#include #include #include SusHandler::SusHandler(object_id_t objectId, object_id_t comIF, CookieIF * comCookie, LinuxLibgpioIF* gpioComIF, gpioId_t chipSelectId) : DeviceHandlerBase(objectId, comIF, comCookie), gpioComIF(gpioComIF), chipSelectId( chipSelectId), dataset(this) { if (comCookie == NULL) { sif::error << "SusHandler: Invalid com cookie" << std::endl; } if (gpioComIF == NULL) { sif::error << "SusHandler: Invalid GpioComIF" << std::endl; } } SusHandler::~SusHandler() { } void SusHandler::doStartUp(){ #if OBSW_SWITCH_TO_NORMAL_MODE_AFTER_STARTUP == 1 setMode(MODE_NORMAL); #else setMode(_MODE_TO_ON); #endif } void SusHandler::doShutDown(){ setMode(_MODE_POWER_DOWN); } ReturnValue_t SusHandler::buildNormalDeviceCommand( DeviceCommandId_t * id) { if (communicationStep == CommunicationStep::WRITE_SETUP) { *id = SUS::WRITE_SETUP; communicationStep = CommunicationStep::REQUEST_TEMPERATURE; } else if (communicationStep == CommunicationStep::REQUEST_TEMPERATURE) { *id = SUS::REQUEST_TEMPERATURE; communicationStep = CommunicationStep::READ_TEMPERATURE; } else if (communicationStep == CommunicationStep::READ_TEMPERATURE) { *id = SUS::READ_TEMPERATURE; communicationStep = CommunicationStep::READ_CHANNELS; } else if (communicationStep == CommunicationStep::READ_CHANNELS) { *id = SUS::READ_CHANNELS; communicationStep = CommunicationStep::WRITE_SETUP; } return buildCommandFromCommand(*id, nullptr, 0); } ReturnValue_t SusHandler::buildTransitionDeviceCommand( DeviceCommandId_t * id){ return HasReturnvaluesIF::RETURN_OK; } ReturnValue_t SusHandler::buildCommandFromCommand( DeviceCommandId_t deviceCommand, const uint8_t * commandData, size_t commandDataLen) { switch(deviceCommand) { case(SUS::WRITE_SETUP): { /** * The sun sensor ADC is shutdown when CS is pulled high, so each time requesting a * measurement the setup has to be rewritten. There must also be a little delay between * the transmission of the setup byte and the first conversion. Thus the conversion * will be performed in an extra step. */ //TODO: Protect spi bus with mutex gpioComIF->pullLow(chipSelectId); cmdBuffer[0] = SUS::SETUP_DEFINITION; rawPacket = cmdBuffer; rawPacketLen = 1; return RETURN_OK; } case(SUS::READ_CHANNELS): { std::memset(cmdBuffer, 0, sizeof(cmdBuffer)); cmdBuffer[0] = SUS::CONVERT_DIFF_CHANNEL_0; cmdBuffer[1] = SUS::DUMMY_BYTE; cmdBuffer[2] = SUS::CONVERT_DIFF_CHANNEL_1; cmdBuffer[3] = SUS::DUMMY_BYTE; cmdBuffer[4] = SUS::CONVERT_DIFF_CHANNEL_2; cmdBuffer[5] = SUS::DUMMY_BYTE; cmdBuffer[6] = SUS::CONVERT_DIFF_CHANNEL_3; cmdBuffer[7] = SUS::DUMMY_BYTE; cmdBuffer[8] = SUS::CONVERT_DIFF_CHANNEL_4; cmdBuffer[9] = SUS::DUMMY_BYTE; cmdBuffer[10] = SUS::CONVERT_DIFF_CHANNEL_5; cmdBuffer[11] = SUS::DUMMY_BYTE; cmdBuffer[12] = SUS::DUMMY_BYTE; rawPacket = cmdBuffer; rawPacketLen = SUS::SIZE_READ_CHANNELS; return RETURN_OK; } case(SUS::REQUEST_TEMPERATURE): { std::memset(cmdBuffer, 0, sizeof(cmdBuffer)); cmdBuffer[0] = SUS::CONVERT_TEMPERATURE; rawPacket = cmdBuffer; rawPacketLen = 1; return RETURN_OK; } case(SUS::READ_TEMPERATURE): { std::memset(cmdBuffer, 0, sizeof(cmdBuffer)); rawPacket = cmdBuffer; rawPacketLen = 24; return RETURN_OK; } default: return DeviceHandlerIF::COMMAND_NOT_IMPLEMENTED; } return HasReturnvaluesIF::RETURN_FAILED; } void