#include "CoreController.h" #include #include #include "OBSWConfig.h" #include "OBSWVersion.h" #include "fsfw/serviceinterface/ServiceInterface.h" #include "fsfw/timemanager/Stopwatch.h" #include "fsfw/version.h" #include "watchdog/definitions.h" #if OBSW_USE_TMTC_TCP_BRIDGE == 0 #include "fsfw/osal/common/UdpTmTcBridge.h" #else #include "fsfw/osal/common/TcpTmTcServer.h" #endif #include #include #include #include #include "bsp_q7s/memory/SdCardManager.h" #include "bsp_q7s/memory/scratchApi.h" #include "bsp_q7s/xadc/Xadc.h" #include "linux/utility/utility.h" xsc::Chip CoreController::CURRENT_CHIP = xsc::Chip::NO_CHIP; xsc::Copy CoreController::CURRENT_COPY = xsc::Copy::NO_COPY; CoreController::CoreController(object_id_t objectId) : ExtendedControllerBase(objectId, objects::NO_OBJECT, 5), opDivider5(5), opDivider10(10), hkSet(this) { ReturnValue_t result = HasReturnvaluesIF::RETURN_OK; try { result = initWatchdogFifo(); if (result != HasReturnvaluesIF::RETURN_OK) { sif::warning << "CoreController::CoreController: Watchdog FIFO init failed" << std::endl; } sdcMan = SdCardManager::instance(); if (sdcMan == nullptr) { sif::error << "CoreController::CoreController: SD card manager invalid!" << std::endl; } if (not BLOCKING_SD_INIT) { sdcMan->setBlocking(false); } sdStateMachine(); result = initBootCopy(); if (result != HasReturnvaluesIF::RETURN_OK) { sif::warning << "CoreController::CoreController: Boot copy init" << std::endl; } } catch (const std::filesystem::filesystem_error &e) { sif::error << "CoreController::CoreController: Failed with exception " << e.what() << std::endl; } sdCardCheckCd.timeOut(); eventQueue = QueueFactory::instance()->createMessageQueue(5, EventMessage::MAX_MESSAGE_SIZE); } ReturnValue_t CoreController::handleCommandMessage(CommandMessage *message) { return ExtendedControllerBase::handleCommandMessage(message); } void CoreController::performControlOperation() { EventMessage event; for (ReturnValue_t result = eventQueue->receiveMessage(&event); result == RETURN_OK; result = eventQueue->receiveMessage(&event)) { switch (event.getEvent()) { case (GpsHyperion::GPS_FIX_CHANGE): { gpsFix = static_cast(event.getParameter2()); break; } } } performWatchdogControlOperation(); sdStateMachine(); performMountedSdCardOperations(); if (sdCardCheckCd.hasTimedOut()) { performSdCardCheck(); sdCardCheckCd.resetTimer(); } readHkData(); opDivider5.checkAndIncrement(); opDivider10.checkAndIncrement(); } ReturnValue_t CoreController::initializeLocalDataPool(localpool::DataPool &localDataPoolMap, LocalDataPoolManager &poolManager) { localDataPoolMap.emplace(core::TEMPERATURE, new PoolEntry({0})); localDataPoolMap.emplace(core::PS_VOLTAGE, new PoolEntry({0})); localDataPoolMap.emplace(core::PL_VOLTAGE, new PoolEntry({0})); poolManager.subscribeForPeriodicPacket(hkSet.getSid(), false, 10.0, false); return HasReturnvaluesIF::RETURN_OK; } LocalPoolDataSetBase *CoreController::getDataSetHandle(sid_t sid) { if (sid.ownerSetId == core::HK_SET_ID) { return &hkSet; } return nullptr; } ReturnValue_t CoreController::initialize() { ReturnValue_t result = ExtendedControllerBase::initialize(); if (result != HasReturnvaluesIF::RETURN_OK) { sif::warning << "CoreController::initialize: Base init failed" << std::endl; } result = scratch::writeNumber(scratch::ALLOC_FAILURE_COUNT, 0); if (result != HasReturnvaluesIF::RETURN_OK) { sif::warning << "CoreController::initialize: Setting up alloc failure " "count failed" << std::endl; } sdStateMachine(); triggerEvent(REBOOT_SW, CURRENT_CHIP, CURRENT_COPY); EventManagerIF *eventManager = ObjectManager::instance()->get(objects::EVENT_MANAGER); if (eventManager == nullptr or eventQueue == nullptr) { sif::warning << "CoreController::initialize: No valid event manager found or " "queue invalid" << std::endl; } result = eventManager->registerListener(eventQueue->getId()); if (result != HasReturnvaluesIF::RETURN_OK) { sif::warning << "CoreController::initialize: Registering as event listener failed" << std::endl; } result = eventManager->subscribeToEvent(eventQueue->getId(), event::getEventId(GpsHyperion::GPS_FIX_CHANGE)); if (result != HasReturnvaluesIF::RETURN_OK) { sif::warning << "Subscribing for GPS GPS_FIX_CHANGE event failed" << std::endl; } return RETURN_OK; } ReturnValue_t CoreController::initializeAfterTaskCreation() { ReturnValue_t result = HasReturnvaluesIF::RETURN_OK; sdInfo.pref = sdcMan->getPreferredSdCard(); sdcMan->setActiveSdCard(sdInfo.pref); currMntPrefix = sdcMan->getCurrentMountPrefix(); if (BLOCKING_SD_INIT) { ReturnValue_t result = initSdCardBlocking(); if (result != HasReturnvaluesIF::RETURN_OK and result != SdCardManager::ALREADY_MOUNTED) { sif::warning << "CoreController::CoreController: SD card init failed" << std::endl; } } sdStateMachine(); performMountedSdCardOperations(); if (result != HasReturnvaluesIF::RETURN_OK) { sif::warning << "CoreController::initialize: Version initialization failed" << std::endl; } // Add script folder to path char *currentEnvPath = getenv("PATH"); std::string updatedEnvPath = std::string(currentEnvPath) + ":/home/root/scripts:/usr/local/bin"; setenv("PATH", updatedEnvPath.c_str(), true); updateProtInfo(); initPrint(); ExtendedControllerBase::initializeAfterTaskCreation(); return result; } ReturnValue_t CoreController::handleAction(SwitchRebootFileHandlingAction *action) { std::string path = sdcMan->getCurrentMountPrefix() + REBOOT_FILE; // Disable the reboot file mechanism parseRebootFile(path, rebootFile); if (action->enableRebootFile == Boolenum::NO) { rebootFile.enabled = false; rewriteRebootFile(rebootFile); } else rebootFile.enabled = true; rewriteRebootFile(rebootFile); } return HasActionsIF::EXECUTION_FINISHED; } ReturnValue_t CoreController::handleAction(ResetRebootCountersAction *action) { if (size == 0) { resetRebootCount(xsc::ALL_CHIP, xsc::ALL_COPY); } else if (size == 2) { if (data[0] > 1 or data[1] > 1) { return