#include "ThermalController.h"

#include <bsp_q7s/core/CoreDefinitions.h>
#include <eive/objects.h>
#include <fsfw/datapool/PoolReadGuard.h>
#include <fsfw/thermal/ThermalComponentIF.h>
#include <fsfw_hal/devicehandlers/devicedefinitions/gyroL3gHelpers.h>
#include <fsfw_hal/devicehandlers/devicedefinitions/mgmLis3Helpers.h>
#include <mission/acs/gyroAdisHelpers.h>
#include <mission/acs/imtqHelpers.h>
#include <mission/acs/rwHelpers.h>
#include <mission/acs/str/strHelpers.h>
#include <mission/com/syrlinksDefs.h>
#include <mission/payload/payloadPcduDefinitions.h>
#include <mission/power/bpxBattDefs.h>
#include <mission/power/gsDefs.h>
#include <objects/systemObjectList.h>

// Enabling this should trigger a special event which in turn should trigger a system reaction.
#define LOWER_SYRLINKS_UPPER_LIMITS 0
#define LOWER_EBAND_UPPER_LIMITS 0
#define LOWER_PLOC_UPPER_LIMITS 0

ThermalController::ThermalController(object_id_t objectId, HeaterHandler& heater)
    : ExtendedControllerBase(objectId),
      heaterHandler(heater),
      sensorTemperatures(this),
      susTemperatures(this),
      deviceTemperatures(this),
      heaterInfo(this),
      imtqThermalSet(objects::IMTQ_HANDLER, ThermalStateCfg()),
      maxSet0PlocHspd(objects::RTD_0_IC3_PLOC_HEATSPREADER,
                      EiveMax31855::RtdCommands::EXCHANGE_SET_ID),
      maxSet1PlocMissionBrd(objects::RTD_1_IC4_PLOC_MISSIONBOARD,
                            EiveMax31855::RtdCommands::EXCHANGE_SET_ID),
      maxSet2PlCam(objects::RTD_2_IC5_4K_CAMERA, EiveMax31855::RtdCommands::EXCHANGE_SET_ID),
      maxSet3DacHspd(objects::RTD_3_IC6_DAC_HEATSPREADER,
                     EiveMax31855::RtdCommands::EXCHANGE_SET_ID),
      maxSet4Str(objects::RTD_4_IC7_STARTRACKER, EiveMax31855::RtdCommands::EXCHANGE_SET_ID),
      maxSet5Rw1MxMy(objects::RTD_5_IC8_RW1_MX_MY, EiveMax31855::RtdCommands::EXCHANGE_SET_ID),
      maxSet6Dro(objects::RTD_6_IC9_DRO, EiveMax31855::RtdCommands::EXCHANGE_SET_ID),
      maxSet7Scex(objects::RTD_7_IC10_SCEX, EiveMax31855::RtdCommands::EXCHANGE_SET_ID),
      maxSet8X8(objects::RTD_8_IC11_X8, EiveMax31855::RtdCommands::EXCHANGE_SET_ID),
      maxSet9Hpa(objects::RTD_9_IC12_HPA, EiveMax31855::RtdCommands::EXCHANGE_SET_ID),
      maxSet10EbandTx(objects::RTD_10_IC13_PL_TX, EiveMax31855::RtdCommands::EXCHANGE_SET_ID),
      maxSet11Mpa(objects::RTD_11_IC14_MPA, EiveMax31855::RtdCommands::EXCHANGE_SET_ID),
      maxSet31865Set12(objects::RTD_12_IC15_ACU, EiveMax31855::RtdCommands::EXCHANGE_SET_ID),
      maxSet13PlPcduHspd(objects::RTD_13_IC16_PLPCDU_HEATSPREADER,
                         EiveMax31855::RtdCommands::EXCHANGE_SET_ID),
      maxSet14TcsBrd(objects::RTD_14_IC17_TCS_BOARD, EiveMax31855::RtdCommands::EXCHANGE_SET_ID),
      maxSet15Imtq(objects::RTD_15_IC18_IMTQ, EiveMax31855::RtdCommands::EXCHANGE_SET_ID),
      tmp1075SetTcs0(objects::TMP1075_HANDLER_TCS_0),
      tmp1075SetTcs1(objects::TMP1075_HANDLER_TCS_1),
      tmp1075SetPlPcdu0(objects::TMP1075_HANDLER_PLPCDU_0),
      // damaged
      // tmp1075SetPlPcdu1(objects::TMP1075_HANDLER_PLPCDU_1),
      tmp1075SetIfBoard(objects::TMP1075_HANDLER_IF_BOARD),
      susSet0(objects::SUS_0_N_LOC_XFYFZM_PT_XF),
      susSet1(objects::SUS_1_N_LOC_XBYFZM_PT_XB),
      susSet2(objects::SUS_2_N_LOC_XFYBZB_PT_YB),
      susSet3(objects::SUS_3_N_LOC_XFYBZF_PT_YF),
      susSet4(objects::SUS_4_N_LOC_XMYFZF_PT_ZF),
      susSet5(objects::SUS_5_N_LOC_XFYMZB_PT_ZB),
      susSet6(objects::SUS_6_R_LOC_XFYBZM_PT_XF),
      susSet7(objects::SUS_7_R_LOC_XBYBZM_PT_XB),
      susSet8(objects::SUS_8_R_LOC_XBYBZB_PT_YB),
      susSet9(objects::SUS_9_R_LOC_XBYBZB_PT_YF),
      susSet10(objects::SUS_10_N_LOC_XMYBZF_PT_ZF),
      susSet11(objects::SUS_11_R_LOC_XBYMZB_PT_ZB) {
  resetSensorsArray();
}

ReturnValue_t ThermalController::initialize() {
  auto* camSwitcher = ObjectManager::instance()->get<HasHealthIF>(objects::CAM_SWITCHER);
  if (camSwitcher == nullptr) {
    return ObjectManagerIF::CHILD_INIT_FAILED;
  }
  camId = camSwitcher->getCommandQueue();
  return ExtendedControllerBase::initialize();
}

ReturnValue_t ThermalController::handleCommandMessage(CommandMessage* message) {
  return returnvalue::FAILED;
}

void ThermalController::performControlOperation() {
#if OBSW_THREAD_TRACING == 1
  trace::threadTrace(opCounter, "TCS Task");
#endif

  switch (internalState) {
    case InternalState::STARTUP: {
      initialCountdown.resetTimer();
      internalState = InternalState::INITIAL_DELAY;
      return;
    }
    case InternalState::INITIAL_DELAY: {
      if (initialCountdown.hasTimedOut()) {
        sif::info << "Starting thermal control operations" << std::endl;
        internalState = InternalState::READY;
        break;
      }
      return;
    }
    case InternalState::READY: {
      break;
    }
    default:
      break;
  }

  if (cycles == 50) {
    bool changedLimits = false;
#if LOWER_SYRLINKS_UPPER_LIMITS == 1
    changedLimits = true;
    sBandTransceiverLimits.cutOffLimit = 0;
    sBandTransceiverLimits.opUpperLimit = 0;
    sBandTransceiverLimits.nopUpperLimit = 0;
#endif
#if LOWER_PLOC_UPPER_LIMITS == 1
    changedLimits = true;
    plocMissionBoardLimits.cutOffLimit = 0;
    plocMissionBoardLimits.opUpperLimit = 0;
    plocMissionBoardLimits.nopUpperLimit = 0;
#endif
#if LOWER_EBAND_UPPER_LIMITS == 1
    changedLimits = true;
    hpaLimits.cutOffLimit = 0;
    hpaLimits.opUpperLimit = 0;
    hpaLimits.nopUpperLimit = 0;
#endif
    if (changedLimits) {
      sif::debug << "ThermalController: changing limits" << std::endl;  // TODO: rausschmeissen
    }
  }

  {
    PoolReadGuard pg(&sensorTemperatures);
    if (pg.getReadResult() == returnvalue::OK) {
      copySensors();
    }
  }
  {
    PoolReadGuard pg(&susTemperatures);
    if (pg.getReadResult() == returnvalue::OK) {
      copySus();
    }
  }
  {
    PoolReadGuard pg(&deviceTemperatures);
    if (pg.getReadResult() == returnvalue::OK) {
      copyDevices();
    }
  }

  HeaterSwitchStates heaterSwitchStateArray{};
  heaterHandler.getAllSwitchStates(heaterSwitchStateArray);
  {
    PoolReadGuard pg(&heaterInfo);
    std::memcpy(heaterInfo.heaterSwitchState.value, heaterStates.data(), 8);
    {
      PoolReadGuard pg2(&currentVecPdu2);
      if (pg.getReadResult() == returnvalue::OK and pg2.getReadResult() == returnvalue::OK) {
        heaterInfo.heaterCurrent.value = currentVecPdu2.value[PDU2::Channels::TCS_HEATER_IN];
      }
    }
  }

  if (transitionToOff) {
    for (const auto& switchState : heaterSwitchStateArray) {
      if (switchState != HeaterHandler::SwitchState::OFF) {
        transitionToOffCycles++;
        // if heater still ON after 10 cycles, switch OFF again
        if (transitionToOffCycles == 10) {
          for (uint8_t i; i < heater::Switchers::NUMBER_OF_SWITCHES; i++) {
            heaterHandler.switchHeater(static_cast<heater::Switchers>(i),
                                       HeaterHandler::SwitchState::OFF);
          }
          triggerEvent(tcsCtrl::HEATER_NOT_OFF_FOR_OFF_MODE);
        }
        return;
      }
      setMode(MODE_OFF);
    }
  } else if (mode != MODE_OFF) {
    performThermalModuleCtrl(heaterSwitchStateArray);
  }
  cycles++;
}

