/* * ActuatorCmd.cpp * * Created on: 4 Aug 2022 * Author: Robin Marquardt */ #include "ActuatorCmd.h" #include #include #include #include #include #include "util/CholeskyDecomposition.h" #include "util/MathOperations.h" ActuatorCmd::ActuatorCmd(AcsParameters *acsParameters_) { acsParameters = *acsParameters_; } ActuatorCmd::~ActuatorCmd() {} void ActuatorCmd::scalingTorqueRws(const double *rwTrq, double *rwTrqScaled) { // Scaling the commanded torque to a maximum value double maxTrq = acsParameters.rwHandlingParameters.maxTrq; double maxValue = 0; for (int i = 0; i < 4; i++) { // size of torque, always 4 ? if (abs(rwTrq[i]) > maxValue) { maxValue = abs(rwTrq[i]); } } if (maxValue > maxTrq) { double scalingFactor = maxTrq / maxValue; VectorOperations::mulScalar(rwTrq, scalingFactor, rwTrqScaled, 4); } } void ActuatorCmd::cmdSpeedToRws(const int32_t *speedRw0, const int32_t *speedRw1, const int32_t *speedRw2, const int32_t *speedRw3, const double *rwTorque, double *rwCmdSpeed) { using namespace Math; // Calculating the commanded speed in RPM for every reaction wheel double speedRws[4] = {(double)*speedRw0, (double)*speedRw1, (double)*speedRw2, (double)*speedRw3}; double deltaSpeed[4] = {0, 0, 0, 0}; double commandTime = acsParameters.onBoardParams.sampleTime, inertiaWheel = acsParameters.rwHandlingParameters.inertiaWheel; double radToRpm = 60 / (2 * PI); // factor for conversion to RPM // W_RW = Torque_RW / I_RW * delta t [rad/s] double factor = commandTime / inertiaWheel * radToRpm; VectorOperations::mulScalar(rwTorque, factor, deltaSpeed, 4); VectorOperations::add(speedRws, deltaSpeed, rwCmdSpeed, 4); } void ActuatorCmd::cmdDipolMtq(const double *dipolMoment, double *dipolMomentActuator) { // Convert to actuator frame MatrixOperations::multiply(*acsParameters.magnetorquesParameter.inverseAlignment, dipolMoment, dipolMomentActuator, 3, 3, 1); // Scaling along largest element if dipol exceeds maximum double maxDipol = acsParameters.magnetorquesParameter.DipolMax; double maxValue = 0; for (int i = 0; i < 3; i++) { if (abs(dipolMomentActuator[i]) > maxDipol) { maxValue = abs(dipolMomentActuator[i]); } } if (maxValue > maxDipol) { double scalingFactor = maxDipol / maxValue; VectorOperations::mulScalar(dipolMomentActuator, scalingFactor, dipolMomentActuator, 3); } // scale dipole from 1 Am^2 to 1e^-4 Am^2 VectorOperations::mulScalar(dipolMomentActuator, 1e4, dipolMomentActuator, 3); }