/*
 * Guidance.cpp
 *
 *  Created on: 6 Jun 2022
 *      Author: Robin Marquardt
 */

#include "Guidance.h"

#include <fsfw/datapool/PoolReadGuard.h>
#include <fsfw/globalfunctions/math/MatrixOperations.h>
#include <fsfw/globalfunctions/math/QuaternionOperations.h>
#include <fsfw/globalfunctions/math/VectorOperations.h>
#include <math.h>

#include "string.h"
#include "util/CholeskyDecomposition.h"
#include "util/MathOperations.h"

Guidance::Guidance(AcsParameters *acsParameters_) { acsParameters = *acsParameters_; }

Guidance::~Guidance() {}

void Guidance::getTargetParamsSafe(double sunTargetSafe[3], double satRateSafe[3]) {
  for (int i = 0; i < 3; i++) {
    sunTargetSafe[i] = acsParameters.safeModeControllerParameters.sunTargetDir[i];
    satRateSafe[i] = acsParameters.safeModeControllerParameters.satRateRef[i];
  }

  //	memcpy(sunTargetSafe, acsParameters.safeModeControllerParameters.sunTargetDir, 24);
}

void Guidance::targetQuatPtg(ACS::SensorValues *sensorValues, acsctrl::MekfData *mekfData,
                             acsctrl::SusDataProcessed *susDataProcessed, timeval now,
                             double targetQuat[4], double refSatRate[3]) {
  //-------------------------------------------------------------------------------------
  //	Calculation of target quaternion to groundstation
  //-------------------------------------------------------------------------------------
  //	Transform longitude, latitude and altitude of groundstation to cartesian coordiantes (earth
  // fixed/centered frame)
  double groundStationCart[3] = {0, 0, 0};

  MathOperations<double>::cartesianFromLatLongAlt(acsParameters.groundStationParameters.latitudeGs,
                                                  acsParameters.groundStationParameters.longitudeGs,
                                                  acsParameters.groundStationParameters.altitudeGs,
                                                  groundStationCart);

  //	Position of the satellite in the earth/fixed frame via GPS
  double posSatE[3] = {0, 0, 0};
  MathOperations<double>::cartesianFromLatLongAlt(sensorValues->gpsSet.latitude.value,
                                                  sensorValues->gpsSet.longitude.value,
                                                  sensorValues->gpsSet.altitude.value, posSatE);

  //	Target direction in the ECEF frame
  double targetDirE[3] = {0, 0, 0};
  VectorOperations<double>::subtract(groundStationCart, posSatE, targetDirE, 3);

  //	Transformation between ECEF and IJK frame
  double dcmEJ[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
  double dcmJE[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
  MathOperations<double>::dcmEJ(now, *dcmEJ);
  MathOperations<double>::inverseMatrixDimThree(*dcmEJ, *dcmJE);
  //	Derivative of dmcEJ WITHOUT PRECISSION AND NUTATION
  double dcmEJDot[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
  double dcmJEDot[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
  double dcmDot[3][3] = {{0, 1, 0}, {-1, 0, 0}, {0, 0, 0}};
  double omegaEarth = acsParameters.targetModeControllerParameters.omegaEarth;

  //	TEST SECTION !
  // double dcmTEST[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
  // MatrixOperations<double>::multiply(&acsParameters.magnetorquesParameter.mtq0orientationMatrix,
  // dcmTEST, dcmTEST, 3, 3, 3);

  MatrixOperations<double>::multiply(*dcmDot, *dcmEJ, *dcmEJDot, 3, 3, 3);
  MatrixOperations<double>::multiplyScalar(*dcmEJDot, omegaEarth, *dcmEJDot, 3, 3);
  MathOperations<double>::inverseMatrixDimThree(*dcmEJDot, *dcmJEDot);

  //	Transformation between ECEF and Body frame
  double dcmBJ[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
  double dcmBE[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
  double quatBJ[4] = {0, 0, 0, 0};
  std::memcpy(quatBJ, mekfData->quatMekf.value, 4 * sizeof(double));

  QuaternionOperations::toDcm(quatBJ, dcmBJ);
  MatrixOperations<double>::multiply(*dcmBJ, *dcmJE, *dcmBE, 3, 3, 3);

  //	Target Direction in the body frame
  double targetDirB[3] = {0, 0, 0};
  MatrixOperations<double>::multiply(*dcmBE, targetDirE, targetDirB, 3, 3, 1);