ReturnValue_t ThermalController::initializeLocalDataPool(localpool::DataPool& localDataPoolMap,
                                                         LocalDataPoolManager& poolManager) {
  localDataPoolMap.emplace(tcsCtrl::SENSOR_PLOC_HEATSPREADER, new PoolEntry<float>({0.0}));
  localDataPoolMap.emplace(tcsCtrl::SENSOR_PLOC_MISSIONBOARD, new PoolEntry<float>({1.0}));
  localDataPoolMap.emplace(tcsCtrl::SENSOR_4K_CAMERA, new PoolEntry<float>({2.0}));
  localDataPoolMap.emplace(tcsCtrl::SENSOR_DAC_HEATSPREADER, new PoolEntry<float>({3.0}));
  localDataPoolMap.emplace(tcsCtrl::SENSOR_STARTRACKER, new PoolEntry<float>({4.0}));
  localDataPoolMap.emplace(tcsCtrl::SENSOR_RW1, new PoolEntry<float>({5.0}));
  localDataPoolMap.emplace(tcsCtrl::SENSOR_DRO, new PoolEntry<float>({6.0}));
  localDataPoolMap.emplace(tcsCtrl::SENSOR_SCEX, new PoolEntry<float>({7.0}));
  localDataPoolMap.emplace(tcsCtrl::SENSOR_X8, new PoolEntry<float>({8.0}));
  localDataPoolMap.emplace(tcsCtrl::SENSOR_HPA, new PoolEntry<float>({9.0}));
  localDataPoolMap.emplace(tcsCtrl::SENSOR_TX_MODUL, new PoolEntry<float>({10.0}));
  localDataPoolMap.emplace(tcsCtrl::SENSOR_MPA, new PoolEntry<float>({11.0}));
  localDataPoolMap.emplace(tcsCtrl::SENSOR_ACU, new PoolEntry<float>({12.0}));
  localDataPoolMap.emplace(tcsCtrl::SENSOR_PLPCDU_HEATSPREADER, new PoolEntry<float>({13.0}));
  localDataPoolMap.emplace(tcsCtrl::SENSOR_TCS_BOARD, new PoolEntry<float>({14.0}));
  localDataPoolMap.emplace(tcsCtrl::SENSOR_MAGNETTORQUER, new PoolEntry<float>({15.0}));
  localDataPoolMap.emplace(tcsCtrl::SENSOR_TMP1075_TCS_0, &tmp1075Tcs0);
  localDataPoolMap.emplace(tcsCtrl::SENSOR_TMP1075_TCS_1, &tmp1075Tcs1);
  localDataPoolMap.emplace(tcsCtrl::SENSOR_TMP1075_PLPCDU_0, &tmp1075PlPcdu0);
  localDataPoolMap.emplace(tcsCtrl::SENSOR_TMP1075_PLPCDU_1, &tmp1075PlPcdu1);
  localDataPoolMap.emplace(tcsCtrl::SENSOR_TMP1075_IF_BOARD, &tmp1075IfBrd);

  localDataPoolMap.emplace(tcsCtrl::SUS_0_N_LOC_XFYFZM_PT_XF, new PoolEntry<float>({0.0}));
  localDataPoolMap.emplace(tcsCtrl::SUS_6_R_LOC_XFYBZM_PT_XF, new PoolEntry<float>({0.0}));
  localDataPoolMap.emplace(tcsCtrl::SUS_1_N_LOC_XBYFZM_PT_XB, new PoolEntry<float>({0.0}));
  localDataPoolMap.emplace(tcsCtrl::SUS_7_R_LOC_XBYBZM_PT_XB, new PoolEntry<float>({0.0}));
  localDataPoolMap.emplace(tcsCtrl::SUS_2_N_LOC_XFYBZB_PT_YB, new PoolEntry<float>({0.0}));
  localDataPoolMap.emplace(tcsCtrl::SUS_8_R_LOC_XBYBZB_PT_YB, new PoolEntry<float>({0.0}));
  localDataPoolMap.emplace(tcsCtrl::SUS_3_N_LOC_XFYBZF_PT_YF, new PoolEntry<float>({0.0}));
  localDataPoolMap.emplace(tcsCtrl::SUS_9_R_LOC_XBYBZB_PT_YF, new PoolEntry<float>({0.0}));
  localDataPoolMap.emplace(tcsCtrl::SUS_4_N_LOC_XMYFZF_PT_ZF, new PoolEntry<float>({0.0}));
  localDataPoolMap.emplace(tcsCtrl::SUS_10_N_LOC_XMYBZF_PT_ZF, new PoolEntry<float>({0.0}));
  localDataPoolMap.emplace(tcsCtrl::SUS_5_N_LOC_XFYMZB_PT_ZB, new PoolEntry<float>({0.0}));
  localDataPoolMap.emplace(tcsCtrl::SUS_11_R_LOC_XBYMZB_PT_ZB, new PoolEntry<float>({0.0}));

  localDataPoolMap.emplace(tcsCtrl::COMPONENT_RW, new PoolEntry<float>({0.0}));

  localDataPoolMap.emplace(tcsCtrl::TEMP_Q7S, new PoolEntry<float>({0.0}));
  localDataPoolMap.emplace(tcsCtrl::BATTERY_TEMP_1, new PoolEntry<int16_t>({0}));
  localDataPoolMap.emplace(tcsCtrl::BATTERY_TEMP_2, new PoolEntry<int16_t>({0}));
  localDataPoolMap.emplace(tcsCtrl::BATTERY_TEMP_3, new PoolEntry<int16_t>({0}));
  localDataPoolMap.emplace(tcsCtrl::BATTERY_TEMP_4, new PoolEntry<int16_t>({0}));
  localDataPoolMap.emplace(tcsCtrl::TEMP_RW1, new PoolEntry<int32_t>({0}));
  localDataPoolMap.emplace(tcsCtrl::TEMP_RW2, new PoolEntry<int32_t>({0}));
  localDataPoolMap.emplace(tcsCtrl::TEMP_RW3, new PoolEntry<int32_t>({0}));
  localDataPoolMap.emplace(tcsCtrl::TEMP_RW4, new PoolEntry<int32_t>({0}));
  localDataPoolMap.emplace(tcsCtrl::TEMP_STAR_TRACKER, new PoolEntry<float>({0.0}));
  localDataPoolMap.emplace(tcsCtrl::TEMP_SYRLINKS_POWER_AMPLIFIER, new PoolEntry<float>({0}));
  localDataPoolMap.emplace(tcsCtrl::TEMP_SYRLINKS_BASEBAND_BOARD, new PoolEntry<float>({0}));
  localDataPoolMap.emplace(tcsCtrl::TEMP_MGT, new PoolEntry<int16_t>({0}));
  localDataPoolMap.emplace(tcsCtrl::TEMP_ACU, new PoolEntry<float>({0}));
  localDataPoolMap.emplace(tcsCtrl::TEMP_PDU1, new PoolEntry<float>({0}));
  localDataPoolMap.emplace(tcsCtrl::TEMP_PDU2, new PoolEntry<float>({0}));
  localDataPoolMap.emplace(tcsCtrl::TEMP_1_P60DOCK, new PoolEntry<float>({0}));
  localDataPoolMap.emplace(tcsCtrl::TEMP_2_P60DOCK, new PoolEntry<float>({0}));
  localDataPoolMap.emplace(tcsCtrl::TEMP_GYRO_0_SIDE_A, new PoolEntry<float>({0.0}));
  localDataPoolMap.emplace(tcsCtrl::TEMP_GYRO_1_SIDE_A, new PoolEntry<float>({0.0}));
  localDataPoolMap.emplace(tcsCtrl::TEMP_GYRO_2_SIDE_B, new PoolEntry<float>({0.0}));
  localDataPoolMap.emplace(tcsCtrl::TEMP_GYRO_3_SIDE_B, new PoolEntry<float>({0.0}));
  localDataPoolMap.emplace(tcsCtrl::TEMP_MGM_0_SIDE_A, new PoolEntry<float>({0.0}));
  localDataPoolMap.emplace(tcsCtrl::TEMP_MGM_2_SIDE_B, new PoolEntry<float>({0.0}));
  localDataPoolMap.emplace(tcsCtrl::TEMP_ADC_PAYLOAD_PCDU, new PoolEntry<float>({0.0}));
  localDataPoolMap.emplace(tcsCtrl::HEATER_SWITCH_LIST, &heaterSwitchStates);
  localDataPoolMap.emplace(tcsCtrl::HEATER_CURRENT, &heaterCurrent);

  bool enableHkSets = false;
#if OBSW_ENABLE_PERIODIC_HK == 1
  enableHkSets = true;
#endif
  poolManager.subscribeForRegularPeriodicPacket(
      subdp::RegularHkPeriodicParams(sensorTemperatures.getSid(), enableHkSets, 60.0));
  poolManager.subscribeForRegularPeriodicPacket(
      subdp::RegularHkPeriodicParams(susTemperatures.getSid(), enableHkSets, 60.0));
  poolManager.subscribeForRegularPeriodicPacket(
      subdp::RegularHkPeriodicParams(deviceTemperatures.getSid(), enableHkSets, 60.0));
  poolManager.subscribeForDiagPeriodicPacket(
      subdp::DiagnosticsHkPeriodicParams(heaterInfo.getSid(), enableHkSets, 30.0));

  return returnvalue::OK;
}

LocalPoolDataSetBase* ThermalController::getDataSetHandle(sid_t sid) {
  switch (sid.ownerSetId) {
    case tcsCtrl::SENSOR_TEMPERATURES:
      return &sensorTemperatures;
    case tcsCtrl::SUS_TEMPERATURES:
      return &susTemperatures;
    case tcsCtrl::DEVICE_TEMPERATURES:
      return &deviceTemperatures;
    case tcsCtrl::HEATER_SET:
      return &heaterInfo;
    default:
      return nullptr;
  }
}

ReturnValue_t ThermalController::checkModeCommand(Mode_t mode, Submode_t submode,
                                                  uint32_t* msToReachTheMode) {
  if (submode != SUBMODE_NONE) {
    return INVALID_SUBMODE;
  }
  if ((mode != MODE_OFF) && (mode != MODE_ON) && (mode != MODE_NORMAL)) {
    return INVALID_MODE;
  }
  return returnvalue::OK;
}

void ThermalController::copySensors() {
  {
    PoolReadGuard pg0(&maxSet0PlocHspd, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg0.getReadResult() == returnvalue::OK) {
      sensorTemperatures.plocHeatspreader.value = maxSet0PlocHspd.temperatureCelcius.value;
      sensorTemperatures.plocHeatspreader.setValid(maxSet0PlocHspd.temperatureCelcius.isValid());
      if (not sensorTemperatures.plocHeatspreader.isValid()) {
        sensorTemperatures.plocHeatspreader.value = INVALID_TEMPERATURE;
      }
    }
  }

  {
    PoolReadGuard pg1(&maxSet1PlocMissionBrd, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg1.getReadResult() == returnvalue::OK) {
      sensorTemperatures.plocMissionboard.value = maxSet1PlocMissionBrd.temperatureCelcius.value;
      sensorTemperatures.plocMissionboard.setValid(
          maxSet1PlocMissionBrd.temperatureCelcius.isValid());
      if (not sensorTemperatures.plocMissionboard.isValid()) {
        sensorTemperatures.plocMissionboard.value = INVALID_TEMPERATURE;
      }
    }
  }

  {
    PoolReadGuard pg2(&maxSet2PlCam, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg2.getReadResult() == returnvalue::OK) {
      sensorTemperatures.payload4kCamera.value = maxSet2PlCam.temperatureCelcius.value;
      sensorTemperatures.payload4kCamera.setValid(maxSet2PlCam.temperatureCelcius.isValid());
      if (not sensorTemperatures.payload4kCamera.isValid()) {
        sensorTemperatures.payload4kCamera.value = INVALID_TEMPERATURE;
      }
    }
  }

  {
    PoolReadGuard pg3(&maxSet3DacHspd, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg3.getReadResult() == returnvalue::OK) {
      sensorTemperatures.dacHeatspreader.value = maxSet3DacHspd.temperatureCelcius.value;
      sensorTemperatures.dacHeatspreader.setValid(maxSet3DacHspd.temperatureCelcius.isValid());
      if (not sensorTemperatures.dacHeatspreader.isValid()) {
        sensorTemperatures.dacHeatspreader.value = INVALID_TEMPERATURE;
      }
    }
  }

  {
    PoolReadGuard pg4(&maxSet4Str, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg4.getReadResult() == returnvalue::OK) {
      sensorTemperatures.startracker.value = maxSet4Str.temperatureCelcius.value;
      sensorTemperatures.startracker.setValid(maxSet4Str.temperatureCelcius.isValid());
      if (not sensorTemperatures.startracker.isValid()) {
        sensorTemperatures.startracker.value = INVALID_TEMPERATURE;
      }
    }
  }