HasActionsIF::INVALID_PARAMETERS; } resetRebootCount(static_cast(data[0]), static_cast(data[1])); } return HasActionsIF::EXECUTION_FINISHED; } ReturnValue_t CoreController::handleAction(SwitchImageLockAction *action) { if (size != 3) { return HasActionsIF::INVALID_PARAMETERS; } if (data[1] > 1 or data[2] > 1) { return HasActionsIF::INVALID_PARAMETERS; } setRebootMechanismLock(data[0], static_cast(data[1]), static_cast(data[2])); return HasActionsIF::EXECUTION_FINISHED; } ReturnValue_t CoreController::handleAction(SetMaxRebootCntAction *action) { if (size < 1) { return HasActionsIF::INVALID_PARAMETERS; } std::string path = sdcMan->getCurrentMountPrefix() + REBOOT_FILE; // Disable the reboot file mechanism parseRebootFile(path, rebootFile); rebootFile.maxCount = data[0]; rewriteRebootFile(rebootFile); return HasActionsIF::EXECUTION_FINISHED; } ReturnValue_t CoreController::checkModeCommand(Mode_t mode, Submode_t submode, uint32_t *msToReachTheMode) { return HasReturnvaluesIF::RETURN_OK; } ReturnValue_t CoreController::initSdCardBlocking() { // Create update status file ReturnValue_t result = sdcMan->updateSdCardStateFile(); if (result != HasReturnvaluesIF::RETURN_OK) { sif::warning << "CoreController::initialize: Updating SD card state file failed" << std::endl; } #if Q7S_SD_CARD_CONFIG == Q7S_SD_NONE sif::info << "No SD card initialization will be performed" << std::endl; return HasReturnvaluesIF::RETURN_OK; #else result = sdcMan->getSdCardsStatus(sdInfo.currentState); if (result != HasReturnvaluesIF::RETURN_OK) { sif::warning << "Getting SD card activity status failed" << std::endl; } #if Q7S_SD_CARD_CONFIG == Q7S_SD_COLD_REDUNDANT updateSdInfoOther(); sif::info << "Cold redundant SD card configuration, preferred SD card: " << static_cast(sdInfo.pref) << std::endl; result = sdColdRedundantBlockingInit(); // Update status file sdcMan->updateSdCardStateFile(); return result; #elif Q7S_SD_CARD_CONFIG == Q7S_SD_HOT_REDUNDANT sif::info << "Hot redundant SD card configuration" << std::endl; sdCardSetup(sd::SdCard::SLOT_0, sd::SdState::MOUNTED, "0", false); sdCardSetup(sd::SdCard::SLOT_1, sd::SdState::MOUNTED, "1", false); // Update status file sdcMan->updateSdCardStateFile(); return HasReturnvaluesIF::RETURN_OK; #endif #endif /* Q7S_SD_CARD_CONFIG != Q7S_SD_NONE */ } ReturnValue_t CoreController::sdStateMachine() { ReturnValue_t result = HasReturnvaluesIF::RETURN_OK; SdCardManager::Operations operation; if (sdInfo.state == SdStates::IDLE) { // Nothing to do return result; } if (sdInfo.state == SdStates::START) { // Init will be performed by separate function if (BLOCKING_SD_INIT) { sdInfo.state = SdStates::IDLE; sdInfo.initFinished = true; return result; } else { // Still update SD state file #if Q7S_SD_CARD_CONFIG == Q7S_SD_NONE sdInfo.state = SdStates::UPDATE_INFO; #else sdInfo.cycleCount = 0; sdInfo.commandExecuted = false; sdInfo.state = SdStates::GET_INFO; #endif } } // This lambda checks the non-blocking operation and assigns the new state on success. // It returns true for an operation success and false otherwise auto nonBlockingOpChecking = [&](SdStates newStateOnSuccess, uint16_t maxCycleCount, std::string opPrintout) { SdCardManager::OpStatus status = sdcMan->checkCurrentOp(operation); if (status == SdCardManager::OpStatus::SUCCESS) { sdInfo.state = newStateOnSuccess; sdInfo.commandExecuted = false; sdInfo.cycleCount = 0; return true; } else if (sdInfo.cycleCount > 4) { sif::warning << "CoreController::sdInitStateMachine: " << opPrintout << " takes too long" << std::endl; return false; } return false; }; if (sdInfo.state == SdStates::GET_INFO) { if (not sdInfo.commandExecuted) { // Create update status file result = sdcMan->updateSdCardStateFile(); if (result != HasReturnvaluesIF::RETURN_OK) { sif::warning << "CoreController::initialize: Updating SD card state file failed" << std::endl; } sdInfo.commandExecuted = true; } else { nonBlockingOpChecking(SdStates::SET_STATE_SELF, 4, "Updating SDC file"); } } if (sdInfo.state == SdStates::SET_STATE_SELF) { if (not sdInfo.commandExecuted) { result = sdcMan->getSdCardsStatus(sdInfo.currentState); sdInfo.pref = sdcMan->getPreferredSdCard(); updateSdInfoOther(); if (sdInfo.pref != sd::SdCard::SLOT_0 and sdInfo.pref != sd::SdCard::SLOT_1) { sif::warning << "Preferred SD card invalid. Setting to card 0.." << std::endl; sdInfo.pref = sd::SdCard::SLOT_0; } if (result != HasReturnvaluesIF::RETURN_OK) { sif::warning << "Getting SD card activity status failed" << std::endl; } #if Q7S_SD_CARD_CONFIG == Q7S_SD_COLD_REDUNDANT sif::info << "Cold redundant SD card configuration, preferred SD card: " << static_cast(sdInfo.pref) << std::endl; #endif if (sdInfo.prefState == sd::SdState::MOUNTED) { #if OBSW_VERBOSE_LEVEL >= 1 std::string mountString; if (sdInfo.pref == sd::SdCard::SLOT_0) { mountString = SdCardManager::SD_0_MOUNT_POINT; } else { mountString = SdCardManager::SD_1_MOUNT_POINT; } sif::info << "SD card " << sdInfo.prefChar << " already on and mounted at " << mountString << std::endl; #endif sdInfo.state = SdStates::DETERMINE_OTHER; } else if (sdInfo.prefState == sd::SdState::OFF) { sdCardSetup(sdInfo.pref, sd::SdState::ON, sdInfo.prefChar, false); sdInfo.commandExecuted = true; } else if (sdInfo.prefState == sd::SdState::ON) { sdInfo.state = SdStates::MOUNT_SELF; } } else { if (nonBlockingOpChecking(SdStates::MOUNT_SELF, 10, "Setting SDC state")) { sdInfo.prefState = sd::SdState::ON; currentStateSetter(sdInfo.pref, sd::SdState::ON); } } } if (sdInfo.state == SdStates::MOUNT_SELF) { if (not sdInfo.commandExecuted) { result = sdCardSetup(sdInfo.pref, sd::SdState::MOUNTED, sdInfo.prefChar); sdInfo.commandExecuted = true; } else { if (nonBlockingOpChecking(SdStates::DETERMINE_OTHER, 5, "Mounting SD card")) { sdInfo.prefState = sd::SdState::MOUNTED; currentStateSetter(sdInfo.pref, sd::SdState::MOUNTED); } } } if (sdInfo.state == SdStates::DETERMINE_OTHER) { // Determine whether any additional operations have to be done for the other SD card // 