  //	rotation quaternion from two vectors
  double refDir[3] = {0, 0, 0};
  refDir[0] = acsParameters.targetModeControllerParameters.refDirection[0];
  refDir[1] = acsParameters.targetModeControllerParameters.refDirection[1];
  refDir[2] = acsParameters.targetModeControllerParameters.refDirection[2];
  double noramlizedTargetDirB[3] = {0, 0, 0};
  VectorOperations<double>::normalize(targetDirB, noramlizedTargetDirB, 3);
  VectorOperations<double>::normalize(refDir, refDir, 3);
  double normTargetDirB = VectorOperations<double>::norm(noramlizedTargetDirB, 3);
  double normRefDir = VectorOperations<double>::norm(refDir, 3);
  double crossDir[3] = {0, 0, 0};
  double dotDirections = VectorOperations<double>::dot(noramlizedTargetDirB, refDir);
  VectorOperations<double>::cross(noramlizedTargetDirB, refDir, crossDir);
  targetQuat[0] = crossDir[0];
  targetQuat[1] = crossDir[1];
  targetQuat[2] = crossDir[2];
  targetQuat[3] = sqrt(pow(normTargetDirB, 2) * pow(normRefDir, 2) + dotDirections);
  VectorOperations<double>::normalize(targetQuat, targetQuat, 4);

  //-------------------------------------------------------------------------------------
  //	Calculation of reference rotation rate
  //-------------------------------------------------------------------------------------
  double velSatE[3] = {0, 0, 0};
  velSatE[0] = 0.0;  // sensorValues->gps0Velocity[0];
  velSatE[1] = 0.0;  // sensorValues->gps0Velocity[1];
  velSatE[2] = 0.0;  // sensorValues->gps0Velocity[2];
  double velSatB[3] = {0, 0, 0}, velSatBPart1[3] = {0, 0, 0}, velSatBPart2[3] = {0, 0, 0};
  //	Velocity: v_B = dcm_BI * dcmIE * v_E + dcm_BI * DotDcm_IE * v_E
  MatrixOperations<double>::multiply(*dcmBE, velSatE, velSatBPart1, 3, 3, 1);
  double dcmBEDot[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
  MatrixOperations<double>::multiply(*dcmBJ, *dcmJEDot, *dcmBEDot, 3, 3, 3);
  MatrixOperations<double>::multiply(*dcmBEDot, posSatE, velSatBPart2, 3, 3, 1);
  VectorOperations<double>::add(velSatBPart1, velSatBPart2, velSatB, 3);

  double normVelSatB = VectorOperations<double>::norm(velSatB, 3);
  double normRefSatRate = normVelSatB / normTargetDirB;

  double satRateDir[3] = {0, 0, 0};
  VectorOperations<double>::cross(velSatB, targetDirB, satRateDir);
  VectorOperations<double>::normalize(satRateDir, satRateDir, 3);
  VectorOperations<double>::mulScalar(satRateDir, normRefSatRate, refSatRate, 3);

  //-------------------------------------------------------------------------------------
  //	Calculation of reference rotation rate in case of star tracker blinding
  //-------------------------------------------------------------------------------------
  if (acsParameters.targetModeControllerParameters.avoidBlindStr) {
    double sunDirJ[3] = {0, 0, 0};
    double sunDirB[3] = {0, 0, 0};

    if (susDataProcessed->sunIjkModel.isValid()) {
      std::memcpy(sunDirJ, susDataProcessed->sunIjkModel.value, 3 * sizeof(double));
      MatrixOperations<double>::multiply(*dcmBJ, sunDirJ, sunDirB, 3, 3, 1);
    } else {
      std::memcpy(sunDirB, susDataProcessed->susVecTot.value, 3 * sizeof(double));
    }

    double exclAngle = acsParameters.strParameters.exclusionAngle,
           blindStart = acsParameters.targetModeControllerParameters.blindAvoidStart,
           blindEnd = acsParameters.targetModeControllerParameters.blindAvoidStop;
    double sightAngleSun =
        VectorOperations<double>::dot(acsParameters.strParameters.boresightAxis, sunDirB);

    if (!(strBlindAvoidFlag)) {
      double critSightAngle = blindStart * exclAngle;

      if (sightAngleSun < critSightAngle) {
        strBlindAvoidFlag = true;
      }

    }

    else {
      if (sightAngleSun < blindEnd * exclAngle) {
        double normBlindRefRate = acsParameters.targetModeControllerParameters.blindRotRate;
        double blindRefRate[3] = {0, 0, 0};

        if (sunDirB[1] < 0) {
          blindRefRate[0] = normBlindRefRate;
          blindRefRate[1] = 0;
          blindRefRate[2] = 0;
        } else {
          blindRefRate[0] = -normBlindRefRate;
          blindRefRate[1] = 0;
          blindRefRate[2] = 0;
        }

        VectorOperations<double>::add(blindRefRate, refSatRate, refSatRate, 3);