  {
    PoolReadGuard pg5(&maxSet5Rw1MxMy, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg5.getReadResult() == returnvalue::OK) {
      sensorTemperatures.rw1.value = maxSet5Rw1MxMy.temperatureCelcius.value;
      sensorTemperatures.rw1.setValid(maxSet5Rw1MxMy.temperatureCelcius.isValid());
      if (not sensorTemperatures.rw1.isValid()) {
        sensorTemperatures.rw1.value = INVALID_TEMPERATURE;
      }
    }
  }

  {
    PoolReadGuard pg6(&maxSet6Dro, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg6.getReadResult() == returnvalue::OK) {
      sensorTemperatures.dro.value = maxSet6Dro.temperatureCelcius.value;
      sensorTemperatures.dro.setValid(maxSet6Dro.temperatureCelcius.isValid());
      if (not sensorTemperatures.dro.isValid()) {
        sensorTemperatures.dro.value = INVALID_TEMPERATURE;
      }
    }
  }

  {
    PoolReadGuard pg7(&maxSet7Scex, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg7.getReadResult() == returnvalue::OK) {
      sensorTemperatures.scex.value = maxSet7Scex.temperatureCelcius.value;
      sensorTemperatures.scex.setValid(maxSet7Scex.temperatureCelcius.isValid());
      if (not sensorTemperatures.scex.isValid()) {
        sensorTemperatures.scex.value = INVALID_TEMPERATURE;
      }
    }
  }

  {
    PoolReadGuard pg8(&maxSet8X8, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg8.getReadResult() == returnvalue::OK) {
      sensorTemperatures.x8.value = maxSet8X8.temperatureCelcius.value;
      sensorTemperatures.x8.setValid(maxSet8X8.temperatureCelcius.isValid());
      if (not sensorTemperatures.x8.isValid()) {
        sensorTemperatures.x8.value = INVALID_TEMPERATURE;
      }
    }
  }

  {
    PoolReadGuard pg9(&maxSet9Hpa, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg9.getReadResult() == returnvalue::OK) {
      sensorTemperatures.hpa.value = maxSet9Hpa.temperatureCelcius.value;
      sensorTemperatures.hpa.setValid(maxSet9Hpa.temperatureCelcius.isValid());
      if (not sensorTemperatures.hpa.isValid()) {
        sensorTemperatures.hpa.value = INVALID_TEMPERATURE;
      }
    }
  }

  {
    PoolReadGuard pg10(&maxSet10EbandTx, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg10.getReadResult() == returnvalue::OK) {
      sensorTemperatures.eBandTx.value = maxSet10EbandTx.temperatureCelcius.value;
      sensorTemperatures.eBandTx.setValid(maxSet10EbandTx.temperatureCelcius.isValid());
      if (not sensorTemperatures.eBandTx.isValid()) {
        sensorTemperatures.eBandTx.value = INVALID_TEMPERATURE;
      }
    }
  }

  {
    PoolReadGuard pg11(&maxSet11Mpa, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg11.getReadResult() == returnvalue::OK) {
      sensorTemperatures.mpa.value = maxSet11Mpa.temperatureCelcius.value;
      sensorTemperatures.mpa.setValid(maxSet11Mpa.temperatureCelcius.isValid());
      if (not sensorTemperatures.mpa.isValid()) {
        sensorTemperatures.mpa.value = INVALID_TEMPERATURE;
      }
    }
  }

  {
    PoolReadGuard pg12(&maxSet31865Set12, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg12.getReadResult() == returnvalue::OK) {
      sensorTemperatures.acu.value = maxSet31865Set12.temperatureCelcius.value;
      sensorTemperatures.acu.setValid(maxSet31865Set12.temperatureCelcius.isValid());
      if (not sensorTemperatures.acu.isValid()) {
        sensorTemperatures.acu.value = INVALID_TEMPERATURE;
      }
    }
  }

  {
    PoolReadGuard pg13(&maxSet13PlPcduHspd, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg13.getReadResult() == returnvalue::OK) {
      sensorTemperatures.plpcduHeatspreader.value = maxSet13PlPcduHspd.temperatureCelcius.value;
      sensorTemperatures.plpcduHeatspreader.setValid(
          maxSet13PlPcduHspd.temperatureCelcius.isValid());
      if (not sensorTemperatures.plpcduHeatspreader.isValid()) {
        sensorTemperatures.plpcduHeatspreader.value = INVALID_TEMPERATURE;
      }
    }
  }

  {
    PoolReadGuard pg14(&maxSet14TcsBrd, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg14.getReadResult() == returnvalue::OK) {
      sensorTemperatures.tcsBoard.value = maxSet14TcsBrd.temperatureCelcius.value;
      sensorTemperatures.tcsBoard.setValid(maxSet14TcsBrd.temperatureCelcius.isValid());
      if (not sensorTemperatures.tcsBoard.isValid()) {
        sensorTemperatures.tcsBoard.value = INVALID_TEMPERATURE;
      }
    }
  }

  {
    PoolReadGuard pg15(&maxSet15Imtq, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg15.getReadResult() == returnvalue::OK) {
      sensorTemperatures.mgt.value = maxSet15Imtq.temperatureCelcius.value;
      sensorTemperatures.mgt.setValid(maxSet15Imtq.temperatureCelcius.isValid());
      if (not sensorTemperatures.mgt.isValid()) {
        sensorTemperatures.mgt.value = INVALID_TEMPERATURE;
      }
    }
  }

  {
    PoolReadGuard pg(&tmp1075SetTcs0, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg.getReadResult() == returnvalue::OK) {
      sensorTemperatures.tmp1075Tcs0.value = tmp1075SetTcs0.temperatureCelcius.value;
      sensorTemperatures.tmp1075Tcs0.setValid(tmp1075SetTcs0.temperatureCelcius.isValid());
      if (not tmp1075SetTcs0.temperatureCelcius.isValid()) {
        sensorTemperatures.tmp1075Tcs0.value = INVALID_TEMPERATURE;
      }
    }
  }

  {
    PoolReadGuard pg(&tmp1075SetTcs1, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg.getReadResult() == returnvalue::OK) {
      sensorTemperatures.tmp1075Tcs1.value = tmp1075SetTcs1.temperatureCelcius.value;
      sensorTemperatures.tmp1075Tcs1.setValid(tmp1075SetTcs1.temperatureCelcius.isValid());
      if (not tmp1075SetTcs1.temperatureCelcius.isValid()) {
        sensorTemperatures.tmp1075Tcs1.value = INVALID_TEMPERATURE;
      }
    }
  }
  {
    PoolReadGuard pg(&tmp1075SetPlPcdu0, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg.getReadResult() == returnvalue::OK) {
      sensorTemperatures.tmp1075PlPcdu0.value = tmp1075SetPlPcdu0.temperatureCelcius.value;
      sensorTemperatures.tmp1075PlPcdu0.setValid(tmp1075SetPlPcdu0.temperatureCelcius.isValid());
      if (not tmp1075SetPlPcdu0.temperatureCelcius.isValid()) {
        sensorTemperatures.tmp1075PlPcdu0.value = INVALID_TEMPERATURE;
      }
    }
  }
  // damaged
  /*
  {
    PoolReadGuard pg(&tmp1075SetPlPcdu1, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg.getReadResult() == returnvalue::OK) {
      sensorTemperatures.tmp1075PlPcdu1.value = tmp1075SetPlPcdu1.temperatureCelcius.value;
      sensorTemperatures.tmp1075PlPcdu1.setValid(tmp1075SetPlPcdu1.temperatureCelcius.isValid());
      if (not tmp1075SetPlPcdu1.temperatureCelcius.isValid()) {
        sensorTemperatures.tmp1075PlPcdu1.value = INVALID_TEMPERATURE;
      }
    }
  }
  */
  {
    PoolReadGuard pg(&tmp1075SetIfBoard, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg.getReadResult() == returnvalue::OK) {
      sensorTemperatures.tmp1075IfBrd.value = tmp1075SetIfBoard.temperatureCelcius.value;
      sensorTemperatures.tmp1075IfBrd.setValid(tmp1075SetIfBoard.temperatureCelcius.isValid());
      if (not tmp1075SetIfBoard.temperatureCelcius.isValid()) {
        sensorTemperatures.tmp1075IfBrd.value = INVALID_TEMPERATURE;
      }
    }
  }
}

void ThermalController::copySus() {
  {
    PoolReadGuard pg0(&susSet0, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg0.getReadResult() == returnvalue::OK) {
      susTemperatures.sus_0_n_loc_xfyfzm_pt_xf.value = susSet0.tempC.value;
      susTemperatures.sus_0_n_loc_xfyfzm_pt_xf.setValid(susSet0.tempC.isValid());
      if (not susTemperatures.sus_0_n_loc_xfyfzm_pt_xf.isValid()) {
        susTemperatures.sus_0_n_loc_xfyfzm_pt_xf.value = INVALID_TEMPERATURE;
      }
    }
  }

  {
    PoolReadGuard pg1(&susSet1, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg1.getReadResult() == returnvalue::OK) {
      susTemperatures.sus_6_r_loc_xfybzm_pt_xf.value = susSet1.tempC.value;
      susTemperatures.sus_6_r_loc_xfybzm_pt_xf.setValid(susSet1.tempC.isValid());
      if (not susTemperatures.sus_6_r_loc_xfybzm_pt_xf.isValid()) {
        susTemperatures.sus_6_r_loc_xfybzm_pt_xf.value = INVALID_TEMPERATURE;
      }
    }
  }

  {
    PoolReadGuard pg2(&susSet2, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg2.getReadResult() == returnvalue::OK) {
      susTemperatures.sus_1_n_loc_xbyfzm_pt_xb.value = susSet2.tempC.value;
      susTemperatures.sus_1_n_loc_xbyfzm_pt_xb.setValid(susSet2.tempC.isValid());
      if (not susTemperatures.sus_1_n_loc_xbyfzm_pt_xb.isValid()) {
        susTemperatures.sus_1_n_loc_xbyfzm_pt_xb.value = INVALID_TEMPERATURE;
      }
    }
  }

  {
    PoolReadGuard pg3(&susSet3, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg3.getReadResult() == returnvalue::OK) {
      susTemperatures.sus_7_r_loc_xbybzm_pt_xb.value = susSet3.tempC.value;
      susTemperatures.sus_7_r_loc_xbybzm_pt_xb.setValid(susSet3.tempC.isValid());
      if (not susTemperatures.sus_7_r_loc_xbybzm_pt_xb.isValid()) {
        susTemperatures.sus_7_r_loc_xbybzm_pt_xb.value = INVALID_TEMPERATURE;
      }
    }
  }

  {
    PoolReadGuard pg4(&susSet4, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg4.getReadResult() == returnvalue::OK) {
      susTemperatures.sus_2_n_loc_xfybzb_pt_yb.value = susSet4.tempC.value;
      susTemperatures.sus_2_n_loc_xfybzb_pt_yb.setValid(susSet4.tempC.isValid());
      if (not susTemperatures.sus_2_n_loc_xfybzb_pt_yb.isValid()) {
        susTemperatures.sus_2_n_loc_xfybzb_pt_yb.value = INVALID_TEMPERATURE;
      }
    }
  }