1. Cold redundant case: Other SD card needs to be unmounted and switched off // 2. Hot redundant case: Other SD card needs to be mounted and switched on #if Q7S_SD_CARD_CONFIG == Q7S_SD_COLD_REDUNDANT if (sdInfo.otherState == sd::SdState::ON) { sdInfo.state = SdStates::SET_STATE_OTHER; } else if (sdInfo.otherState == sd::SdState::MOUNTED) { sdInfo.state = SdStates::MOUNT_UNMOUNT_OTHER; } else { // Is already off, update info, but with a small delay sdInfo.state = SdStates::SKIP_CYCLE_BEFORE_INFO_UPDATE; } #elif Q7S_SD_CARD_CONFIG == Q7S_SD_HOT_REDUNDANT if (sdInfo.otherState == sd::SdState::OFF) { sdInfo.state = SdStates::SET_STATE_OTHER; } else if (sdInfo.otherState == sd::SdState::ON) { sdInfo.state = SdStates::MOUNT_UNMOUNT_OTHER; } else { // Is already on and mounted, update info sdInfo.state = SdStates::SKIP_CYCLE_BEFORE_INFO_UPDATE; } #endif } if (sdInfo.state == SdStates::SET_STATE_OTHER) { // Set state of other SD card to ON or OFF, depending on redundancy mode #if Q7S_SD_CARD_CONFIG == Q7S_SD_COLD_REDUNDANT if (not sdInfo.commandExecuted) { result = sdCardSetup(sdInfo.other, sd::SdState::OFF, sdInfo.otherChar, false); sdInfo.commandExecuted = true; } else { if (nonBlockingOpChecking(SdStates::SKIP_CYCLE_BEFORE_INFO_UPDATE, 10, "Switching off other SD card")) { sdInfo.otherState = sd::SdState::OFF; currentStateSetter(sdInfo.other, sd::SdState::OFF); } } #elif Q7S_SD_CARD_CONFIG == Q7S_SD_HOT_REDUNDANT if (not sdInfo.commandExecuted) { result = sdCardSetup(sdInfo.other, sd::SdState::ON, sdInfo.otherChar, false); sdInfo.commandExecuted = true; } else { if (nonBlockingOpChecking(SdStates::MOUNT_UNMOUNT_OTHER, 10, "Switching on other SD card")) { sdInfo.otherState = sd::SdState::ON; currentStateSetter(sdInfo.other, sd::SdState::ON); } } #endif } if (sdInfo.state == SdStates::MOUNT_UNMOUNT_OTHER) { // Mount or unmount other SD card, depending on redundancy mode #if Q7S_SD_CARD_CONFIG == Q7S_SD_COLD_REDUNDANT if (not sdInfo.commandExecuted) { result = sdCardSetup(sdInfo.other, sd::SdState::ON, sdInfo.otherChar); sdInfo.commandExecuted = true; } else { if (nonBlockingOpChecking(SdStates::SET_STATE_OTHER, 10, "Unmounting other SD card")) { sdInfo.otherState = sd::SdState::ON; currentStateSetter(sdInfo.other, sd::SdState::ON); } } #elif Q7S_SD_CARD_CONFIG == Q7S_SD_HOT_REDUNDANT if (not sdInfo.commandExecuted) { result = sdCardSetup(sdInfo.other, sd::SdState::MOUNTED, sdInfo.otherChar); sdInfo.commandExecuted = true; } else { if (nonBlockingOpChecking(SdStates::UPDATE_INFO, 4, "Mounting other SD card")) { sdInfo.otherState = sd::SdState::MOUNTED; currentStateSetter(sdInfo.other, sd::SdState::MOUNTED); } } #endif } if (sdInfo.state == SdStates::SKIP_CYCLE_BEFORE_INFO_UPDATE) { sdInfo.state = SdStates::UPDATE_INFO; } else if (sdInfo.state == SdStates::UPDATE_INFO) { // It is assumed that all tasks are running by the point this section is reached. // Therefore, perform this operation in blocking mode because it does not take long // and the ready state of the SD card is available sooner sdcMan->setBlocking(true); // Update status file result = sdcMan->updateSdCardStateFile(); if (result != HasReturnvaluesIF::RETURN_OK) { sif::warning << "CoreController::initialize: Updating SD card state file failed" << std::endl; } sdInfo.commandExecuted = false; sdInfo.state = SdStates::IDLE; sdInfo.cycleCount = 0; sdcMan->setBlocking(false); sdcMan->getSdCardsStatus(sdInfo.currentState); if (not sdInfo.initFinished) { updateSdInfoOther(); sdInfo.initFinished = true; sif::info << "SD card initialization finished" << std::endl; } } if (sdInfo.state == SdStates::SET_STATE_FROM_COMMAND) { if (not sdInfo.commandExecuted) { executeNextExternalSdCommand(); } else { checkExternalSdCommandStatus(); } } sdInfo.cycleCount++; return HasReturnvaluesIF::RETURN_OK; } void CoreController::executeNextExternalSdCommand() { std::string sdChar; sd::SdState currentStateOfCard = sd::SdState::OFF; if (sdInfo.commandedCard == sd::SdCard::SLOT_0) { sdChar = "0"; currentStateOfCard = sdInfo.currentState.first; } else { sdChar = "1"; currentStateOfCard = sdInfo.currentState.second; } if (currentStateOfCard == sd::SdState::OFF) { if (sdInfo.commandedState == sd::SdState::ON) { sdInfo.currentlyCommandedState = sdInfo.commandedState; } else if (sdInfo.commandedState == sd::SdState::MOUNTED) { sdInfo.currentlyCommandedState = sd::SdState::ON; } else { // SD card is already on target state sdInfo.commandFinished = true; sdInfo.state = SdStates::IDLE; } } else if (currentStateOfCard == sd::SdState::ON) { if (sdInfo.commandedState == sd::SdState::OFF or sdInfo.commandedState == sd::SdState::MOUNTED) { sdInfo.currentlyCommandedState = sdInfo.commandedState; } else { // Already on target state sdInfo.commandFinished = true; sdInfo.state = SdStates::IDLE; } } else if (currentStateOfCard == sd::SdState::MOUNTED) { if (sdInfo.commandedState == sd::SdState::ON) { sdInfo.currentlyCommandedState = sdInfo.commandedState; } else if (sdInfo.commandedState == sd::SdState::OFF) { // This causes an unmount in sdCardSetup sdInfo.currentlyCommandedState = sd::SdState::ON; } else { sdInfo.commandFinished = true; } } sdCardSetup(sdInfo.commandedCard, sdInfo.commandedState, sdChar); sdInfo.commandExecuted = true; } void CoreController::checkExternalSdCommandStatus() { SdCardManager::Operations operation; SdCardManager::OpStatus status = sdcMan->checkCurrentOp(operation); if (status == SdCardManager::OpStatus::SUCCESS) { if (sdInfo.currentlyCommandedState == sdInfo.commandedState) { sdInfo.state = SdStates::SKIP_CYCLE_BEFORE_INFO_UPDATE; sdInfo.commandFinished = true; } else { // stay on same state machine state because the target state was not reached yet. sdInfo.cycleCount = 0; } currentStateSetter(sdInfo.commandedCard, sdInfo.currentlyCommandedState); sdInfo.commandExecuted = false; } else if (sdInfo.cycleCount > 4) { sif::warning << "CoreController::sdStateMachine: Commanding SD state " "takes too