      } else {
        strBlindAvoidFlag = false;
      }
    }
  }
}

void Guidance::comparePtg(double targetQuat[4], acsctrl::MekfData *mekfData, double refSatRate[3],
                          double quatErrorComplete[4], double quatError[3], double deltaRate[3]) {
  double quatRef[4] = {0, 0, 0, 0};
  quatRef[0] = acsParameters.targetModeControllerParameters.quatRef[0];
  quatRef[1] = acsParameters.targetModeControllerParameters.quatRef[1];
  quatRef[2] = acsParameters.targetModeControllerParameters.quatRef[2];
  quatRef[3] = acsParameters.targetModeControllerParameters.quatRef[3];

  double satRate[3] = {0, 0, 0};
  std::memcpy(satRate, mekfData->satRotRateMekf.value, 3 * sizeof(double));
  VectorOperations<double>::subtract(satRate, refSatRate, deltaRate, 3);
  // valid checks ?
  double quatErrorMtx[4][4] = {{quatRef[3], quatRef[2], -quatRef[1], -quatRef[0]},
                               {-quatRef[2], quatRef[3], quatRef[0], -quatRef[1]},
                               {quatRef[1], -quatRef[0], quatRef[3], -quatRef[2]},
                               {quatRef[0], -quatRef[1], quatRef[2], quatRef[3]}};

  MatrixOperations<double>::multiply(*quatErrorMtx, targetQuat, quatErrorComplete, 4, 4, 1);

  if (quatErrorComplete[3] < 0) {
    quatErrorComplete[3] *= -1;
  }

  quatError[0] = quatErrorComplete[0];
  quatError[1] = quatErrorComplete[1];
  quatError[2] = quatErrorComplete[2];

  // target flag in matlab, importance, does look like it only gives
  //	feedback if pointing control is under 150 arcsec ??
}

void Guidance::getDistributionMatrixRw(ACS::SensorValues *sensorValues, double *rwPseudoInv) {
  if (sensorValues->rw1Set.isValid() && sensorValues->rw2Set.isValid() &&
      sensorValues->rw3Set.isValid() && sensorValues->rw4Set.isValid()) {
    rwPseudoInv[0] = acsParameters.rwMatrices.pseudoInverse[0][0];
    rwPseudoInv[1] = acsParameters.rwMatrices.pseudoInverse[0][1];
    rwPseudoInv[2] = acsParameters.rwMatrices.pseudoInverse[0][2];
    rwPseudoInv[3] = acsParameters.rwMatrices.pseudoInverse[1][0];
    rwPseudoInv[4] = acsParameters.rwMatrices.pseudoInverse[1][1];
    rwPseudoInv[5] = acsParameters.rwMatrices.pseudoInverse[1][2];
    rwPseudoInv[6] = acsParameters.rwMatrices.pseudoInverse[2][0];
    rwPseudoInv[7] = acsParameters.rwMatrices.pseudoInverse[2][1];
    rwPseudoInv[8] = acsParameters.rwMatrices.pseudoInverse[2][2];
    rwPseudoInv[9] = acsParameters.rwMatrices.pseudoInverse[3][0];
    rwPseudoInv[10] = acsParameters.rwMatrices.pseudoInverse[3][1];
    rwPseudoInv[11] = acsParameters.rwMatrices.pseudoInverse[3][2];

  }

  else if (!(sensorValues->rw1Set.isValid()) && sensorValues->rw2Set.isValid() &&
           sensorValues->rw3Set.isValid() && sensorValues->rw4Set.isValid()) {
    rwPseudoInv[0] = acsParameters.rwMatrices.without0[0][0];
    rwPseudoInv[1] = acsParameters.rwMatrices.without0[0][1];
    rwPseudoInv[2] = acsParameters.rwMatrices.without0[0][2];
    rwPseudoInv[3] = acsParameters.rwMatrices.without0[1][0];
    rwPseudoInv[4] = acsParameters.rwMatrices.without0[1][1];
    rwPseudoInv[5] = acsParameters.rwMatrices.without0[1][2];
    rwPseudoInv[6] = acsParameters.rwMatrices.without0[2][0];
    rwPseudoInv[7] = acsParameters.rwMatrices.without0[2][1];
    rwPseudoInv[8] = acsParameters.rwMatrices.without0[2][2];
    rwPseudoInv[9] = acsParameters.rwMatrices.without0[3][0];
    rwPseudoInv[10] = acsParameters.rwMatrices.without0[3][1];
    rwPseudoInv[11] = acsParameters.rwMatrices.without0[3][2];
  }