  {
    PoolReadGuard pg5(&susSet5, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg5.getReadResult() == returnvalue::OK) {
      susTemperatures.sus_8_r_loc_xbybzb_pt_yb.value = susSet5.tempC.value;
      susTemperatures.sus_8_r_loc_xbybzb_pt_yb.setValid(susSet5.tempC.isValid());
      if (not susTemperatures.sus_8_r_loc_xbybzb_pt_yb.isValid()) {
        susTemperatures.sus_8_r_loc_xbybzb_pt_yb.value = INVALID_TEMPERATURE;
      }
    }
  }

  {
    PoolReadGuard pg6(&susSet6, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg6.getReadResult() == returnvalue::OK) {
      susTemperatures.sus_3_n_loc_xfybzf_pt_yf.value = susSet6.tempC.value;
      susTemperatures.sus_3_n_loc_xfybzf_pt_yf.setValid(susSet6.tempC.isValid());
      if (not susTemperatures.sus_3_n_loc_xfybzf_pt_yf.isValid()) {
        susTemperatures.sus_3_n_loc_xfybzf_pt_yf.value = INVALID_TEMPERATURE;
      }
    }
  }

  {
    PoolReadGuard pg7(&susSet7, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg7.getReadResult() == returnvalue::OK) {
      susTemperatures.sus_9_r_loc_xbybzb_pt_yf.value = susSet7.tempC.value;
      susTemperatures.sus_9_r_loc_xbybzb_pt_yf.setValid(susSet7.tempC.isValid());
      if (not susTemperatures.sus_9_r_loc_xbybzb_pt_yf.isValid()) {
        susTemperatures.sus_9_r_loc_xbybzb_pt_yf.value = INVALID_TEMPERATURE;
      }
    }
  }

  {
    PoolReadGuard pg8(&susSet8, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg8.getReadResult() == returnvalue::OK) {
      susTemperatures.sus_4_n_loc_xmyfzf_pt_zf.value = susSet8.tempC.value;
      susTemperatures.sus_4_n_loc_xmyfzf_pt_zf.setValid(susSet8.tempC.isValid());
      if (not susTemperatures.sus_4_n_loc_xmyfzf_pt_zf.isValid()) {
        susTemperatures.sus_4_n_loc_xmyfzf_pt_zf.value = INVALID_TEMPERATURE;
      }
    }
  }

  {
    PoolReadGuard pg9(&susSet9, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg9.getReadResult() == returnvalue::OK) {
      susTemperatures.sus_10_n_loc_xmybzf_pt_zf.value = susSet9.tempC.value;
      susTemperatures.sus_10_n_loc_xmybzf_pt_zf.setValid(susSet9.tempC.isValid());
      if (not susTemperatures.sus_10_n_loc_xmybzf_pt_zf.isValid()) {
        susTemperatures.sus_10_n_loc_xmybzf_pt_zf.value = INVALID_TEMPERATURE;
      }
    }
  }

  {
    PoolReadGuard pg10(&susSet10, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg10.getReadResult() == returnvalue::OK) {
      susTemperatures.sus_5_n_loc_xfymzb_pt_zb.value = susSet10.tempC.value;
      susTemperatures.sus_5_n_loc_xfymzb_pt_zb.setValid(susSet10.tempC.isValid());
      if (not susTemperatures.sus_5_n_loc_xfymzb_pt_zb.isValid()) {
        susTemperatures.sus_5_n_loc_xfymzb_pt_zb.value = INVALID_TEMPERATURE;
      }
    }
  }

  {
    PoolReadGuard pg11(&susSet11, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg11.getReadResult() == returnvalue::OK) {
      susTemperatures.sus_11_r_loc_xbymzb_pt_zb.value = susSet11.tempC.value;
      susTemperatures.sus_11_r_loc_xbymzb_pt_zb.setValid(susSet11.tempC.isValid());
      if (not susTemperatures.sus_11_r_loc_xbymzb_pt_zb.isValid()) {
        susTemperatures.sus_11_r_loc_xbymzb_pt_zb.value = INVALID_TEMPERATURE;
      }
    }
  }
}

void ThermalController::copyDevices() {
  {
    PoolReadGuard pg(&tempQ7s, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg.getReadResult() == returnvalue::OK) {
      deviceTemperatures.q7s = tempQ7s;
      deviceTemperatures.q7s.setValid(tempQ7s.isValid());
    } else {
      deviceTemperatures.q7s.setValid(false);
      deviceTemperatures.q7s = static_cast<float>(INVALID_TEMPERATURE);
    }
  }

  {
    PoolReadGuard pg(&battTemp1, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg.getReadResult() != returnvalue::OK) {
      sif::warning << "ThermalController: Failed to read battery temperature 1" << std::endl;
      deviceTemperatures.batteryTemp1.setValid(false);
      deviceTemperatures.batteryTemp1 = static_cast<float>(INVALID_TEMPERATURE);
    } else {
      deviceTemperatures.batteryTemp1 = battTemp1;
      deviceTemperatures.batteryTemp1.setValid(battTemp1.isValid());
    }
  }

  {
    PoolReadGuard pg(&battTemp2, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg.getReadResult() != returnvalue::OK) {
      sif::warning << "ThermalController: Failed to read battery temperature 2" << std::endl;
      deviceTemperatures.batteryTemp2.setValid(false);
      deviceTemperatures.batteryTemp2 = static_cast<float>(INVALID_TEMPERATURE);
    } else {
      deviceTemperatures.batteryTemp2 = battTemp2;
      deviceTemperatures.batteryTemp2.setValid(battTemp2.isValid());
    }
  }

  {
    PoolReadGuard pg(&battTemp3, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg.getReadResult() != returnvalue::OK) {
      sif::warning << "ThermalController: Failed to read battery temperature 3" << std::endl;
      deviceTemperatures.batteryTemp3.setValid(false);
      deviceTemperatures.batteryTemp3 = static_cast<float>(INVALID_TEMPERATURE);
    } else {
      deviceTemperatures.batteryTemp3 = battTemp3;
      deviceTemperatures.batteryTemp3.setValid(battTemp3.isValid());
    }
  }

  {
    PoolReadGuard pg(&battTemp4, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg.getReadResult() != returnvalue::OK) {
      sif::warning << "ThermalController: Failed to read battery temperature 4" << std::endl;
      deviceTemperatures.batteryTemp4.setValid(false);
      deviceTemperatures.batteryTemp4 = static_cast<float>(INVALID_TEMPERATURE);
    } else {
      deviceTemperatures.batteryTemp4 = battTemp4;
      deviceTemperatures.batteryTemp4.setValid(battTemp4.isValid());
    }
  }

  {
    PoolReadGuard pg(&tempRw1, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg.getReadResult() != returnvalue::OK) {
      sif::warning << "ThermalController: Failed to read reaction wheel 1 temperature" << std::endl;
      deviceTemperatures.rw1.setValid(false);
      deviceTemperatures.rw1 = static_cast<int32_t>(INVALID_TEMPERATURE);
    } else {
      deviceTemperatures.rw1.setValid(tempRw1.isValid());
      deviceTemperatures.rw1 = tempRw1;
    }
  }

  {
    PoolReadGuard pg(&tempRw2, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg.getReadResult() != returnvalue::OK) {
      sif::warning << "ThermalController: Failed to read reaction wheel 2 temperature" << std::endl;
      deviceTemperatures.rw2.setValid(false);
      deviceTemperatures.rw2 = static_cast<int32_t>(INVALID_TEMPERATURE);
    } else {
      deviceTemperatures.rw2.setValid(tempRw2.isValid());
      deviceTemperatures.rw2 = tempRw2;
    }
  }

  {
    PoolReadGuard pg(&tempRw3, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg.getReadResult() != returnvalue::OK) {
      sif::warning << "ThermalController: Failed to read reaction wheel 3 temperature" << std::endl;
      deviceTemperatures.rw3.setValid(false);
      deviceTemperatures.rw3 = static_cast<int32_t>(INVALID_TEMPERATURE);
    } else {
      deviceTemperatures.rw3.setValid(tempRw3.isValid());
      deviceTemperatures.rw3 = tempRw3;
    }
  }

  {
    PoolReadGuard pg(&tempRw4, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg.getReadResult() != returnvalue::OK) {
      sif::warning << "ThermalController: Failed to read reaction wheel 4 temperature" << std::endl;
      deviceTemperatures.rw4.setValid(false);
      deviceTemperatures.rw4 = static_cast<int32_t>(INVALID_TEMPERATURE);
    } else {
      deviceTemperatures.rw4.setValid(tempRw4.isValid());
      deviceTemperatures.rw4 = tempRw4;
    }
  }

  {
    PoolReadGuard pg(&tempStartracker, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg.getReadResult() != returnvalue::OK) {
      sif::warning << "ThermalController: Failed to read startracker temperature" << std::endl;
      deviceTemperatures.startracker.setValid(false);
      deviceTemperatures.startracker = static_cast<float>(INVALID_TEMPERATURE);
    } else {
      deviceTemperatures.startracker.setValid(tempStartracker.isValid());
      deviceTemperatures.startracker = tempStartracker;
    }
  }

  {
    PoolReadGuard pg(&tempSyrlinksPowerAmplifier, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg.getReadResult() != returnvalue::OK) {
      sif::warning << "ThermalController: Failed to read syrlinks power amplifier temperature"
                   << std::endl;
      deviceTemperatures.syrlinksPowerAmplifier.setValid(false);
      deviceTemperatures.syrlinksPowerAmplifier = static_cast<float>(INVALID_TEMPERATURE);
    } else {
      deviceTemperatures.syrlinksPowerAmplifier.setValid(tempSyrlinksPowerAmplifier.isValid());
      deviceTemperatures.syrlinksPowerAmplifier = tempSyrlinksPowerAmplifier;
    }
  }

  {
    PoolReadGuard pg(&tempSyrlinksBasebandBoard, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg.getReadResult() != returnvalue::OK) {
      sif::warning << "ThermalController: Failed to read syrlinks baseband board temperature"
                   << std::endl;
      deviceTemperatures.syrlinksBasebandBoard.setValid(false);
      deviceTemperatures.syrlinksBasebandBoard = static_cast<float>(INVALID_TEMPERATURE);
    } else {
      deviceTemperatures.syrlinksBasebandBoard.setValid(tempSyrlinksBasebandBoard.isValid());
      deviceTemperatures.syrlinksBasebandBoard = tempSyrlinksBasebandBoard;
    }
  }

  {
    PoolReadGuard pg(&tempMgt, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg.getReadResult() != returnvalue::OK) {
      sif::warning << "ThermalController: Failed to read MGT temperature" << std::endl;
      deviceTemperatures.mgt.setValid(false);
      deviceTemperatures.mgt = static_cast<int16_t>(INVALID_TEMPERATURE);
    } else {
      deviceTemperatures.mgt.setValid(tempMgt.isValid());
      deviceTemperatures.mgt = tempMgt;
    }
  }

  {
    PoolReadGuard pg(&tempAcu, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg.getReadResult() != returnvalue::OK) {
      sif::warning << "ThermalController: Failed to read ACU temperatures" << std::endl;
      deviceTemperatures.acu.setValid(false);
      deviceTemperatures.acu[0] = static_cast<float>(INVALID_TEMPERATURE);
      deviceTemperatures.acu[1] = static_cast<float>(INVALID_TEMPERATURE);
      deviceTemperatures.acu[2] = static_cast<float>(INVALID_TEMPERATURE);
    } else {
      deviceTemperatures.acu.setValid(tempAcu.isValid());
      deviceTemperatures.acu = tempAcu;
    }
  }