long" << std::endl; } } void CoreController::currentStateSetter(sd::SdCard sdCard, sd::SdState newState) { if (sdCard == sd::SdCard::SLOT_0) { sdInfo.currentState.first = newState; } else { sdInfo.currentState.second = newState; } } ReturnValue_t CoreController::sdCardSetup(sd::SdCard sdCard, sd::SdState targetState, std::string sdChar, bool printOutput) { std::string mountString; sdcMan->setPrintCommandOutput(printOutput); if (sdCard == sd::SdCard::SLOT_0) { mountString = SdCardManager::SD_0_MOUNT_POINT; } else { mountString = SdCardManager::SD_1_MOUNT_POINT; } sd::SdState state = sd::SdState::OFF; if (sdCard == sd::SdCard::SLOT_0) { state = sdInfo.currentState.first; } else { state = sdInfo.currentState.second; } if (state == sd::SdState::MOUNTED) { if (targetState == sd::SdState::OFF) { sif::info << "Switching off SD card " << sdChar << std::endl; return sdcMan->switchOffSdCard(sdCard, true, &sdInfo.currentState); } else if (targetState == sd::SdState::ON) { sif::info << "Unmounting SD card " << sdChar << std::endl; return sdcMan->unmountSdCard(sdCard); } else { if (std::filesystem::exists(mountString)) { sif::info << "SD card " << sdChar << " already on and mounted at " << mountString << std::endl; return SdCardManager::ALREADY_MOUNTED; } sif::error << "SD card mounted but expected mount point " << mountString << " not found!" << std::endl; return SdCardManager::MOUNT_ERROR; } } if (state == sd::SdState::OFF) { if (targetState == sd::SdState::MOUNTED) { sif::info << "Switching on and mounting SD card " << sdChar << " at " << mountString << std::endl; return sdcMan->switchOnSdCard(sdCard, true, &sdInfo.currentState); } else if (targetState == sd::SdState::ON) { sif::info << "Switching on SD card " << sdChar << std::endl; return sdcMan->switchOnSdCard(sdCard, false, &sdInfo.currentState); } } else if (state == sd::SdState::ON) { if (targetState == sd::SdState::MOUNTED) { sif::info << "Mounting SD card " << sdChar << " at " << mountString << std::endl; return sdcMan->mountSdCard(sdCard); } else if (targetState == sd::SdState::OFF) { sif::info << "Switching off SD card " << sdChar << std::endl; return sdcMan->switchOffSdCard(sdCard, false, &sdInfo.currentState); } } else { sif::warning << "CoreController::sdCardSetup: Invalid state for this call" << std::endl; } return HasReturnvaluesIF::RETURN_OK; } ReturnValue_t CoreController::sdColdRedundantBlockingInit() { ReturnValue_t result = HasReturnvaluesIF::RETURN_OK; result = sdCardSetup(sdInfo.pref, sd::SdState::MOUNTED, sdInfo.prefChar); if (result != SdCardManager::ALREADY_MOUNTED and result != HasReturnvaluesIF::RETURN_OK) { sif::warning << "Setting up preferred card " << sdInfo.otherChar << " in cold redundant mode failed" << std::endl; // Try other SD card and mark set up operation as failed sdCardSetup(sdInfo.pref, sd::SdState::MOUNTED, sdInfo.prefChar); result = HasReturnvaluesIF::RETURN_FAILED; } if (result != HasReturnvaluesIF::RETURN_FAILED and sdInfo.otherState != sd::SdState::OFF) { sif::info << "Switching off secondary SD card " << sdInfo.otherChar << std::endl; // Switch off other SD card in cold redundant mode if setting up preferred one worked // without issues ReturnValue_t result2 = sdcMan->switchOffSdCard(sdInfo.other, sdInfo.otherState, &sdInfo.currentState); if (result2 != HasReturnvaluesIF::RETURN_OK and result2 != SdCardManager::ALREADY_OFF) { sif::warning << "Switching off secondary SD card " << sdInfo.otherChar << " in cold redundant mode failed" << std::endl; } } return result; } ReturnValue_t CoreController::incrementAllocationFailureCount() { uint32_t count = 0; ReturnValue_t result = scratch::readNumber(scratch::ALLOC_FAILURE_COUNT, count); if (result != HasReturnvaluesIF::RETURN_OK) { return result; } count++; return scratch::writeNumber(scratch::ALLOC_FAILURE_COUNT, count); } ReturnValue_t CoreController::initVersionFile() { using namespace fsfw; std::string unameFileName = "/tmp/uname_version.txt"; // TODO: No -v flag for now. If the kernel version is used, need to cut off first few letters std::string unameCmd = "uname -mnrso > " + unameFileName; int result = std::system(unameCmd.c_str()); if (result != 0) { utility::handleSystemError(result, "CoreController::versionFileInit"); } std::ifstream unameFile(unameFileName); std::string unameLine; if (not std::getline(unameFile, unameLine)) { sif::warning << "CoreController::versionFileInit: Retrieving uname line failed" << std::endl; } std::string fullObswVersionString = "OBSW: v" + std::to_string(SW_VERSION) + "." + std::to_string(SW_SUBVERSION) + "." + std::to_string(SW_REVISION); char versionString[16] = {}; fsfw::FSFW_VERSION.getVersion(versionString, sizeof(versionString)); std::string fullFsfwVersionString = "FSFW: v" + std::string(versionString); std::string systemString = "System: " + unameLine; std::string versionFilePath = currMntPrefix + VERSION_FILE; std::fstream versionFile; if (not std::filesystem::exists(versionFilePath)) { sif::info << "Writing version file " << versionFilePath << ".." << std::endl; versionFile.open(versionFilePath, std::ios_base::out); versionFile << fullObswVersionString << std::endl; versionFile << fullFsfwVersionString << std::endl; versionFile << systemString << std::endl; return HasReturnvaluesIF::RETURN_OK; } // Check whether any version has changed bool createNewFile = false; versionFile.open(versionFilePath); std::string currentVersionString; uint8_t idx = 0; while (std::getline(versionFile, currentVersionString)) { if (idx == 0) { if (currentVersionString != fullObswVersionString) { sif::info << "OBSW version changed" << std::endl; sif::info << "From " << currentVersionString << " to " << fullObswVersionString << std::endl; createNewFile = true; } } else if (idx == 1) { if (currentVersionString != fullFsfwVersionString) { sif::info << "FSFW version changed" << std::endl; sif::info << "From " << currentVersionString << " to " << fullFsfwVersionString << std::endl; createNewFile = true; } } else if (idx == 2) { if (currentVersionString != systemString) { sif::info << "System version changed" << std::endl; sif::info << "Old: " << currentVersionString << std::endl; sif::info << "New: " << systemString << std::endl; createNewFile = true; } } else { sif::warning << "Invalid version file! Rewriting it.." << std::endl; createNewFile = true; } idx++; } // Overwrite file if necessary if (createNewFile) { sif::info << "Rewriting version.txt file with updated versions.." << std::endl; versionFile.close(); versionFile.open(versionFilePath, std::ios_base::out | std::ios_base::trunc); versionFile << fullObswVersionString << std::endl; versionFile << fullFsfwVersionString << std::endl; versionFile << systemString << std::endl; } return HasReturnvaluesIF::RETURN_OK; } ReturnValue_t CoreController::handleAction(ListDirectoryIntoFileAction *action) { // TODO: Packet definition for clean deserialization // 2 bytes for a and R flag, at least 5 bytes for minimum valid path /tmp with // null termination, at least 7 bytes for minimum target file name /tmp/a with // null termination. if (size < 14) { return HasActionsIF::INVALID_PARAMETERS; } // We could also make -l optional, but I can't think of a reason why to not use -l.. // This flag specifies to run ls with -a bool aFlag = data[0]; data += 1; // This flag specifies to run ls with -R bool RFlag = data[1]; data += 1; size_t remainingSize = size - 2; // One larger for null termination, which prevents undefined behaviour if the sent // strings are not 0 terminated properly std::vector repoAndTargetFileBuffer(remainingSize + 1, 0); std::memcpy(repoAndTargetFileBuffer.data(), data, remainingSize); const char *currentCharPtr = reinterpret_cast(repoAndTargetFileBuffer.data()); // Full target file name std::string repoName(currentCharPtr); size_t repoLength = repoName.length(); // The other string needs to be at least one letter plus NULL termination to be valid at all // The first string also needs to be NULL terminated, but the termination is not included // in the string length, so this is subtracted from the remaining size as well if (repoLength > remainingSize - 3) { return HasActionsIF::INVALID_PARAMETERS; } // The file length will not include the NULL termination, so we skip it currentCharPtr += repoLength + 1; std::string targetFileName(currentCharPtr); std::ostringstream oss; oss << "ls -l"; if (aFlag) { oss << "a"; } if (RFlag) { oss << "R"; } oss << " " << repoName << " > " << targetFileName; int result = std::system(oss.str().c_str()); if (result != 0) { utility::handleSystemError(result, "CoreController::actionListDirectoryIntoFile"); actionHelper.finish(false, commandedBy, actionId); } return HasReturnvaluesIF::RETURN_OK; } ReturnValue_t CoreController::initBootCopy() { if (not std::filesystem::exists(CURR_COPY_FILE)) { // This file is created by the systemd service eive-early-config so this should // not happen normally std::string cmd = "xsc_boot_copy > " + std::string(CURR_COPY_FILE); int result = std::system(cmd.c_str()); if (result != 0) { utility::handleSystemError(result, "CoreController::initBootCopy"); } } getCurrentBootCopy(CURRENT_CHIP, CURRENT_COPY); return HasReturnvaluesIF::RETURN_OK; } void CoreController::getCurrentBootCopy(xsc::Chip &chip, xsc::Copy ©) { xsc_libnor_chip_t xscChip; xsc_libnor_copy_t xscCopy; xsc_boot_get_chip_copy(&xscChip, &xscCopy); // Not really thread-safe but it does not need to be chip = static_cast(xscChip); copy = static_cast(xscCopy); } ReturnValue_t CoreController::initWatchdogFifo() { if (not std::filesystem::exists(watchdog::FIFO_NAME)) { // Still return RETURN_OK for now sif::info << "Watchdog FIFO " << watchdog::FIFO_NAME << " does not exist, can't initiate" << " watchdog" << std::endl; return HasReturnvaluesIF::RETURN_OK; } // Open FIFO write only and non-blocking to prevent SW from killing itself. watchdogFifoFd = open(watchdog::FIFO_NAME.c_str(), O_WRONLY | O_NONBLOCK); if (watchdogFifoFd < 0) { if (errno == ENXIO) { watchdogFifoFd = RETRY_FIFO_OPEN; sif::info << "eive-watchdog not running. FIFO can not be opened" << std::endl; } else { sif::error << "Opening pipe " << watchdog::FIFO_NAME << " write-only failed with " << errno << ": " << strerror(errno) << std::endl; return HasReturnvaluesIF::RETURN_FAILED; } } return HasReturnvaluesIF::RETURN_OK; } void CoreController::initPrint() { #if OBSW_VERBOSE_LEVEL >= 1 if (watchdogFifoFd > 0) { sif::info << "Opened watchdog FIFO successfully.." << std::endl; } #endif } ReturnValue_t CoreController::handleAction(XscRebootObcAction *action) { if (size < 1) { return HasActionsIF::INVALID_PARAMETERS; } bool rebootSameBootCopy = data[0]; bool protOpPerformed = false; SdCardManager::instance()->setBlocking(true); if (rebootSameBootCopy) { #if OBSW_VERBOSE_LEVEL >= 1 sif::info << "CoreController::actionPerformReboot: Rebooting on current image" << std::endl; #endif gracefulShutdownTasks(xsc::Chip::SELF_CHIP, xsc::Copy::SELF_COPY, protOpPerformed); int result = std::system("xsc_boot_copy -r"); if (result != 0) { utility::handleSystemError(result, "CoreController::executeAction"); return HasReturnvaluesIF::RETURN_FAILED; } return HasActionsIF::EXECUTION_FINISHED; } if (size < 3 or (data[1] > 1 or data[2] > 1)) { return HasActionsIF::INVALID_PARAMETERS; } #if OBSW_VERBOSE_LEVEL >= 1 sif::info << "CoreController::actionPerformReboot: Rebooting on " << static_cast(data[1]) << " " << static_cast(data[2]) << std::endl; #endif // Check that the target chip and copy is writeprotected first generateChipStateFile(); // If any boot copies are unprotected, protect them here auto tgtChip = static_cast(data[1]); auto tgtCopy = static_cast(data[2]); // This function can not really fail gracefulShutdownTasks(tgtChip, tgtCopy, protOpPerformed); switch (tgtChip) { case (xsc::Chip::CHIP_0): { switch (tgtCopy) { case (xsc::Copy::COPY_0): { xsc_boot_copy(XSC_LIBNOR_CHIP_0, XSC_LIBNOR_COPY_NOMINAL); break; } case (xsc::Copy::COPY_1): { xsc_boot_copy(XSC_LIBNOR_CHIP_0, XSC_LIBNOR_COPY_GOLD); break; } default: { break; } } break; } case (xsc::Chip::CHIP_1): { switch (tgtCopy) { case (xsc::Copy::COPY_0): { xsc_boot_copy(XSC_LIBNOR_CHIP_1, XSC_LIBNOR_COPY_NOMINAL); break; } case (xsc::Copy::COPY_1): { xsc_boot_copy(XSC_LIBNOR_CHIP_1, XSC_LIBNOR_COPY_GOLD); break; } default: { break; } } break; } default: break; } return HasReturnvaluesIF::RETURN_FAILED; } ReturnValue_t CoreController::actionReboot(RebootObcAction *action) { bool protOpPerformed = false; gracefulShutdownTasks(xsc::Chip::CHIP_0, xsc::Copy::COPY_0, protOpPerformed); std::system("reboot"); return RETURN_OK; } ReturnValue_t CoreController::gracefulShutdownTasks(xsc::Chip chip, xsc::Copy copy, bool &protOpPerformed) { sdcMan->setBlocking(true); // Attempt graceful shutdown by unmounting and switching off SD cards sdcMan->switchOffSdCard(sd::SdCard::SLOT_0); sdcMan->switchOffSdCard(sd::SdCard::SLOT_1); // If any boot copies are unprotected ReturnValue_t result = setBootCopyProtection(xsc::Chip::SELF_CHIP, xsc::Copy::SELF_COPY, true, protOpPerformed, false); if (result == HasReturnvaluesIF::RETURN_OK and protOpPerformed) { // TODO: Would be nice to notify operator. But we can't use the filesystem anymore // and a reboot is imminent. Use scratch buffer? sif::info << "Running slot was writeprotected before reboot" << std::endl; } return result; } CoreController::~CoreController() {} void CoreController::updateSdInfoOther() { if (sdInfo.pref == sd::SdCard::SLOT_0) { sdInfo.prefChar = "0"; sdInfo.otherChar = "1"; sdInfo.otherState = sdInfo.currentState.second; sdInfo.prefState = sdInfo.currentState.first; sdInfo.other = sd::SdCard::SLOT_1; } else if (sdInfo.pref == sd::SdCard::SLOT_1) { sdInfo.prefChar = "1"; sdInfo.otherChar = "0"; sdInfo.otherState = sdInfo.currentState.first; sdInfo.prefState = sdInfo.currentState.second; sdInfo.other = sd::SdCard::SLOT_0; } else { sif::warning << "CoreController::updateSdInfoOther: Invalid SD card passed" << std::endl; } } bool CoreController::sdInitFinished() const { return sdInfo.initFinished; } ReturnValue_t CoreController::generateChipStateFile() { int result = std::system(CHIP_PROT_SCRIPT); if (result != 0) { utility::handleSystemError(result, "CoreController::generateChipStateFile"); return HasReturnvaluesIF::RETURN_FAILED; } return HasReturnvaluesIF::RETURN_OK; } ReturnValue_t CoreController::setBootCopyProtection(xsc::Chip targetChip, xsc::Copy targetCopy, bool protect, bool &protOperationPerformed, bool updateProtFile) { bool allChips = false; bool allCopies = false; bool selfChip = false; bool selfCopy = false; protOperationPerformed = false; switch (targetChip) { case (xsc::Chip::ALL_CHIP): { allChips = true; break; } case (xsc::Chip::NO_CHIP): { return HasReturnvaluesIF::RETURN_OK; } case (xsc::Chip::SELF_CHIP): { selfChip = true; targetChip = CURRENT_CHIP; break; } default: { break; } } switch (targetCopy) { case (xsc::Copy::ALL_COPY): { allCopies = true; break; } case (xsc::Copy::NO_COPY): { return HasReturnvaluesIF::RETURN_OK; } case (xsc::Copy::SELF_COPY): { selfCopy = true; targetCopy = CURRENT_COPY; break; } default: { break; } } for (uint8_t arrIdx = 0; arrIdx < protArray.size(); arrIdx++) { int result = handleBootCopyProtAtIndex(targetChip, targetCopy, protect, protOperationPerformed, selfChip, selfCopy, allChips, allCopies, arrIdx); if (result != 0) { break; } } if (protOperationPerformed and updateProtFile) { updateProtInfo(); } return HasReturnvaluesIF::RETURN_OK; } int CoreController::handleBootCopyProtAtIndex(xsc::Chip targetChip, xsc::Copy targetCopy, bool protect, bool &protOperationPerformed, bool selfChip, bool selfCopy, bool allChips, bool allCopies, uint8_t arrIdx) { bool currentProt = protArray[arrIdx]; std::ostringstream oss; bool performOp = false; if (protect == currentProt) { return 0; } if (protOperationPerformed) { if ((selfChip and selfCopy) or (not allCopies and not allChips)) { // No need to continue, only one operation was requested return 1; } } xsc::Chip currentChip; xsc::Copy currentCopy; oss << "writeprotect "; if (arrIdx == 0 or arrIdx == 1) { oss << "0 "; currentChip = xsc::Chip::CHIP_0; } else { oss << "1 "; currentChip = xsc::Chip::CHIP_1; } if (arrIdx == 0 or arrIdx == 2) { oss << "0 "; currentCopy = xsc::Copy::COPY_0; } else { oss << "1 "; currentCopy = xsc::Copy::COPY_1; } if (protect) { oss << "1"; } else { oss << "0"; } int result = 0; if (allChips and allCopies) { performOp = true; } else if (allChips) { if ((selfCopy and CURRENT_COPY == targetCopy) or (currentCopy == targetCopy)) { performOp = true; } } else if (allCopies) { if ((selfChip and CURRENT_COPY == targetCopy) or (currentChip == targetChip)) { performOp = true; } } else if (selfChip and (currentChip == targetChip)) { if (selfCopy) { if (currentCopy == targetCopy) { performOp = true; } } else { performOp = true; } } else if (selfCopy and (currentCopy == targetCopy)) { if (selfChip) { if (currentChip == targetChip) { performOp = true; } } else { performOp = true; } } else if ((targetChip == currentChip) and (targetCopy == currentCopy)) { performOp = true; } if (result != 0) { utility::handleSystemError(result, "CoreController::checkAndSetBootCopyProtection"); } if (performOp) { // TODO: Lock operation take a long time. Use command executor? That would require a // new state machine.. protOperationPerformed = true; sif::info << "Executing command: " << oss.str() << std::endl; result = std::system(oss.str().c_str()); } return 0; } ReturnValue_t CoreController::updateProtInfo(bool regenerateChipStateFile) { using namespace std; ReturnValue_t result = HasReturnvaluesIF::RETURN_OK; if (regenerateChipStateFile) { result = generateChipStateFile(); if (result != HasReturnvaluesIF::RETURN_OK) { sif::warning << "CoreController::updateProtInfo: Generating chip state file failed" << std::endl; return result; } } if (not filesystem::exists(CHIP_STATE_FILE)) { return