  else if ((sensorValues->rw1Set.isValid()) && !(sensorValues->rw2Set.isValid()) &&
           sensorValues->rw3Set.isValid() && sensorValues->rw4Set.isValid()) {
    rwPseudoInv[0] = acsParameters.rwMatrices.without1[0][0];
    rwPseudoInv[1] = acsParameters.rwMatrices.without1[0][1];
    rwPseudoInv[2] = acsParameters.rwMatrices.without1[0][2];
    rwPseudoInv[3] = acsParameters.rwMatrices.without1[1][0];
    rwPseudoInv[4] = acsParameters.rwMatrices.without1[1][1];
    rwPseudoInv[5] = acsParameters.rwMatrices.without1[1][2];
    rwPseudoInv[6] = acsParameters.rwMatrices.without1[2][0];
    rwPseudoInv[7] = acsParameters.rwMatrices.without1[2][1];
    rwPseudoInv[8] = acsParameters.rwMatrices.without1[2][2];
    rwPseudoInv[9] = acsParameters.rwMatrices.without1[3][0];
    rwPseudoInv[10] = acsParameters.rwMatrices.without1[3][1];
    rwPseudoInv[11] = acsParameters.rwMatrices.without1[3][2];
  }

  else if ((sensorValues->rw1Set.isValid()) && (sensorValues->rw2Set.isValid()) &&
           !(sensorValues->rw3Set.isValid()) && sensorValues->rw4Set.isValid()) {
    rwPseudoInv[0] = acsParameters.rwMatrices.without2[0][0];
    rwPseudoInv[1] = acsParameters.rwMatrices.without2[0][1];
    rwPseudoInv[2] = acsParameters.rwMatrices.without2[0][2];
    rwPseudoInv[3] = acsParameters.rwMatrices.without2[1][0];
    rwPseudoInv[4] = acsParameters.rwMatrices.without2[1][1];
    rwPseudoInv[5] = acsParameters.rwMatrices.without2[1][2];
    rwPseudoInv[6] = acsParameters.rwMatrices.without2[2][0];
    rwPseudoInv[7] = acsParameters.rwMatrices.without2[2][1];
    rwPseudoInv[8] = acsParameters.rwMatrices.without2[2][2];
    rwPseudoInv[9] = acsParameters.rwMatrices.without2[3][0];
    rwPseudoInv[10] = acsParameters.rwMatrices.without2[3][1];
    rwPseudoInv[11] = acsParameters.rwMatrices.without2[3][2];
  }

  else if ((sensorValues->rw1Set.isValid()) && (sensorValues->rw2Set.isValid()) &&
           (sensorValues->rw3Set.isValid()) && !(sensorValues->rw4Set.isValid())) {
    rwPseudoInv[0] = acsParameters.rwMatrices.without3[0][0];
    rwPseudoInv[1] = acsParameters.rwMatrices.without3[0][1];
    rwPseudoInv[2] = acsParameters.rwMatrices.without3[0][2];
    rwPseudoInv[3] = acsParameters.rwMatrices.without3[1][0];
    rwPseudoInv[4] = acsParameters.rwMatrices.without3[1][1];
    rwPseudoInv[5] = acsParameters.rwMatrices.without3[1][2];
    rwPseudoInv[6] = acsParameters.rwMatrices.without3[2][0];
    rwPseudoInv[7] = acsParameters.rwMatrices.without3[2][1];
    rwPseudoInv[8] = acsParameters.rwMatrices.without3[2][2];
    rwPseudoInv[9] = acsParameters.rwMatrices.without3[3][0];
    rwPseudoInv[10] = acsParameters.rwMatrices.without3[3][1];
    rwPseudoInv[11] = acsParameters.rwMatrices.without3[3][2];
  }

  else {
    // 	    @note: This one takes the normal pseudoInverse of all four raction wheels valid.
    //		Does not make sense, but is implemented that way in MATLAB ?!
    //		Thought: It does not really play a role, because in case there are more then one
    //		reaction wheel the pointing control is destined to fail.
    rwPseudoInv[0] = acsParameters.rwMatrices.pseudoInverse[0][0];
    rwPseudoInv[1] = acsParameters.rwMatrices.pseudoInverse[0][1];
    rwPseudoInv[2] = acsParameters.rwMatrices.pseudoInverse[0][2];
    rwPseudoInv[3] = acsParameters.rwMatrices.pseudoInverse[1][0];
    rwPseudoInv[4] = acsParameters.rwMatrices.pseudoInverse[1][1];
    rwPseudoInv[5] = acsParameters.rwMatrices.pseudoInverse[1][2];
    rwPseudoInv[6] = acsParameters.rwMatrices.pseudoInverse[2][0];
    rwPseudoInv[7] = acsParameters.rwMatrices.pseudoInverse[2][1];
    rwPseudoInv[8] = acsParameters.rwMatrices.pseudoInverse[2][2];
    rwPseudoInv[9] = acsParameters.rwMatrices.pseudoInverse[3][0];
    rwPseudoInv[10] = acsParameters.rwMatrices.pseudoInverse[3][1];
    rwPseudoInv[11] = acsParameters.rwMatrices.pseudoInverse[3][2];
  }
}