  {
    PoolReadGuard pg(&tempPdu1, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg.getReadResult() != returnvalue::OK) {
      sif::warning << "ThermalController: Failed to read PDU1 temperature" << std::endl;
      deviceTemperatures.pdu1.setValid(false);
      deviceTemperatures.pdu1 = static_cast<float>(INVALID_TEMPERATURE);
    } else {
      deviceTemperatures.pdu1.setValid(tempPdu1.isValid());
      deviceTemperatures.pdu1 = tempPdu1;
    }
  }

  {
    PoolReadGuard pg(&tempPdu2, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg.getReadResult() != returnvalue::OK) {
      sif::warning << "ThermalController: Failed to read PDU2 temperature" << std::endl;
      deviceTemperatures.pdu2.setValid(false);
      deviceTemperatures.pdu2 = static_cast<float>(INVALID_TEMPERATURE);
    } else {
      deviceTemperatures.pdu2.setValid(tempPdu2.isValid());
      deviceTemperatures.pdu2 = tempPdu2;
    }
  }

  {
    PoolReadGuard pg(&temp1P60dock, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg.getReadResult() != returnvalue::OK) {
      sif::warning << "ThermalController: Failed to read P60 dock temperature 1" << std::endl;
      deviceTemperatures.temp1P60dock.setValid(false);
      deviceTemperatures.temp1P60dock = static_cast<float>(INVALID_TEMPERATURE);
    } else {
      deviceTemperatures.temp1P60dock.setValid(temp1P60dock.isValid());
      deviceTemperatures.temp1P60dock = temp1P60dock;
    }
  }

  {
    PoolReadGuard pg(&temp2P60dock, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg.getReadResult() != returnvalue::OK) {
      sif::warning << "ThermalController: Failed to read P60 dock temperature 2" << std::endl;
      deviceTemperatures.temp2P60dock.setValid(false);
      deviceTemperatures.temp2P60dock = static_cast<float>(INVALID_TEMPERATURE);
    } else {
      deviceTemperatures.temp2P60dock.setValid(temp2P60dock.isValid());
      deviceTemperatures.temp2P60dock = temp2P60dock;
    }
  }

  {
    PoolReadGuard pg(&tempGyro0, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg.getReadResult() != returnvalue::OK) {
      sif::warning << "ThermalController: Failed to read gyro 0 temperature" << std::endl;
      deviceTemperatures.gyro0SideA.setValid(false);
      deviceTemperatures.gyro0SideA = static_cast<float>(INVALID_TEMPERATURE);
    } else {
      deviceTemperatures.gyro0SideA.setValid(tempGyro0.isValid());
      deviceTemperatures.gyro0SideA = tempGyro0;
    }
  }

  {
    PoolReadGuard pg(&tempGyro1, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg.getReadResult() != returnvalue::OK) {
      sif::warning << "ThermalController: Failed to read gyro 1 temperature" << std::endl;
      deviceTemperatures.gyro1SideA.setValid(false);
      deviceTemperatures.gyro1SideA = static_cast<float>(INVALID_TEMPERATURE);
    } else {
      deviceTemperatures.gyro1SideA.setValid(tempGyro1.isValid());
      deviceTemperatures.gyro1SideA = tempGyro1;
    }
  }

  {
    PoolReadGuard pg(&tempGyro2, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg.getReadResult() != returnvalue::OK) {
      sif::warning << "ThermalController: Failed to read gyro 2 temperature" << std::endl;
      deviceTemperatures.gyro2SideB.setValid(false);
      deviceTemperatures.gyro2SideB = static_cast<float>(INVALID_TEMPERATURE);
    } else {
      deviceTemperatures.gyro2SideB.setValid(tempGyro2.isValid());
      deviceTemperatures.gyro2SideB = tempGyro2;
    }
  }

  {
    PoolReadGuard pg(&tempGyro3, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg.getReadResult() != returnvalue::OK) {
      sif::warning << "ThermalController: Failed to read gyro 3 temperature" << std::endl;
      deviceTemperatures.gyro3SideB.setValid(false);
      deviceTemperatures.gyro3SideB = static_cast<float>(INVALID_TEMPERATURE);
    } else {
      deviceTemperatures.gyro3SideB.setValid(tempGyro3.isValid());
      deviceTemperatures.gyro3SideB = tempGyro3;
    }
  }

  {
    PoolReadGuard pg(&tempMgm0, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg.getReadResult() != returnvalue::OK) {
      sif::warning << "ThermalController: Failed to read MGM 0 temperature" << std::endl;
      deviceTemperatures.mgm0SideA.setValid(false);
      deviceTemperatures.mgm0SideA = static_cast<float>(INVALID_TEMPERATURE);
    } else {
      deviceTemperatures.mgm0SideA.setValid(tempMgm0.isValid());
      deviceTemperatures.mgm0SideA = tempMgm0;
    }
  }

  {
    PoolReadGuard pg(&tempMgm2, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg.getReadResult() != returnvalue::OK) {
      sif::warning << "ThermalController: Failed to read MGM 2 temperature" << std::endl;
      deviceTemperatures.mgm2SideB.setValid(false);
      deviceTemperatures.mgm2SideB = static_cast<float>(INVALID_TEMPERATURE);
    } else {
      deviceTemperatures.mgm2SideB.setValid(tempMgm2.isValid());
      deviceTemperatures.mgm2SideB = tempMgm2;
    }
  }

  {
    PoolReadGuard pg(&tempAdcPayloadPcdu, MutexIF::TimeoutType::WAITING, MUTEX_TIMEOUT);
    if (pg.getReadResult() != returnvalue::OK) {
      sif::warning << "ThermalController: Failed to read payload PCDU ADC temperature" << std::endl;
      deviceTemperatures.adcPayloadPcdu.setValid(false);
      deviceTemperatures.adcPayloadPcdu = static_cast<float>(INVALID_TEMPERATURE);
    } else {
      deviceTemperatures.adcPayloadPcdu.setValid(tempAdcPayloadPcdu.isValid());
      deviceTemperatures.adcPayloadPcdu = tempAdcPayloadPcdu;
    }
  }
}

void ThermalController::ctrlAcsBoard() {
  heater::Switchers switchNr = heater::HEATER_2_ACS_BRD;
  heater::Switchers redSwitchNr = heater::HEATER_0_OBC_BRD;

  // A side
  thermalComponent = ACS_BOARD;
  sensors[0].first = deviceTemperatures.gyro0SideA.isValid();
  sensors[0].second = deviceTemperatures.gyro0SideA.value;
  sensors[1].first = deviceTemperatures.gyro2SideB.isValid();
  sensors[1].second = deviceTemperatures.gyro2SideB.value;
  sensors[2].first = deviceTemperatures.mgm0SideA.isValid();
  sensors[2].second = deviceTemperatures.mgm0SideA.value;
  sensors[3].first = deviceTemperatures.mgm2SideB.isValid();
  sensors[3].second = deviceTemperatures.mgm2SideB.value;
  sensors[4].first = sensorTemperatures.tcsBoard.isValid();
  sensors[4].second = sensorTemperatures.tcsBoard.value;
  numSensors = 5;
  if (selectAndReadSensorTemp()) {
    if (chooseHeater(switchNr, redSwitchNr)) {
      HeaterContext htrCtx(switchNr, redSwitchNr, acsBoardLimits);
      checkLimitsAndCtrlHeater(htrCtx);
    }
    resetSensorsArray();
    return;
  }
  resetSensorsArray();
  // B side
  sensors[0].first = deviceTemperatures.gyro2SideB.isValid();
  sensors[0].second = deviceTemperatures.gyro2SideB.value;
  sensors[1].first = deviceTemperatures.mgm2SideB.isValid();
  sensors[1].second = deviceTemperatures.mgm2SideB.value;
  sensors[2].first = deviceTemperatures.gyro3SideB.isValid();
  sensors[2].second = deviceTemperatures.gyro3SideB.value;
  sensors[3].first = sensorTemperatures.tcsBoard.isValid();
  sensors[3].second = sensorTemperatures.tcsBoard.value;
  numSensors = 4;
  if (selectAndReadSensorTemp()) {
    if (chooseHeater(switchNr, redSwitchNr)) {
      HeaterContext htrCtx(switchNr, redSwitchNr, acsBoardLimits);
      checkLimitsAndCtrlHeater(htrCtx);
    }
  } else {
    if (chooseHeater(switchNr, redSwitchNr)) {
      if (heaterHandler.getSwitchState(switchNr)) {
        heaterHandler.switchHeater(switchNr, HeaterHandler::SwitchState::OFF);
      }
    }
  }
  resetSensorsArray();
}

void ThermalController::ctrlMgt() {
  thermalComponent = MGT;
  sensors[0].first = sensorTemperatures.mgt.isValid();
  sensors[0].second = sensorTemperatures.mgt.value;
  sensors[1].first = deviceTemperatures.mgt.isValid();
  sensors[1].second = deviceTemperatures.mgt.value;
  sensors[2].first = sensorTemperatures.plpcduHeatspreader.isValid();
  sensors[2].second = sensorTemperatures.plpcduHeatspreader.value;
  numSensors = 3;
  HeaterContext htrCtx(heater::HEATER_2_ACS_BRD, heater::HEATER_3_PCDU_PDU, mgtLimits);
  ctrlComponentTemperature(htrCtx);
  // TODO: trigger special event
}

void ThermalController::ctrlRw() {
  Event eventToTrigger = 0;
  bool oneIsAboveLimit = false;

  std::array<uint32_t, 4> sensorTemps{};

  // RW1
  thermalComponent = RW;
  sensors[0].first = sensorTemperatures.rw1.isValid();
  sensors[0].second = sensorTemperatures.rw1.value;
  sensors[1].first = deviceTemperatures.rw1.isValid();
  sensors[1].second = deviceTemperatures.rw1.value;
  sensors[2].first = deviceTemperatures.rw4.isValid();
  sensors[2].second = deviceTemperatures.rw4.value;
  sensors[3].first = sensorTemperatures.dro.isValid();
  sensors[3].second = sensorTemperatures.dro.value;
  numSensors = 4;
  {
    HeaterContext htrCtx(heater::HEATER_6_DRO, heater::HEATER_6_DRO, rwLimits);
    ctrlComponentTemperature(htrCtx);
    sensorTemps[0] = tempFloatToU32();
    if (componentAboveUpperLimit) {
      oneIsAboveLimit = true;
      eventToTrigger = overHeatEventToTrigger;
    }
  }

