#include #include GyroHandler::GyroHandler(object_id_t objectId, object_id_t deviceCommunication, CookieIF *comCookie): DeviceHandlerBase(objectId, deviceCommunication, comCookie), dataset(this) { } GyroHandler::~GyroHandler() {} void GyroHandler::doStartUp() { if(internalState == InternalState::STATE_NONE) { internalState = InternalState::STATE_CONFIGURE; } if(internalState == InternalState::STATE_CONFIGURE) { if(commandExecuted) { internalState = InternalState::STATE_NORMAL; commandExecuted = false; } } } void GyroHandler::doShutDown() { setMode(_MODE_POWER_DOWN); } ReturnValue_t GyroHandler::buildTransitionDeviceCommand(DeviceCommandId_t *id) { switch(internalState) { case(InternalState::STATE_NONE): case(InternalState::STATE_NORMAL): { return HasReturnvaluesIF::RETURN_OK; } case(InternalState::STATE_CONFIGURE): { *id = L3GD20H::CONFIGURE_CTRL_REGS; uint8_t command [5]; command[0] = L3GD20H::CTRL_REG_1_VAL; command[1] = L3GD20H::CTRL_REG_2_VAL; command[2] = L3GD20H::CTRL_REG_3_VAL; command[3] = L3GD20H::CTRL_REG_4_VAL; command[4] = L3GD20H::CTRL_REG_5_VAL; return buildCommandFromCommand(*id, command, 5); break; } default: // might be a configuration error. sif::debug << "GyroHandler::buildTransitionDeviceCommand: Unknown " << "internal state!" << std::endl; return HasReturnvaluesIF::RETURN_OK; } return HasReturnvaluesIF::RETURN_OK; } ReturnValue_t GyroHandler::buildNormalDeviceCommand(DeviceCommandId_t *id) { *id = L3GD20H::READ_REGS; return buildCommandFromCommand(*id, nullptr, 0); } ReturnValue_t GyroHandler::buildCommandFromCommand( DeviceCommandId_t deviceCommand, const uint8_t *commandData, size_t commandDataLen) { switch(deviceCommand) { case(L3GD20H::READ_REGS): { commandBuffer[0] = L3GD20H::READ_START | L3GD20H::AUTO_INCREMENT_MASK | L3GD20H::READ_MASK; std::memset(commandBuffer + 1, 0, L3GD20H::READ_LEN); rawPacket = commandBuffer; rawPacketLen = L3GD20H::READ_LEN + 1; break; } case(L3GD20H::CONFIGURE_CTRL_REGS): { commandBuffer[0] = L3GD20H::CTRL_REG_1 | L3GD20H::AUTO_INCREMENT_MASK; if(commandData == nullptr or commandDataLen != 5) { return DeviceHandlerIF::INVALID_COMMAND_PARAMETER; } ctrlReg1Value = commandData[0]; ctrlReg2Value = commandData[1]; ctrlReg3Value = commandData[2]; ctrlReg4Value = commandData[3]; ctrlReg5Value = commandData[4]; bool fsH = ctrlReg4Value & L3GD20H::SET_FS_1; bool fsL = ctrlReg4Value & L3GD20H::SET_FS_0; if(not fsH and not fsL) { scaleFactor = static_cast(L3GD20H::RANGE_DPS_00) / INT16_MAX; } else if(not fsH and fsL) { scaleFactor = static_cast(L3GD20H::RANGE_DPS_01) / INT16_MAX; } else { scaleFactor = static_cast(L3GD20H::RANGE_DPS_11) / INT16_MAX; } commandBuffer[1] = ctrlReg1Value; commandBuffer[2] = ctrlReg2Value; commandBuffer[3] = ctrlReg3Value; commandBuffer[4] = ctrlReg4Value; commandBuffer[5] = ctrlReg5Value; rawPacket = commandBuffer; rawPacketLen = 6; break; } case(L3GD20H::READ_CTRL_REGS): { commandBuffer[0] = L3GD20H::READ_START | L3GD20H::AUTO_INCREMENT_MASK | L3GD20H::READ_MASK; std::memset(commandBuffer + 1, 0, 5); rawPacket = commandBuffer; rawPacketLen = 6; break; } default: return DeviceHandlerIF::COMMAND_NOT_IMPLEMENTED; } return HasReturnvaluesIF::RETURN_OK; } ReturnValue_t GyroHandler::scanForReply(const uint8_t *start, size_t len, DeviceCommandId_t *foundId, size_t *foundLen) { // SPI, ID will always be the one of the last sent command. *foundId = this->getPendingCommand(); *foundLen = this->rawPacketLen; // Data with SPI Interface has always this answer if (start[0] == 0b11111111) { return HasReturnvaluesIF::RETURN_OK; } return DeviceHandlerIF::INVALID_DATA; } ReturnValue_t GyroHandler::interpretDeviceReply(DeviceCommandId_t id, const uint8_t *packet) { ReturnValue_t result = HasReturnvaluesIF::RETURN_OK; switch(id) { case(L3GD20H::CONFIGURE_CTRL_REGS): { break; } case(L3GD20H::READ_CTRL_REGS): { if(packet[1] == ctrlReg1Value and packet[2] == ctrlReg2Value and packet[3] == ctrlReg3Value and packet[4] == ctrlReg4Value and packet[5] == ctrlReg5Value) { commandExecuted = true; } else { // Attempt reconfiguration. internalState = InternalState::STATE_CONFIGURE; return DeviceHandlerIF::DEVICE_REPLY_INVALID; } break; } case(L3GD20H::READ_START): { if(packet[1] != ctrlReg1Value and packet[2] != ctrlReg2Value and packet[3] != ctrlReg3Value and packet[4] != ctrlReg4Value and packet[5] != ctrlReg5Value) { return DeviceHandlerIF::DEVICE_REPLY_INVALID; } statusReg = packet[L3GD20H::STATUS_IDX]; float angVelocX = (packet[L3GD20H::OUT_X_H] << 8 | packet[L3GD20H::OUT_X_L]) * scaleFactor; float angVelocY = (packet[L3GD20H::OUT_Y_H] << 8 | packet[L3GD20H::OUT_Y_L]) * scaleFactor; float angVelocZ = (packet[L3GD20H::OUT_Z_H] << 8 | packet[L3GD20H::OUT_Z_L]) * scaleFactor; int8_t temperaturOffset = (-1) * packet[L3GD20H::TEMPERATURE_IDX]; float temperature = 25.0 + temperaturOffset; PoolReadHelper readSet(&dataset); if(readSet.getReadResult() == HasReturnvaluesIF::RETURN_OK) { dataset.angVelocX = angVelocX; dataset.angVelocY = angVelocY; dataset.angVelocZ = angVelocZ; dataset.temperature = temperature; dataset.setValidity(true, true); } break; } default: return DeviceHandlerIF::COMMAND_NOT_IMPLEMENTED; } return result; } uint32_t GyroHandler::getTransitionDelayMs(Mode_t from, Mode_t to) { return 5000; } ReturnValue_t GyroHandler::initializeLocalDataPool( localpool::DataPool &localDataPoolMap, LocalDataPoolManager &poolManager) { localDataPoolMap.emplace(L3GD20H::ANG_VELOC_X, new PoolEntry({0.0})); localDataPoolMap.emplace(L3GD20H::ANG_VELOC_Y, new PoolEntry({0.0})); localDataPoolMap.emplace(L3GD20H::ANG_VELOC_Z, new PoolEntry({0.0})); localDataPoolMap.emplace(L3GD20H::TEMPERATURE, new PoolEntry({0.0})); return HasReturnvaluesIF::RETURN_OK; } void GyroHandler::fillCommandAndReplyMap() { insertInCommandAndReplyMap(L3GD20H::READ_REGS, 1, &dataset); insertInCommandAndReplyMap(L3GD20H::CONFIGURE_CTRL_REGS, 1); insertInCommandAndReplyMap(L3GD20H::READ_CTRL_REGS, 1); } void GyroHandler::modeChanged() { internalState = InternalState::STATE_NONE; }