SusHandler::fillCommandAndReplyMap() { this->insertInCommandMap(SUS::WRITE_SETUP); this->insertInCommandMap(SUS::REQUEST_TEMPERATURE); this->insertInCommandAndReplyMap(SUS::READ_CHANNELS, 1, &dataset, SUS::SIZE_READ_CHANNELS); this->insertInCommandAndReplyMap(SUS::READ_TEMPERATURE, 1, nullptr, SUS::SIZE_READ_TEMPERATURE); } ReturnValue_t SusHandler::scanForReply(const uint8_t *start, size_t remainingSize, DeviceCommandId_t *foundId, size_t *foundLen) { *foundId = this->getPendingCommand(); *foundLen = remainingSize; return HasReturnvaluesIF::RETURN_OK; } ReturnValue_t SusHandler::interpretDeviceReply(DeviceCommandId_t id, const uint8_t *packet) { switch (id) { case SUS::READ_CHANNELS: { PoolReadGuard readSet(&dataset); dataset.ain0 = (*(packet + 1) << 8 | *(packet + 2)); dataset.ain1 = (*(packet + 3) << 8 | *(packet + 4)); dataset.ain2 = (*(packet + 5) << 8 | *(packet + 6)); dataset.ain3 = (*(packet + 7) << 8 | *(packet + 8)); dataset.ain4 = (*(packet + 9) << 8 | *(packet + 10)); dataset.ain5 = (*(packet + 11) << 8 | *(packet + 12)); #if OBSW_VERBOSE_LEVEL >= 1 && DEBUG_SUS sif::info << "SUS object id 0x" << std::hex << this->getObjectId() << ", AIN0: " << std::dec << dataset.ain0 << std::endl; sif::info << "SUS object id 0x" << std::hex << this->getObjectId() << ", AIN1: " << std::dec << dataset.ain1 << std::endl; sif::info << "SUS object id 0x" << std::hex << this->getObjectId() << ", AIN2: " << std::dec << dataset.ain2 << std::endl; sif::info << "SUS object id 0x" << std::hex << this->getObjectId() << ", AIN3: " << std::dec << dataset.ain3 << std::endl; sif::info << "SUS object id 0x" << std::hex << this->getObjectId() << ", AIN4: " << std::dec << dataset.ain4 << std::endl; sif::info << "SUS object id 0x" << std::hex << this->getObjectId() << ", AIN5: " << std::dec << dataset.ain5 << std::endl; #endif /** * Reading the channel conversion results is the last communication step in one SUS * sequence. SPI bus can now be released again. */ gpioComIF->pullHigh(chipSelectId); break; } case SUS::READ_TEMPERATURE: { PoolReadGuard readSet(&dataset); dataset.temperatureCelcius = (*(packet + 22) << 8 | *(packet + 23)) * 0.125; #if OBSW_VERBOSE_LEVEL >= 1 && DEBUG_SUS sif::info << "SUS object id 0x" << std::hex << this->getObjectId() << ", temperature: " << dataset.temperatureCelcius << " °C" << std::endl; #endif break; } default: { sif::debug << "SusHandler::interpretDeviceReply: Unknown reply id" << std::endl; return DeviceHandlerIF::UNKNOWN_DEVICE_REPLY; } } return HasReturnvaluesIF::RETURN_OK; } void SusHandler::setNormalDatapoolEntriesInvalid(){ } uint32_t SusHandler::getTransitionDelayMs(Mode_t modeFrom, Mode_t modeTo){ return 1000; } ReturnValue_t SusHandler::initializeLocalDataPool(localpool::DataPool& localDataPoolMap, LocalDataPoolManager& poolManager) { localDataPoolMap.emplace(SUS::TEMPERATURE_C, new PoolEntry( { 0.0 })); localDataPoolMap.emplace(SUS::AIN0, new PoolEntry( { 0 })); localDataPoolMap.emplace(SUS::AIN1, new PoolEntry( { 0 })); localDataPoolMap.emplace(SUS::AIN2, new PoolEntry( { 0 })); localDataPoolMap.emplace(SUS::AIN3, new PoolEntry( { 0 })); localDataPoolMap.emplace(SUS::AIN4, new PoolEntry( { 0 })); localDataPoolMap.emplace(SUS::AIN5, new PoolEntry( { 0 })); return HasReturnvaluesIF::RETURN_OK; }