  // RW2
  thermalComponent = RW;
  sensors[0].first = deviceTemperatures.rw2.isValid();
  sensors[0].second = deviceTemperatures.rw2.value;
  sensors[1].first = deviceTemperatures.rw3.isValid();
  sensors[1].second = deviceTemperatures.rw3.value;
  sensors[2].first = sensorTemperatures.rw1.isValid();
  sensors[2].second = sensorTemperatures.rw1.value;
  sensors[3].first = sensorTemperatures.dro.isValid();
  sensors[3].second = sensorTemperatures.dro.value;
  numSensors = 4;
  {
    HeaterContext htrCtx(heater::HEATER_6_DRO, heater::HEATER_6_DRO, rwLimits);
    ctrlComponentTemperature(htrCtx);
    sensorTemps[1] = tempFloatToU32();
    if (componentAboveUpperLimit) {
      oneIsAboveLimit = true;
      if (eventToTrigger != ThermalComponentIF::COMPONENT_TEMP_OOL_HIGH) {
        eventToTrigger = overHeatEventToTrigger;
      }
    }
  }
  // RW3
  thermalComponent = RW;
  sensors[0].first = deviceTemperatures.rw3.isValid();
  sensors[0].second = deviceTemperatures.rw3.value;
  sensors[1].first = deviceTemperatures.rw4.isValid();
  sensors[1].second = deviceTemperatures.rw4.value;
  sensors[2].first = sensorTemperatures.rw1.isValid();
  sensors[2].second = sensorTemperatures.rw1.value;
  sensors[3].first = sensorTemperatures.dro.isValid();
  sensors[3].second = sensorTemperatures.dro.value;
  numSensors = 4;
  {
    HeaterContext htrCtx(heater::HEATER_6_DRO, heater::HEATER_6_DRO, rwLimits);
    ctrlComponentTemperature(htrCtx);
    sensorTemps[2] = tempFloatToU32();
    if (componentAboveUpperLimit) {
      oneIsAboveLimit = true;
      if (eventToTrigger != ThermalComponentIF::COMPONENT_TEMP_OOL_HIGH) {
        eventToTrigger = overHeatEventToTrigger;
      }
    }
  }

  // RW4
  thermalComponent = RW;
  sensors[0].first = deviceTemperatures.rw4.isValid();
  sensors[0].second = deviceTemperatures.rw4.value;
  sensors[1].first = deviceTemperatures.rw1.isValid();
  sensors[1].second = deviceTemperatures.rw1.value;
  sensors[2].first = sensorTemperatures.rw1.isValid();
  sensors[2].second = sensorTemperatures.rw1.value;
  sensors[3].first = sensorTemperatures.dro.isValid();
  sensors[3].second = sensorTemperatures.dro.value;
  numSensors = 4;
  {
    HeaterContext htrCtx(heater::HEATER_6_DRO, heater::HEATER_6_DRO, rwLimits);
    ctrlComponentTemperature(htrCtx);
    sensorTemps[3] = tempFloatToU32();
    if (componentAboveUpperLimit) {
      oneIsAboveLimit = true;
      if (eventToTrigger != ThermalComponentIF::COMPONENT_TEMP_OOL_HIGH) {
        eventToTrigger = overHeatEventToTrigger;
      }
    }
  }

  if (oneIsAboveLimit and not rwTooHotFlag) {
    EventManagerIF::triggerEvent(objects::RW1, eventToTrigger, sensorTemps[0]);
    EventManagerIF::triggerEvent(objects::RW2, eventToTrigger, sensorTemps[1]);
    EventManagerIF::triggerEvent(objects::RW3, eventToTrigger, sensorTemps[2]);
    EventManagerIF::triggerEvent(objects::RW4, eventToTrigger, sensorTemps[3]);
    rwTooHotFlag = true;
  } else if (not oneIsAboveLimit) {
    rwTooHotFlag = false;
  }
}

void ThermalController::ctrlStr() {
  thermalComponent = STR;
  sensors[0].first = sensorTemperatures.startracker.isValid();
  sensors[0].second = sensorTemperatures.startracker.value;
  sensors[1].first = deviceTemperatures.startracker.isValid();
  sensors[1].second = deviceTemperatures.startracker.value;
  sensors[2].first = sensorTemperatures.dro.isValid();
  sensors[2].second = sensorTemperatures.dro.value;
  numSensors = 3;
  HeaterContext htrCtx(heater::HEATER_5_STR, heater::HEATER_6_DRO, strLimits);
  ctrlComponentTemperature(htrCtx);
  tooHotHandlerWhichClearsOneShotFlag(objects::STAR_TRACKER, strTooHotFlag);
}

void ThermalController::ctrlIfBoard() {
  thermalComponent = IF_BOARD;
  sensors[0].first = sensorTemperatures.tmp1075IfBrd.isValid();
  sensors[0].second = sensorTemperatures.tmp1075IfBrd.value;
  sensors[1].first = sensorTemperatures.mgt.isValid();
  sensors[1].second = sensorTemperatures.mgt.value;
  sensors[2].first = deviceTemperatures.mgm2SideB.isValid();
  sensors[2].second = deviceTemperatures.mgm2SideB.value;
  numSensors = 3;
  HeaterContext htrCtx(heater::HEATER_2_ACS_BRD, heater::HEATER_3_PCDU_PDU, ifBoardLimits);
  ctrlComponentTemperature(htrCtx);
  // TODO: special event overheating + could go back to safe mode
}

void ThermalController::ctrlTcsBoard() {
  thermalComponent = TCS_BOARD;
  sensors[0].first = sensorTemperatures.tcsBoard.isValid();
  sensors[0].second = sensorTemperatures.tcsBoard.value;
  sensors[1].first = sensorTemperatures.tmp1075Tcs0.isValid();
  sensors[1].second = sensorTemperatures.tmp1075Tcs0.value;
  sensors[2].first = sensorTemperatures.tmp1075Tcs1.isValid();
  sensors[2].second = sensorTemperatures.tmp1075Tcs1.value;
  numSensors = 3;
  HeaterContext htrCtx(heater::HEATER_0_OBC_BRD, heater::HEATER_2_ACS_BRD, tcsBoardLimits);
  ctrlComponentTemperature(htrCtx);
  // TODO: special event overheating + could go back to safe mode
}

void ThermalController::ctrlObc() {
  thermalComponent = OBC;
  sensors[0].first = deviceTemperatures.q7s.isValid();
  sensors[0].second = deviceTemperatures.q7s.value;
  sensors[1].first = sensorTemperatures.tmp1075Tcs1.isValid();
  sensors[1].second = sensorTemperatures.tmp1075Tcs1.value;
  sensors[2].first = sensorTemperatures.tmp1075Tcs0.isValid();
  sensors[2].second = sensorTemperatures.tmp1075Tcs0.value;
  numSensors = 3;
  HeaterContext htrCtx(heater::HEATER_0_OBC_BRD, heater::HEATER_2_ACS_BRD, obcLimits);
  ctrlComponentTemperature(htrCtx);
  if (componentAboveUpperLimit and not obcTooHotFlag) {
    triggerEvent(tcsCtrl::OBC_OVERHEATING, tempFloatToU32());
    obcTooHotFlag = true;
  } else if (not componentAboveUpperLimit) {
    obcTooHotFlag = false;
  }
}

void ThermalController::ctrlObcIfBoard() {
  thermalComponent = OBCIF_BOARD;
  sensors[0].first = deviceTemperatures.q7s.isValid();
  sensors[0].second = deviceTemperatures.q7s.value;
  sensors[1].first = sensorTemperatures.tmp1075Tcs0.isValid();
  sensors[1].second = sensorTemperatures.tmp1075Tcs0.value;
  sensors[2].first = sensorTemperatures.tmp1075Tcs1.isValid();
  sensors[2].second = sensorTemperatures.tmp1075Tcs1.value;
  numSensors = 3;
  HeaterContext htrCtx(heater::HEATER_0_OBC_BRD, heater::HEATER_2_ACS_BRD, obcIfBoardLimits);
  ctrlComponentTemperature(htrCtx);
  if (componentAboveUpperLimit and not obcTooHotFlag) {
    triggerEvent(tcsCtrl::OBC_OVERHEATING, tempFloatToU32());
    obcTooHotFlag = true;
  } else if (not componentAboveUpperLimit) {
    obcTooHotFlag = false;  // TODO: !!
  }
}

void ThermalController::ctrlSBandTransceiver() {
  thermalComponent = SBAND_TRANSCEIVER;
  sensors[0].first = deviceTemperatures.syrlinksPowerAmplifier.isValid();
  sensors[0].second = deviceTemperatures.syrlinksPowerAmplifier.value;
  sensors[1].first = deviceTemperatures.syrlinksBasebandBoard.isValid();
  sensors[1].second = deviceTemperatures.syrlinksBasebandBoard.value;
  sensors[2].first = sensorTemperatures.payload4kCamera.isValid();
  sensors[2].second = sensorTemperatures.payload4kCamera.value;
  numSensors = 3;
  HeaterContext htrCtx(heater::HEATER_7_S_BAND, heater::HEATER_4_CAMERA, sBandTransceiverLimits);
  ctrlComponentTemperature(htrCtx);
  if (componentAboveUpperLimit and not syrlinksTooHotFlag) {
    triggerEvent(tcsCtrl::SYRLINKS_OVERHEATING, tempFloatToU32());
    syrlinksTooHotFlag = true;
  } else if (not componentAboveUpperLimit) {
    syrlinksTooHotFlag = false;
  }
}
void ThermalController::ctrlPcduP60Board() {
  thermalComponent = PCDUP60_BOARD;
  sensors[0].first = deviceTemperatures.temp1P60dock.isValid();
  sensors[0].second = deviceTemperatures.temp1P60dock.value;
  sensors[1].first = deviceTemperatures.temp2P60dock.isValid();
  sensors[1].second = deviceTemperatures.temp2P60dock.value;
  numSensors = 2;
  HeaterContext htrCtx(heater::HEATER_3_PCDU_PDU, heater::HEATER_2_ACS_BRD, pcduP60BoardLimits);
  ctrlComponentTemperature(htrCtx);
  if (componentAboveUpperLimit and not pcduSystemTooHotFlag) {
    triggerEvent(tcsCtrl::PCDU_SYSTEM_OVERHEATING, tempFloatToU32());
    pcduSystemTooHotFlag = true;
  } else if (not componentAboveUpperLimit) {
    pcduSystemTooHotFlag = false;
  }  // TODO: !
}

void ThermalController::ctrlPcduAcu() {
  thermalComponent = PCDUACU;
  heater::Switchers switchNr = heater::HEATER_3_PCDU_PDU;
  heater::Switchers redSwitchNr = heater::HEATER_2_ACS_BRD;

  if (chooseHeater(switchNr, redSwitchNr)) {
    bool sensorTempAvailable = true;
    // TODO: check
    if (deviceTemperatures.acu.value[0] != INVALID_TEMPERATURE) {
      sensorTemp = deviceTemperatures.acu.value[0];
    } else if (deviceTemperatures.acu.value[1] != INVALID_TEMPERATURE) {
      sensorTemp = deviceTemperatures.acu.value[1];
    } else if (deviceTemperatures.acu.value[2] != INVALID_TEMPERATURE) {
      sensorTemp = deviceTemperatures.acu.value[2];
    } else if (sensorTemperatures.acu.isValid()) {
      sensorTemp = sensorTemperatures.acu.value;
    } else {
      triggerEvent(tcsCtrl::NO_VALID_SENSOR_TEMPERATURE, thermalComponent);
      sensorTempAvailable = false;
    }
    if (sensorTempAvailable) {
      HeaterContext htrCtx(switchNr, redSwitchNr, pcduAcuLimits);
      checkLimitsAndCtrlHeater(htrCtx);
    }
  }
  if (componentAboveUpperLimit and not pcduSystemTooHotFlag) {
    triggerEvent(tcsCtrl::PCDU_SYSTEM_OVERHEATING, tempFloatToU32());
    pcduSystemTooHotFlag = true;
  } else if (not componentAboveUpperLimit) {
    pcduSystemTooHotFlag = false;
  }
}

