_DEBUG_ADIS16507 == 1 debugDivider = new PeriodicOperationDivider(5); #endif #if OBSW_ADIS16507_LINUX_COM_IF == 1 SpiCookie* cookie = dynamic_cast(comCookie); if(cookie != nullptr) { cookie->setCallbackMode(&spiSendCallback, this); } #endif } void GyroADIS16507Handler::doStartUp() { // Initial 310 ms start up time after power-up if(internalState == InternalState::STARTUP) { if(not commandExecuted) { breakCountdown.setTimeout(ADIS16507::START_UP_TIME); commandExecuted = true; } if(breakCountdown.hasTimedOut()) { internalState = InternalState::CONFIG; commandExecuted = false; } } // Read all configuration registers first if(internalState == InternalState::CONFIG) { if(commandExecuted) { commandExecuted = false; internalState = InternalState::IDLE; } } if(internalState == InternalState::IDLE) { setMode(MODE_NORMAL); // setMode(MODE_ON); } } void GyroADIS16507Handler::doShutDown() { commandExecuted = false; setMode(_MODE_POWER_DOWN); } ReturnValue_t GyroADIS16507Handler::buildNormalDeviceCommand(DeviceCommandId_t *id) { *id = ADIS16507::READ_SENSOR_DATA; return buildCommandFromCommand(*id, nullptr, 0); } ReturnValue_t GyroADIS16507Handler::buildTransitionDeviceCommand(DeviceCommandId_t *id) { switch(internalState) { case(InternalState::CONFIG): { *id = ADIS16507::READ_OUT_CONFIG; buildCommandFromCommand(*id, nullptr, 0); break; } case(InternalState::STARTUP): { break; } default: { /* Might be a configuration error. */ sif::debug << "GyroADIS16507Handler::buildTransitionDeviceCommand: " "Unknown internal state!" << std::endl; return HasReturnvaluesIF::RETURN_OK; } } return HasReturnvaluesIF::RETURN_OK; } ReturnValue_t GyroADIS16507Handler::buildCommandFromCommand(DeviceCommandId_t deviceCommand, const uint8_t *commandData, size_t commandDataLen) { switch(deviceCommand) { case(ADIS16507::READ_OUT_CONFIG): { this->rawPacketLen = ADIS16507::CONFIG_READOUT_SIZE; uint8_t regList[5]; regList[0] = ADIS16507::DIAG_STAT_REG; regList[1] = ADIS16507::FILTER_CTRL_REG; regList[2] = ADIS16507::MSC_CTRL_REG; regList[3] = ADIS16507::DEC_RATE_REG; regList[4] = ADIS16507::PROD_ID_REG; prepareReadCommand(regList, sizeof(regList)); this->rawPacket = commandBuffer.data(); break; } case(ADIS16507::READ_SENSOR_DATA): { if(breakCountdown.isBusy()) { // A glob command is pending and sensor data can't be read currently return NO_REPLY_EXPECTED; } std::memcpy(commandBuffer.data(), ADIS16507::BURST_READ_ENABLE.data(), ADIS16507::BURST_READ_ENABLE.size()); std::memset(commandBuffer.data() + 2, 0, 10 * 2); this->rawPacketLen = ADIS16507::SENSOR_READOUT_SIZE; this->rawPacket = commandBuffer.data(); break; } case(ADIS16507::SELF_TEST_SENSORS): { if(breakCountdown.isBusy()) { // Another glob command is pending return HasActionsIF::IS_BUSY; } prepareWriteCommand(ADIS16507::GLOB_CMD, ADIS16507::GlobCmds::SENSOR_SELF_TEST, 0x00); breakCountdown.setTimeout(ADIS16507::SELF_TEST_BREAK); break; } case(ADIS16507::SELF_TEST_MEMORY): { if(breakCountdown.isBusy()) { // Another