void ThermalController::ctrlPcduPdu() {
  thermalComponent = PCDUPDU;
  sensors[0].first = deviceTemperatures.pdu1.isValid();
  sensors[0].second = deviceTemperatures.pdu1.value;
  sensors[1].first = deviceTemperatures.pdu2.isValid();
  sensors[1].second = deviceTemperatures.pdu2.value;
  sensors[2].first = sensorTemperatures.tmp1075Tcs0.isValid();
  sensors[2].second = sensorTemperatures.tmp1075Tcs0.value;
  numSensors = 3;
  HeaterContext htrCtx(heater::HEATER_3_PCDU_PDU, heater::HEATER_2_ACS_BRD, pcduPduLimits);
  ctrlComponentTemperature(htrCtx);
  if (componentAboveUpperLimit and not pcduSystemTooHotFlag) {
    triggerEvent(tcsCtrl::PCDU_SYSTEM_OVERHEATING, tempFloatToU32());
    pcduSystemTooHotFlag = true;
  } else if (not componentAboveUpperLimit) {
    pcduSystemTooHotFlag = false;
  }
}

void ThermalController::ctrlPlPcduBoard() {
  thermalComponent = PLPCDU_BOARD;
  sensors[0].first = sensorTemperatures.tmp1075PlPcdu0.isValid();
  sensors[0].second = sensorTemperatures.tmp1075PlPcdu0.value;
  sensors[1].first = sensorTemperatures.tmp1075PlPcdu1.isValid();
  sensors[1].second = sensorTemperatures.tmp1075PlPcdu1.value;
  sensors[2].first = deviceTemperatures.adcPayloadPcdu.isValid();
  sensors[2].second = deviceTemperatures.adcPayloadPcdu.value;
  sensors[3].first = sensorTemperatures.plpcduHeatspreader.isValid();
  sensors[3].second = sensorTemperatures.plpcduHeatspreader.value;
  numSensors = 4;
  HeaterContext htrCtx(heater::HEATER_3_PCDU_PDU, heater::HEATER_2_ACS_BRD, plPcduBoardLimits);
  ctrlComponentTemperature(htrCtx);
  tooHotHandler(objects::PLPCDU_HANDLER, eBandTooHotFlag);
}

void ThermalController::ctrlPlocMissionBoard() {
  thermalComponent = PLOCMISSION_BOARD;
  sensors[0].first = sensorTemperatures.plocHeatspreader.isValid();
  sensors[0].second = sensorTemperatures.plocHeatspreader.value;
  sensors[1].first = sensorTemperatures.plocMissionboard.isValid();
  sensors[1].second = sensorTemperatures.plocMissionboard.value;
  sensors[2].first = sensorTemperatures.dacHeatspreader.isValid();
  sensors[2].second = sensorTemperatures.dacHeatspreader.value;
  numSensors = 3;
  HeaterContext htrCtx(heater::HEATER_1_PLOC_PROC_BRD, heater::HEATER_0_OBC_BRD,
                       plocMissionBoardLimits);
  ctrlComponentTemperature(htrCtx);
  tooHotHandler(objects::PLOC_SUPERVISOR_HANDLER, plocTooHotFlag);
}

void ThermalController::ctrlPlocProcessingBoard() {
  thermalComponent = PLOCPROCESSING_BOARD;
  sensors[0].first = sensorTemperatures.plocMissionboard.isValid();
  sensors[0].second = sensorTemperatures.plocMissionboard.value;
  sensors[1].first = sensorTemperatures.plocHeatspreader.isValid();
  sensors[1].second = sensorTemperatures.plocHeatspreader.value;
  sensors[2].first = sensorTemperatures.dacHeatspreader.isValid();
  sensors[2].second = sensorTemperatures.dacHeatspreader.value;
  numSensors = 3;
  HeaterContext htrCtx(heater::HEATER_1_PLOC_PROC_BRD, heater::HEATER_0_OBC_BRD,
                       plocProcessingBoardLimits);
  ctrlComponentTemperature(htrCtx);
  tooHotHandler(objects::PLOC_SUPERVISOR_HANDLER, plocTooHotFlag);
}

void ThermalController::ctrlDac() {
  thermalComponent = DAC;
  sensors[0].first = sensorTemperatures.dacHeatspreader.isValid();
  sensors[0].second = sensorTemperatures.dacHeatspreader.value;
  sensors[1].first = sensorTemperatures.plocMissionboard.isValid();
  sensors[1].second = sensorTemperatures.plocMissionboard.value;
  sensors[2].first = sensorTemperatures.plocHeatspreader.isValid();
  sensors[2].second = sensorTemperatures.plocHeatspreader.value;
  numSensors = 3;
  HeaterContext htrCtx(heater::HEATER_1_PLOC_PROC_BRD, heater::HEATER_0_OBC_BRD, dacLimits);
  ctrlComponentTemperature(htrCtx);
  tooHotHandler(objects::PLPCDU_HANDLER, eBandTooHotFlag);
}

void ThermalController::ctrlCameraBody() {
  thermalComponent = CAMERA;
  sensors[0].first = sensorTemperatures.payload4kCamera.isValid();
  sensors[0].second = sensorTemperatures.payload4kCamera.value;
  sensors[1].first = sensorTemperatures.dro.isValid();
  sensors[1].second = sensorTemperatures.dro.value;
  sensors[2].first = sensorTemperatures.mpa.isValid();
  sensors[2].second = sensorTemperatures.mpa.value;
  numSensors = 3;
  HeaterContext htrCtx(heater::HEATER_4_CAMERA, heater::HEATER_6_DRO, cameraLimits);
  ctrlComponentTemperature(htrCtx);
  if (componentAboveUpperLimit and not camTooHotOneShotFlag) {
    triggerEvent(tcsCtrl::CAMERA_OVERHEATING, tempFloatToU32());
    CommandMessage msg;
    HealthMessage::setHealthMessage(&msg, HealthMessage::HEALTH_SET, HealthState::FAULTY);
    ReturnValue_t result = commandQueue->sendMessage(camId, &msg);
    if (result != returnvalue::OK) {
      sif::error << "ThermalController::ctrlCameraBody(): Sending health message failed"
                 << std::endl;
    }
    camTooHotOneShotFlag = true;
  } else if (not componentAboveUpperLimit) {
    camTooHotOneShotFlag = false;
  }
}

void ThermalController::ctrlDro() {
  thermalComponent = DRO;
  sensors[0].first = sensorTemperatures.dro.isValid();
  sensors[0].second = sensorTemperatures.dro.value;
  sensors[1].first = sensorTemperatures.payload4kCamera.isValid();
  sensors[1].second = sensorTemperatures.payload4kCamera.value;
  sensors[2].first = sensorTemperatures.mpa.isValid();
  sensors[2].second = sensorTemperatures.mpa.value;
  numSensors = 3;
  HeaterContext htrCtx(heater::HEATER_6_DRO, heater::HEATER_4_CAMERA, droLimits);
  ctrlComponentTemperature(htrCtx);
  tooHotHandler(objects::PLPCDU_HANDLER, eBandTooHotFlag);
}

void ThermalController::ctrlX8() {
  thermalComponent = X8;
  sensors[0].first = sensorTemperatures.x8.isValid();
  sensors[0].second = sensorTemperatures.x8.value;
  sensors[1].first = sensorTemperatures.hpa.isValid();
  sensors[1].second = sensorTemperatures.hpa.value;
  sensors[2].first = sensorTemperatures.eBandTx.isValid();
  sensors[2].second = sensorTemperatures.eBandTx.value;
  numSensors = 3;
  HeaterContext htrCtx(heater::HEATER_6_DRO, heater::HEATER_4_CAMERA, x8Limits);
  ctrlComponentTemperature(htrCtx);
  tooHotHandler(objects::PLPCDU_HANDLER, eBandTooHotFlag);
}

void ThermalController::ctrlTx() {
  thermalComponent = TX;
  sensors[0].first = sensorTemperatures.eBandTx.isValid();
  sensors[0].second = sensorTemperatures.eBandTx.value;
  sensors[1].first = sensorTemperatures.x8.isValid();
  sensors[1].second = sensorTemperatures.x8.value;
  sensors[2].first = sensorTemperatures.mpa.isValid();
  sensors[2].second = sensorTemperatures.mpa.value;
  numSensors = 3;
  HeaterContext htrCtx(heater::HEATER_6_DRO, heater::HEATER_4_CAMERA, txLimits);
  ctrlComponentTemperature(htrCtx);
  tooHotHandler(objects::PLPCDU_HANDLER, eBandTooHotFlag);
}

void ThermalController::ctrlMpa() {
  thermalComponent = MPA;
  sensors[0].first = sensorTemperatures.mpa.isValid();
  sensors[0].second = sensorTemperatures.mpa.value;
  sensors[1].first = sensorTemperatures.hpa.isValid();
  sensors[1].second = sensorTemperatures.hpa.value;
  sensors[2].first = sensorTemperatures.eBandTx.isValid();
  sensors[2].second = sensorTemperatures.eBandTx.value;
  numSensors = 3;
  HeaterContext htrCtx(heater::HEATER_6_DRO, heater::HEATER_4_CAMERA, mpaLimits);
  ctrlComponentTemperature(htrCtx);
  tooHotHandler(objects::PLPCDU_HANDLER, eBandTooHotFlag);
}

void ThermalController::ctrlHpa() {
  thermalComponent = HPA;
  sensors[0].first = sensorTemperatures.hpa.isValid();
  sensors[0].second = sensorTemperatures.hpa.value;
  sensors[1].first = sensorTemperatures.x8.isValid();
  sensors[1].second = sensorTemperatures.x8.value;
  sensors[2].first = sensorTemperatures.mpa.isValid();
  sensors[2].second = sensorTemperatures.mpa.value;
  numSensors = 3;
  HeaterContext htrCtx(heater::HEATER_6_DRO, heater::HEATER_4_CAMERA, hpaLimits);
  ctrlComponentTemperature(htrCtx);
  tooHotHandler(objects::PLPCDU_HANDLER, eBandTooHotFlag);
}

void ThermalController::ctrlScexBoard() {
  thermalComponent = SCEX_BOARD;
  sensors[0].first = sensorTemperatures.scex.isValid();
  sensors[0].second = sensorTemperatures.scex.value;
  sensors[1].first = sensorTemperatures.x8.isValid();
  sensors[1].second = sensorTemperatures.x8.value;
  sensors[2].first = sensorTemperatures.hpa.isValid();
  sensors[2].second = sensorTemperatures.hpa.value;
  numSensors = 3;
  HeaterContext htrCtx(heater::HEATER_6_DRO, heater::HEATER_5_STR, scexBoardLimits);
  ctrlComponentTemperature(htrCtx);
  tooHotHandlerWhichClearsOneShotFlag(objects::SCEX, scexTooHotFlag);
}

void ThermalController::performThermalModuleCtrl(const HeaterSwitchStates& heaterSwitchStates) {
  ctrlAcsBoard();
  ctrlMgt();
  ctrlRw();
  ctrlStr();
  ctrlIfBoard();
  ctrlTcsBoard();
  ctrlObc();
  ctrlObcIfBoard();
  ctrlSBandTransceiver();
  ctrlPcduP60Board();
  ctrlPcduAcu();
  ctrlPcduPdu();

  // Payload components
  std::array<bool, 2> plocInAllowedRange{};
  ctrlPlocMissionBoard();
  plocInAllowedRange.at(0) = not componentAboveUpperLimit;
  ctrlPlocProcessingBoard();
  plocInAllowedRange.at(1) = not componentAboveUpperLimit;

  if (plocTooHotFlag) {
    bool clearFlag = true;
    for (const auto& inRange : plocInAllowedRange) {
      if (not inRange) {
        clearFlag = false;
      }
    }
    if (clearFlag) {
      plocTooHotFlag = false;
    }
  }
  ctrlCameraBody();
  ctrlScexBoard();

  // E-Band
  std::array<bool, 7> eBandInAllowedRange{};
  ctrlPlPcduBoard();
  eBandInAllowedRange.at(0) = not componentAboveUpperLimit;
  ctrlDac();
  eBandInAllowedRange.at(1) = not componentAboveUpperLimit;
  ctrlDro();
  eBandInAllowedRange.at(2) = not componentAboveUpperLimit;
  ctrlX8();
  eBandInAllowedRange.at(3) = not componentAboveUpperLimit;
  ctrlHpa();
  eBandInAllowedRange.at(4) = not componentAboveUpperLimit;
  ctrlTx();
  eBandInAllowedRange.at(5) = not componentAboveUpperLimit;
  ctrlMpa();
  eBandInAllowedRange.at(6) = not componentAboveUpperLimit;

  if (eBandTooHotFlag) {
    bool clearFlag = true;
    for (const auto& inRange : eBandInAllowedRange) {
      if (not inRange) {
        clearFlag = false;
      }
    }
    if (clearFlag) {
      eBandTooHotFlag = false;
    }
  }

  heaterTransitionControl(heaterSwitchStates);
}
void ThermalController::ctrlComponentTemperature(HeaterContext& htrCtx) {
  if (selectAndReadSensorTemp()) {
    if (chooseHeater(htrCtx.switchNr, htrCtx.redSwitchNr)) {
      checkLimitsAndCtrlHeater(htrCtx);
    }
  } else {
    // TODO: muss der Heater dann wirklich abgeschalten werden?
    if (chooseHeater(htrCtx.switchNr, htrCtx.redSwitchNr)) {
      if (heaterHandler.getSwitchState(htrCtx.switchNr)) {
        heaterHandler.switchHeater(htrCtx.switchNr, HeaterHandler::SwitchState::OFF);
      }
    }
  }
  resetSensorsArray();
}
bool ThermalController::selectAndReadSensorTemp() {
  for (unsigned i = 0; i < numSensors; i++) {
    if (sensors[i].first and sensors[i].second != INVALID_TEMPERATURE) {
      sensorTemp = sensors[i].second;
      thermalStates[thermalComponent].errorCounter = 0;
      return true;
    }
  }

  thermalStates[thermalComponent].errorCounter++;
  if (thermalComponent != RW and thermalComponent != ACS_BOARD) {
    if (thermalStates[thermalComponent].errorCounter <= 3) {
      triggerEvent(tcsCtrl::NO_VALID_SENSOR_TEMPERATURE, thermalComponent);
    }
  } else {
    if (thermalStates[thermalComponent].errorCounter <= 8) {
      triggerEvent(tcsCtrl::NO_VALID_SENSOR_TEMPERATURE, thermalComponent);
    }
  }

  return false;
}
bool ThermalController::chooseHeater(heater::Switchers& switchNr, heater::Switchers redSwitchNr) {
  bool heaterAvailable = true;

  if (heaterHandler.getHealth(switchNr) != HasHealthIF::HEALTHY) {
    if (heaterHandler.getHealth(redSwitchNr) == HasHealthIF::HEALTHY) {
      switchNr = redSwitchNr;
      redSwitchNrInUse = true;
    } else {
      heaterAvailable = false;
      triggerEvent(tcsCtrl::NO_HEALTHY_HEATER_AVAILABLE, switchNr, redSwitchNr);
    }
  } else {
    redSwitchNrInUse = false;
  }
  return heaterAvailable;
}

void ThermalController::heaterCtrlTempTooHighHandler(HeaterContext& htrCtx, const char* whatLimit) {
  if (htrCtx.switchState == HeaterHandler::SwitchState::ON) {
    sif::info << "TCS: Component " << static_cast<int>(thermalComponent) << " too warm, above "
              << whatLimit << ", switching off heater" << std::endl;
    heaterHandler.switchHeater(htrCtx.switchNr, HeaterHandler::SwitchState::OFF);
    heaterStates[htrCtx.switchNr].switchTransition = true;
    heaterStates[htrCtx.switchNr].target = HeaterHandler::SwitchState::OFF;
  }
  if (heaterHandler.getSwitchState(htrCtx.redSwitchNr) == HeaterHandler::SwitchState::ON) {
    heaterHandler.switchHeater(htrCtx.redSwitchNr, HeaterHandler::SwitchState::OFF);
    heaterStates[htrCtx.redSwitchNr].switchTransition = true;
    heaterStates[htrCtx.redSwitchNr].target = HeaterHandler::SwitchState::OFF;
  }
}

void ThermalController::checkLimitsAndCtrlHeater(HeaterContext& htrCtx) {
  componentAboveCutOffLimit = false;
  componentAboveUpperLimit = false;
  // Stay passive during switch transitions, wait for heater switching to complete. Otherwise,
  // still check whether components are out of range, which might be important information for the
  // top level control loop.
  if (heaterStates[htrCtx.switchNr].switchTransition) {
    htrCtx.doHeaterHandling = false;
    heaterCtrlCheckUpperLimits(htrCtx);
  } else {
    // Heater off
    htrCtx.switchState = heaterHandler.getSwitchState(htrCtx.switchNr);
    if (htrCtx.switchState == HeaterHandler::SwitchState::OFF) {
      if (sensorTemp < htrCtx.tempLimit.opLowerLimit) {
        heaterHandler.switchHeater(htrCtx.switchNr, HeaterHandler::SwitchState::ON);
        sif::info << "ThermalController::checkLimitsAndCtrlHeater: Heater "
                  << static_cast<int>(thermalComponent) << " ON" << std::endl;
        heaterStates[htrCtx.switchNr].switchTransition = true;
        thermalStates[thermalComponent].heating = true;
        heaterStates[htrCtx.switchNr].target = HeaterHandler::SwitchState::ON;
      } else {
        thermalStates[thermalComponent].heating = false;
      }
      heaterCtrlCheckUpperLimits(htrCtx);
      // Heater on
    } else if (heaterHandler.getSwitchState(htrCtx.switchNr) == HeaterHandler::SwitchState::ON) {
      if (thermalStates[thermalComponent].heating) {
        // We are already in a heating cycle, so need to check whether heating task is complete.
        if (sensorTemp >= htrCtx.tempLimit.opLowerLimit + TEMP_OFFSET) {
          heaterHandler.switchHeater(htrCtx.switchNr, HeaterHandler::SwitchState::OFF);
          sif::info << "ThermalController::checkLimitsAndCtrlHeater: Heater "
                    << static_cast<int>(thermalComponent) << " OFF" << std::endl;
          heaterStates[htrCtx.switchNr].switchTransition = true;
          heaterStates[htrCtx.switchNr].target = HeaterHandler::SwitchState::OFF;
          thermalStates[thermalComponent].heating = false;
        }
      } else {
        // This can happen if heater is used as alternative heater (no regular heating cycle), so we
        // should still check the upper limits.
        bool tooHighHandlerAlreadyCalled = heaterCtrlCheckUpperLimits(htrCtx);
        if (sensorTemp >= htrCtx.tempLimit.cutOffLimit) {
          componentAboveCutOffLimit = true;
          if (not tooHighHandlerAlreadyCalled) {
            heaterCtrlTempTooHighHandler(htrCtx, "CutOff-Limit");
          }
        }
      }
    }
  }
}

bool ThermalController::heaterCtrlCheckUpperLimits(HeaterContext& htrCtx) {
  if (sensorTemp >= htrCtx.tempLimit.nopUpperLimit) {
    componentAboveUpperLimit = true;
    if (htrCtx.doHeaterHandling) {
      heaterCtrlTempTooHighHandler(htrCtx, "NOP-Limit");
    }
    overHeatEventToTrigger = ThermalComponentIF::COMPONENT_TEMP_OOL_HIGH;
    return true;
  } else if (sensorTemp >= htrCtx.tempLimit.opUpperLimit) {
    componentAboveUpperLimit = true;
    if (htrCtx.doHeaterHandling) {
      heaterCtrlTempTooHighHandler(htrCtx, "OP-Limit");
    }
    overHeatEventToTrigger = ThermalComponentIF::COMPONENT_TEMP_HIGH;
    return true;
  }
  return false;
}

void ThermalController::resetSensorsArray() {
  for (auto& validValuePair : sensors) {
    validValuePair.first = false;
    validValuePair.second = INVALID_TEMPERATURE;
  }
  thermalComponent = NONE;
}
void ThermalController::heaterTransitionControl(const HeaterSwitchStates& currentHeaterStates) {
  // TODO: Test
  for (unsigned i = 0; i < 7; i++) {
    if (heaterStates[i].switchTransition) {
      if (currentHeaterStates[i] == heaterStates[i].target) {
        heaterStates[i].switchTransition = false;
        continue;
      }
      if (heaterStates[i].heaterSwitchControlCycles > 3) {
        heaterStates[i].switchTransition = false;
        heaterStates[i].heaterSwitchControlCycles = 0;
      }
      heaterStates[i].heaterSwitchControlCycles++;
    }
  }
}
uint32_t ThermalController::tempFloatToU32() const {
  auto sensorTempAsFloat = static_cast<float>(sensorTemp);
  uint32_t tempRaw = 0;
  size_t dummyLen = 0;
  SerializeAdapter::serialize(&sensorTempAsFloat, reinterpret_cast<uint8_t*>(&tempRaw), &dummyLen,
                              sizeof(tempRaw), SerializeIF::Endianness::NETWORK);
  return tempRaw;
}

void ThermalController::setMode(Mode_t mode) {
  if (mode == MODE_OFF) {
    transitionToOff = false;
  }
  this->mode = mode;
  modeHelper.modeChanged(mode, submode);
  announceMode(false);
}

bool ThermalController::tooHotHandler(object_id_t object, bool& oneShotFlag) {
  if (componentAboveUpperLimit and not oneShotFlag) {
    // Too hot -> returns true
    EventManagerIF::triggerEvent(object, overHeatEventToTrigger, tempFloatToU32());
    oneShotFlag = true;
    return true;
  }
  return false;
}

void ThermalController::tooHotHandlerWhichClearsOneShotFlag(object_id_t object, bool& oneShotFlag) {
  // Clear the one shot flag is the component is in acceptable temperature range.
  if (not tooHotHandler(object, oneShotFlag) and not componentAboveUpperLimit) {
    oneShotFlag = false;
  }
}

void ThermalController::startTransition(Mode_t mode_, Submode_t submode_) {
  triggerEvent(CHANGING_MODE, mode_, submode_);
  if (mode_ == MODE_OFF) {
    for (uint8_t i; i < heater::Switchers::NUMBER_OF_SWITCHES; i++) {
      heaterHandler.switchHeater(static_cast<heater::Switchers>(i),
                                 HeaterHandler::SwitchState::OFF);
    }
    transitionToOff = true;
    transitionToOffCycles = 0;
  } else {
    setMode(mode_);
  }
}