glob command is pending return HasActionsIF::IS_BUSY; } prepareWriteCommand(ADIS16507::GLOB_CMD, ADIS16507::GlobCmds::FLASH_MEMORY_TEST, 0x00); breakCountdown.setTimeout(ADIS16507::FLASH_MEMORY_TEST_BREAK); break; } case(ADIS16507::UPDATE_NV_CONFIGURATION): { if(breakCountdown.isBusy()) { // Another glob command is pending return HasActionsIF::IS_BUSY; } prepareWriteCommand(ADIS16507::GLOB_CMD, ADIS16507::GlobCmds::FLASH_MEMORY_UPDATE, 0x00); breakCountdown.setTimeout(ADIS16507::FLASH_MEMORY_UPDATE_BREAK); break; } case(ADIS16507::RESET_SENSOR_CONFIGURATION): { if(breakCountdown.isBusy()) { // Another glob command is pending return HasActionsIF::IS_BUSY; } prepareWriteCommand(ADIS16507::GLOB_CMD, ADIS16507::GlobCmds::FACTORY_CALIBRATION, 0x00); breakCountdown.setTimeout(ADIS16507::FACTORY_CALIBRATION_BREAK); break; } case(ADIS16507::SW_RESET): { if(breakCountdown.isBusy()) { // Another glob command is pending return HasActionsIF::IS_BUSY; } prepareWriteCommand(ADIS16507::GLOB_CMD, ADIS16507::GlobCmds::SOFTWARE_RESET, 0x00); breakCountdown.setTimeout(ADIS16507::SW_RESET_BREAK); break; } case(ADIS16507::PRINT_CURRENT_CONFIGURATION): { #if OBSW_VERBOSE_LEVEL >= 1 PoolReadGuard pg(&configDataset); sif::info << "ADIS16507 Sensor configuration: DIAG_STAT: 0x" << std::hex << std::setw(4) << std::setfill('0') << "0x" << configDataset.diagStatReg.value << std::endl; sif::info << "MSC_CTRL: " << std::hex << std::setw(4) << "0x" << configDataset.mscCtrlReg.value << " | FILT_CTRL: 0x" << configDataset.filterSetting.value << " | DEC_RATE: 0x" << configDataset.decRateReg.value << std::setfill(' ') << std::endl; #endif /* OBSW_VERBOSE_LEVEL >= 1 */ } } return HasReturnvaluesIF::RETURN_OK; } void GyroADIS16507Handler::fillCommandAndReplyMap() { insertInCommandAndReplyMap(ADIS16507::READ_SENSOR_DATA, 1, &primaryDataset); insertInCommandAndReplyMap(ADIS16507::READ_OUT_CONFIG, 1, &configDataset); insertInCommandAndReplyMap(ADIS16507::SELF_TEST_SENSORS, 1); insertInCommandAndReplyMap(ADIS16507::SELF_TEST_MEMORY, 1); insertInCommandAndReplyMap(ADIS16507::UPDATE_NV_CONFIGURATION, 1); insertInCommandAndReplyMap(ADIS16507::RESET_SENSOR_CONFIGURATION, 1); insertInCommandAndReplyMap(ADIS16507::SW_RESET, 1); insertInCommandAndReplyMap(ADIS16507::PRINT_CURRENT_CONFIGURATION, 1); } ReturnValue_t GyroADIS16507Handler::scanForReply(const uint8_t *start, size_t remainingSize, DeviceCommandId_t *foundId, size_t *foundLen) { /* For SPI, the ID will always be the one of the last sent command. */ *foundId = this->getPendingCommand(); *foundLen = this->rawPacketLen; return HasReturnvaluesIF::RETURN_OK; } ReturnValue_t GyroADIS16507Handler::interpretDeviceReply(DeviceCommandId_t id, const uint8_t *packet) { switch(id) { case(ADIS16507::READ_OUT_CONFIG): { PoolReadGuard rg(&configDataset); uint16_t readProdId = packet[10] << 8 | packet[11]; if (readProdId != ADIS16507::PROD_ID) { #if OBSW_VERBOSE_LEVEL >= 1 sif::debug << "GyroADIS16507Handler::interpretDeviceReply: Invalid product ID!" << std::endl; #endif return HasReturnvaluesIF::RETURN_FAILED; } configDataset.diagStatReg.value = packet[2] << 8 | packet[3]; configDataset.filterSetting.value = packet[4] << 8 | packet[5]; configDataset.mscCtrlReg.value = packet[6] << 8 | packet[7]; configDataset.decRateReg.value = packet[8] << 8 | packet[9]; configDataset.setValidity(true, true); if(internalState == InternalState::CONFIG) { commandExecuted = true; } break; } case(ADIS16507::READ_SENSOR_DATA): { return handleSensorData(packet); } } return HasReturnvaluesIF::RETURN_OK; } ReturnValue_t GyroADIS16507Handler::handleSensorData(const uint8_t *packet) { BurstModes burstMode = getBurstMode(); switch(burstMode) { case(BurstModes::BURST_16_BURST_SEL_1): case(BurstModes::BURST_32_BURST_SEL_1): { sif::warning << "GyroADIS16507Handler::interpretDeviceReply: Analysis with BURST_SEL1" " not implemented!" << std::endl; return HasReturnvaluesIF::RETURN_OK; } case(BurstModes::BURST_16_BURST_SEL_0): { uint16_t checksum = packet[20] << 8 | packet[21]; /* Now verify the read checksum with the expected checksum according to datasheet p. 20 */ uint16_t calcChecksum = 0; for(size_t idx = 2; idx < 20; idx ++) { calcChecksum += packet[idx]; } if(checksum != calcChecksum) { #if OBSW_VERBOSE_LEVEL >= 1 sif::warning << "GyroADIS16507Handler::interpretDeviceReply: " "Invalid checksum detected!" << std::endl; #endif return HasReturnvaluesIF::RETURN_FAILED; } ReturnValue_t result = configDataset.diagStatReg.read(); if(result == HasReturnvaluesIF::RETURN_OK) { configDataset.diagStatReg.value = packet[2] << 8 | packet[3]; configDataset.diagStatReg.setValid(true); } configDataset.diagStatReg.commit(); { PoolReadGuard pg(&primaryDataset); int16_t angVelocXRaw = packet[4] << 8 | packet[5]; primaryDataset.angVelocX.value = static_cast(angVelocXRaw) / INT16_MAX * ADIS16507::GYRO_RANGE; int16_t angVelocYRaw = packet[6] << 8 | packet[7]; primaryDataset.angVelocY.value = static_cast(angVelocYRaw) / INT16_MAX * ADIS16507::GYRO_RANGE; int16_t angVelocZRaw = packet[8] << 8 | packet[9]; primaryDataset.angVelocZ.value = static_cast(angVelocZRaw) / INT16_MAX * ADIS16507::GYRO_RANGE; int16_t accelXRaw = packet[10] << 8 | packet[11]; primaryDataset.accelX.value = static_cast(accelXRaw) / INT16_MAX * ADIS16507::ACCELEROMETER_RANGE; int16_t accelYRaw = packet[12] << 8 | packet[13]; primaryDataset.accelY.value = static_cast(accelYRaw) / INT16_MAX * ADIS16507::ACCELEROMETER_RANGE; int16_t accelZRaw = packet[14] << 8 | packet[15]; primaryDataset.accelZ.value = static_cast(accelZRaw) / INT16_MAX * ADIS16507::ACCELEROMETER_RANGE; int16_t temperatureRaw = packet[16] << 8 | packet[17]; primaryDataset.temperature.value = static_cast(temperatureRaw) * 0.1; // Ignore data counter for now primaryDataset.setValidity(true, true); } #if OBSW_DEBUG_ADIS16507 == 1 if(debugDivider->checkAndIncrement()) { sif::info << "GyroADIS16507Handler: Angular velocities in deg / s" << std::endl; sif::info << "X: " << primaryDataset.angVelocX.value << std::endl; sif::info << "Y: " << primaryDataset.angVelocY.value << std::endl; sif::info << "Z: " << primaryDataset.angVelocZ.value << std::endl; sif::info << "GyroADIS16507Handler: Accelerations in m / s^2: " << std::endl; sif::info << "X: " << primaryDataset.accelX.value << std::endl; sif::info << "Y: " << primaryDataset.accelY.value << std::endl; sif::info << "Z: " << primaryDataset.accelZ.value << std::endl; } #endif break; } case(BurstModes::BURST_32_BURST_SEL_0): { break; } } return HasReturnvaluesIF::RETURN_OK; } uint32_t GyroADIS16507Handler::getTransitionDelayMs(Mode_t modeFrom, Mode_t modeTo) { return 5000; } void GyroADIS16507Handler::prepareWriteCommand(uint8_t startReg, uint8_t valueOne, uint8_t valueTwo) { uint8_t secondReg = startReg + 1; startReg |= ADIS16507::WRITE_MASK; secondReg |= ADIS16507::WRITE_MASK; commandBuffer[0] = startReg; commandBuffer[1] = valueOne; commandBuffer[2] = secondReg; commandBuffer[3] = valueTwo; this->rawPacketLen = 4; this->rawPacket = commandBuffer.data(); } void GyroADIS16507Handler::prepareReadCommand(uint8_t *regList, size_t len) { for(size_t idx = 0; idx < len; idx++) { commandBuffer[idx * 2] = regList[idx]; commandBuffer[idx * 2 + 1] = 0x00; } commandBuffer[len * 2] = 0x00; commandBuffer[len * 2 + 1] = 0x00; } ReturnValue_t GyroADIS16507Handler::initializeLocalDataPool(localpool::DataPool &localDataPoolMap, LocalDataPoolManager &poolManager) { localDataPoolMap.emplace(ADIS16507::ANG_VELOC_X, new PoolEntry({0.0})); localDataPoolMap.emplace(ADIS16507::ANG_VELOC_Y, new PoolEntry({0.0})); localDataPoolMap.emplace(ADIS16507::ANG_VELOC_Z, new PoolEntry({0.0})); localDataPoolMap.emplace(ADIS16507::ACCELERATION_X, new PoolEntry({0.0})); localDataPoolMap.emplace(ADIS16507::ACCELERATION_Y, new PoolEntry({0.0})); localDataPoolMap.emplace(ADIS16507::ACCELERATION_Z, new PoolEntry({0.0})); localDataPoolMap.emplace(ADIS16507::TEMPERATURE, new PoolEntry({0.0})); localDataPoolMap.emplace(ADIS16507::DIAG_STAT_REGISTER, new PoolEntry()); localDataPoolMap.emplace(ADIS16507::FILTER_SETTINGS, new PoolEntry()); localDataPoolMap.emplace(ADIS16507::MSC_CTRL_REGISTER, new PoolEntry()); localDataPoolMap.emplace(ADIS16507::DEC_RATE_REGISTER, new PoolEntry()); return HasReturnvaluesIF::RETURN_OK; } GyroADIS16507Handler::BurstModes GyroADIS16507Handler::getBurstMode() { configDataset.mscCtrlReg.read(); uint16_t currentCtrlReg = configDataset.mscCtrlReg.value; configDataset.mscCtrlReg.commit(); if((currentCtrlReg & ADIS16507::BURST_32_BIT) == ADIS16507::BURST_32_BIT) { if((currentCtrlReg & ADIS16507::BURST_SEL_BIT) == ADIS16507::BURST_SEL_BIT) { return BurstModes::BURST_32_BURST_SEL_1; } else { return BurstModes::BURST_32_BURST_SEL_0; } } else { if((currentCtrlReg & ADIS16507::BURST_SEL_BIT) == ADIS16507::BURST_SEL_BIT) { return BurstModes::BURST_16_BURST_SEL_1; } else { return BurstModes::BURST_16_BURST_SEL_0; } } } #if OBSW_ADIS16507_LINUX_COM_IF == 1 ReturnValue_t GyroADIS16507Handler::spiSendCallback(SpiComIF *comIf, SpiCookie *cookie, const uint8_t *sendData, size_t sendLen, void *args) { GyroADIS16507Handler* handler = reinterpret_cast(args); if(handler == nullptr) { sif::error << "GyroADIS16507Handler::spiSendCallback: Passed handler pointer is invalid!" << std::endl; return HasReturnvaluesIF::RETURN_FAILED; } DeviceCommandId_t currentCommand = handler->getPendingCommand(); switch(currentCommand) { case(ADIS16507::READ_SENSOR_DATA): { return comIf->performRegularSendOperation(cookie, sendData, sendLen); } case(ADIS16507::READ_OUT_CONFIG): default: { ReturnValue_t result = HasReturnvaluesIF::RETURN_OK; int retval = 0; // Prepare transfer int fileDescriptor = 0; std::string device = cookie->getSpiDevice(); UnixFileGuard fileHelper(device, &fileDescriptor, O_RDWR, "SpiComIF::sendMessage: "); if(fileHelper.getOpenResult() != HasReturnvaluesIF::RETURN_OK) { return SpiComIF::OPENING_FILE_FAILED; } spi::SpiModes spiMode = spi::SpiModes::MODE_0; uint32_t spiSpeed = 0; cookie->getSpiParameters(spiMode, spiSpeed, nullptr); comIf->setSpiSpeedAndMode(fileDescriptor, spiMode, spiSpeed); cookie->assignWriteBuffer(sendData); cookie->assignTransferSize(2); gpioId_t gpioId = cookie->getChipSelectPin(); GpioIF* gpioIF = comIf->getGpioInterface(); MutexIF::TimeoutType timeoutType = MutexIF::TimeoutType::WAITING; uint32_t timeoutMs = 0; MutexIF* mutex = comIf->getMutex(&timeoutType, &timeoutMs); if(mutex == nullptr or gpioIF == nullptr) { #if OBSW_VERBOSE_LEVEL >= 1 sif::warning << "GyroADIS16507Handler::spiSendCallback: " "Mutex or GPIO interface invalid" << std::endl; return HasReturnvaluesIF::RETURN_FAILED; #endif } if(gpioId != gpio::NO_GPIO) { result = mutex->lockMutex(timeoutType, timeoutMs); if (result != RETURN_OK) { #if FSFW_CPP_OSTREAM_ENABLED == 1 sif::error << "SpiComIF::sendMessage: Failed to lock mutex" << std::endl; #endif return result; } } size_t idx = 0; while(idx < sendLen) { // Pull SPI CS low. For now, no support for active high given if(gpioId != gpio::NO_GPIO) { gpioIF->pullLow(gpioId); } // Execute transfer // Initiate a full duplex SPI transfer. retval = ioctl(fileDescriptor, SPI_IOC_MESSAGE(1), cookie->getTransferStructHandle()); if(retval < 0) { utility::handleIoctlError("SpiComIF::sendMessage: ioctl error."); result = SpiComIF::FULL_DUPLEX_TRANSFER_FAILED; } #if FSFW_HAL_LINUX_SPI_WIRETAPPING == 1 comIf->performSpiWiretapping(cookie); #endif /* FSFW_LINUX_SPI_WIRETAPPING == 1 */ if(gpioId != gpio::NO_GPIO) { gpioIF->pullHigh(gpioId); } idx += 2; if(idx < sendLen) { usleep(ADIS16507::STALL_TIME_MICROSECONDS); } spi_ioc_transfer* transferStruct = cookie->getTransferStructHandle(); transferStruct->tx_buf += 2; transferStruct->rx_buf += 2; } if(gpioId != gpio::NO_GPIO) { mutex->unlockMutex(); } } } return HasReturnvaluesIF::RETURN_OK; } #endif /* OBSW_ADIS16507_LINUX_COM_IF == 1 */