HasReturnvaluesIF::RETURN_FAILED; } ifstream chipStateFile(CHIP_STATE_FILE); if (not chipStateFile.good()) { return HasReturnvaluesIF::RETURN_FAILED; } string nextLine; uint8_t lineCounter = 0; string word; while (getline(chipStateFile, nextLine)) { ReturnValue_t result = handleProtInfoUpdateLine(nextLine); if (result != HasReturnvaluesIF::RETURN_OK) { sif::warning << "CoreController::updateProtInfo: Protection info update failed!" << std::endl; return result; } ++lineCounter; if (lineCounter > 4) { sif::warning << "CoreController::checkAndProtectBootCopy: " "Line counter larger than 4" << std::endl; } } return HasReturnvaluesIF::RETURN_OK; } ReturnValue_t CoreController::handleProtInfoUpdateLine(std::string nextLine) { using namespace std; string word; uint8_t wordIdx = 0; uint8_t arrayIdx = 0; istringstream iss(nextLine); xsc::Chip currentChip = xsc::Chip::CHIP_0; xsc::Copy currentCopy = xsc::Copy::COPY_0; while (iss >> word) { if (wordIdx == 1) { currentChip = static_cast(stoi(word)); } if (wordIdx == 3) { currentCopy = static_cast(stoi(word)); } if (wordIdx == 3) { if (currentChip == xsc::Chip::CHIP_0) { if (currentCopy == xsc::Copy::COPY_0) { arrayIdx = 0; } else if (currentCopy == xsc::Copy::COPY_1) { arrayIdx = 1; } } else if (currentChip == xsc::Chip::CHIP_1) { if (currentCopy == xsc::Copy::COPY_0) { arrayIdx = 2; } else if (currentCopy == xsc::Copy::COPY_1) { arrayIdx = 3; } } } if (wordIdx == 5) { if (word == "unlocked.") { protArray[arrayIdx] = false; } else { protArray[arrayIdx] = true; } } wordIdx++; } return HasReturnvaluesIF::RETURN_OK; } void CoreController::performWatchdogControlOperation() { // Only perform each fifth iteration if (watchdogFifoFd != 0 and opDivider5.check()) { if (watchdogFifoFd == RETRY_FIFO_OPEN) { // Open FIFO write only and non-blocking watchdogFifoFd = open(watchdog::FIFO_NAME.c_str(), O_WRONLY | O_NONBLOCK); if (watchdogFifoFd < 0) { if (errno == ENXIO) { watchdogFifoFd = RETRY_FIFO_OPEN; // No printout for now, would be spam return; } else { sif::error << "Opening pipe " << watchdog::FIFO_NAME << " write-only failed with " << errno << ": " << strerror(errno) << std::endl; return; } } sif::info << "Opened " << watchdog::FIFO_NAME << " successfully" << std::endl; } else if (watchdogFifoFd > 0) { // Write to OBSW watchdog FIFO here const char writeChar = 'a'; ssize_t writtenBytes = write(watchdogFifoFd, &writeChar, 1); if (writtenBytes < 0) { sif::error << "Errors writing to watchdog FIFO, code " << errno << ": " << strerror(errno) << std::endl; } } } } void CoreController::performMountedSdCardOperations() { auto mountedSdCardOp = [&](bool &mntSwitch, sd::SdCard sdCard, std::string mntPoint) { if (mntSwitch) { bool sdCardMounted = sdcMan->isSdCardMounted(sdCard); if (sdCardMounted and not performOneShotSdCardOpsSwitch) { std::ostringstream path; path << mntPoint << "/" << CONF_FOLDER; if (not std::filesystem::exists(path.str())) { std::filesystem::create_directory(path.str()); } initVersionFile(); initClockFromTimeFile(); performRebootFileHandling(false); performOneShotSdCardOpsSwitch = true; } mntSwitch = false; } }; if (sdInfo.pref == sd::SdCard::SLOT_1) { mountedSdCardOp(sdInfo.mountSwitch.second, sd::SdCard::SLOT_1, SdCardManager::SD_1_MOUNT_POINT); mountedSdCardOp(sdInfo.mountSwitch.first, sd::SdCard::SLOT_0, SdCardManager::SD_0_MOUNT_POINT); } else { mountedSdCardOp(sdInfo.mountSwitch.first, sd::SdCard::SLOT_0, SdCardManager::SD_0_MOUNT_POINT); mountedSdCardOp(sdInfo.mountSwitch.second, sd::SdCard::SLOT_1, SdCardManager::SD_1_MOUNT_POINT); } timeFileHandler(); } ReturnValue_t CoreController::performSdCardCheck() { bool mountedReadOnly = false; SdCardManager::SdStatePair active; sdcMan->getSdCardsStatus(active); auto sdCardCheck = [&](sd::SdCard sdCard) { ReturnValue_t result = sdcMan->isSdCardMountedReadOnly(sdCard, mountedReadOnly); if (result != HasReturnvaluesIF::RETURN_OK) { sif::error << "CoreController::performSdCardCheck: Could not check " "read-only mount state" << std::endl; mountedReadOnly = true; } if (mountedReadOnly) { int linuxErrno = 0; result = sdcMan->performFsck(sdCard, true, linuxErrno); if (result != HasReturnvaluesIF::RETURN_OK) { sif::error << "CoreController::performSdCardCheck: fsck command on SD Card " << static_cast(sdCard) << " failed with code " << linuxErrno << " | " << strerror(linuxErrno); } result = sdcMan->remountReadWrite(sdCard); if (result == HasReturnvaluesIF::RETURN_OK) { sif::warning << "CoreController::performSdCardCheck: Remounted SD Card " << static_cast(sdCard) << " read-write"; } else { sif::error << "CoreController::performSdCardCheck: Remounting SD Card " << static_cast(sdCard) << " read-write failed"; } } }; if (active.first == sd::SdState::MOUNTED) { sdCardCheck(sd::SdCard::SLOT_0); } if (active.second == sd::SdState::MOUNTED) { sdCardCheck(sd::SdCard::SLOT_1); } return RETURN_OK; } void CoreController::performRebootFileHandling(bool recreateFile) { using namespace std; std::string path = currMntPrefix + REBOOT_FILE; if (not std::filesystem::exists(path) or recreateFile) { #if OBSW_VERBOSE_LEVEL >= 1 sif::info << "CoreController::performRebootFileHandling: Recreating reboot file" << std::endl; #endif rebootFile.enabled = true; rebootFile.img00Cnt = 0; rebootFile.img01Cnt = 0; rebootFile.img10Cnt = 0; rebootFile.img11Cnt = 0; rebootFile.lastChip = xsc::Chip::CHIP_0; rebootFile.lastCopy = xsc::Copy::COPY_0; rebootFile.img00Lock = false; rebootFile.img01Lock = false; rebootFile.img10Lock = false; rebootFile.img11Lock = false; rebootFile.mechanismNextChip = xsc::Chip::NO_CHIP; rebootFile.mechanismNextCopy = xsc::Copy::NO_COPY; rebootFile.bootFlag = false; rewriteRebootFile(rebootFile); } else { if (not parseRebootFile(path, rebootFile)) { performRebootFileHandling(true); } } if (CURRENT_CHIP == xsc::CHIP_0) { if (CURRENT_COPY == xsc::COPY_0) { rebootFile.img00Cnt++; } else { rebootFile.img01Cnt++; } } else { if (CURRENT_COPY == xsc::COPY_0) { rebootFile.img10Cnt++; } else { rebootFile.img11Cnt++; } } if (rebootFile.bootFlag) { // Trigger event to inform ground that a reboot was triggered uint32_t p1 = rebootFile.lastChip << 16 | rebootFile.lastCopy; uint32_t p2 = rebootFile.img00Cnt << 24 | rebootFile.img01Cnt << 16 | rebootFile.img10Cnt << 8 | rebootFile.img11Cnt; triggerEvent(REBOOT_MECHANISM_TRIGGERED, p1, p2); // Clear the boot flag rebootFile.bootFlag = false; } if (rebootFile.mechanismNextChip != xsc::NO_CHIP and rebootFile.mechanismNextCopy != xsc::NO_COPY) { if (CURRENT_CHIP != rebootFile.mechanismNextChip or CURRENT_COPY != rebootFile.mechanismNextCopy) { std::string infoString = std::to_string(rebootFile.mechanismNextChip) + " " + std::to_string(rebootFile.mechanismNextCopy); sif::warning << "CoreController::performRebootFileHandling: Expected to be on image " << infoString << " but currently on other image. Locking " << infoString << std::endl; // Firmware or other component might be corrupt and we are on another image then the target // image specified by the mechanism. We can't really trust the target image anymore. // Lock it for now if (rebootFile.mechanismNextChip == xsc::CHIP_0) { if (rebootFile.mechanismNextCopy == xsc::COPY_0) { rebootFile.img00Lock = true; } else { rebootFile.img01Lock = true; } } else { if (rebootFile.mechanismNextCopy == xsc::COPY_0) { rebootFile.img10Lock = true; } else { rebootFile.img11Lock = true; } } } } rebootFile.lastChip = CURRENT_CHIP; rebootFile.lastCopy = CURRENT_COPY; // Only reboot if the reboot functionality is enabled. // The handler will still increment the boot counts if (rebootFile.enabled and (*rebootFile.relevantBootCnt >= rebootFile.maxCount)) { // Reboot to other image bool doReboot = false; xsc::Chip tgtChip = xsc::NO_CHIP; xsc::Copy tgtCopy = xsc::NO_COPY; determineAndExecuteReboot(rebootFile, doReboot, tgtChip, tgtCopy); if (doReboot) { rebootFile.bootFlag = true; #if OBSW_VERBOSE_LEVEL >= 1 sif::info << "Boot counter for image " << CURRENT_CHIP << " " << CURRENT_COPY << " too high. Rebooting to " << tgtChip << " " << tgtCopy << std::endl; #endif rebootFile.mechanismNextChip = tgtChip; rebootFile.mechanismNextCopy = tgtCopy; rewriteRebootFile(rebootFile); xsc_boot_copy(static_cast(tgtChip), static_cast(tgtCopy)); } } else { rebootFile.mechanismNextChip = xsc::NO_CHIP; rebootFile.mechanismNextCopy = xsc::NO_COPY; } rewriteRebootFile(rebootFile); } void CoreController::determineAndExecuteReboot(RebootFile &rf, bool &needsReboot, xsc::Chip &tgtChip, xsc::Copy &tgtCopy) { tgtChip = xsc::CHIP_0; tgtCopy = xsc::COPY_0; needsReboot = false; if ((CURRENT_CHIP == xsc::CHIP_0) and (CURRENT_COPY == xsc::COPY_0) and (rf.img00Cnt >= rf.maxCount)) { needsReboot = true; if (rf.img01Cnt < rf.maxCount and not rf.img01Lock) { tgtCopy = xsc::COPY_1; return; } if (rf.img10Cnt < rf.maxCount and not rf.img10Lock) { tgtChip = xsc::CHIP_1; return; } if (rf.img11Cnt < rf.maxCount and not rf.img11Lock) { tgtChip = xsc::CHIP_1; tgtCopy = xsc::COPY_1; return; } // Can't really do much here. Stay on image sif::warning << "All reboot counts too high or all fallback images locked, already on fallback image" << std::endl; needsReboot = false; return; } if ((CURRENT_CHIP == xsc::CHIP_0) and (CURRENT_COPY == xsc::COPY_1) and (rf.img01Cnt >= rf.maxCount)) { needsReboot = true; if (rf.img00Cnt < rf.maxCount and not rf.img00Lock) { // Reboot on fallback image return; } if (rf.img10Cnt < rf.maxCount and not rf.img10Lock) { tgtChip = xsc::CHIP_1; return; } if (rf.img11Cnt < rf.maxCount and not rf.img11Lock) { tgtChip = xsc::CHIP_1; tgtCopy = xsc::COPY_1; } if (rf.img00Lock) { needsReboot = false; } // Reboot to fallback image } if ((CURRENT_CHIP == xsc::CHIP_1) and (CURRENT_COPY == xsc::COPY_0) and (rf.img10Cnt >= rf.maxCount)) { needsReboot = true; if (rf.img11Cnt < rf.maxCount and not rf.img11Lock) { tgtChip = xsc::CHIP_1; tgtCopy = xsc::COPY_1; return; } if (rf.img00Cnt < rf.maxCount and not rf.img00Lock) { return; } if (rf.img01Cnt < rf.maxCount and not rf.img01Lock) { tgtCopy = xsc::COPY_1; return; } if (rf.img00Lock) { needsReboot = false; } // Reboot to fallback image } if ((CURRENT_CHIP == xsc::CHIP_1) and (CURRENT_COPY == xsc::COPY_1) and (rf.img11Cnt >= rf.maxCount)) { needsReboot = true; if (rf.img10Cnt < rf.maxCount and not rf.img10Lock) { tgtChip = xsc::CHIP_1; return; } if (rf.img00Cnt < rf.maxCount and not rf.img00Lock) { return; } if (rf.img01Cnt < rf.maxCount and not rf.img01Lock) { tgtCopy = xsc::COPY_1; return; } if (rf.img00Lock) { needsReboot = false; } // Reboot to fallback image } } bool CoreController::parseRebootFile(std::string path, RebootFile &rf) { using namespace std; std::string selfMatch; if (CURRENT_CHIP == xsc::CHIP_0) { if (CURRENT_COPY == xsc::COPY_0) { selfMatch = "00"; } else { selfMatch = "01"; } } else { if (CURRENT_COPY == xsc::COPY_0) { selfMatch = "10"; } else { selfMatch = "11"; } } ifstream file(path); string word; string line; uint8_t lineIdx = 0; while (std::getline(file, line)) { istringstream iss(line); switch (lineIdx) { case 0: { iss >> word; if (word.find("on:") == string::npos) { // invalid file return false; } iss >> rf.enabled; break; } case 1: { iss >> word; if (word.find("maxcnt:") == string::npos) { return false; } iss >> rf.maxCount; break; } case 2: { iss >> word; if (word.find("img00:") == string::npos) { return false; } iss >> rf.img00Cnt; if (word.find(selfMatch) != string::npos) { rf.relevantBootCnt = &rf.img00Cnt; } break; } case 3: { iss >> word; if (word.find("img01:") == string::npos) { return false; } iss >> rf.img01Cnt; if (word.find(selfMatch) != string::npos) { rf.relevantBootCnt = &rf.img01Cnt; } break; } case 4: { iss >> word; if (word.find("img10:") == string::npos) { return false; } iss >> rf.img10Cnt; if (word.find(selfMatch) != string::npos) { rf.relevantBootCnt = &rf.img10Cnt; } break; } case 5: { iss >> word; if (word.find("img11:") == string::npos) { return false; } iss >> rf.img11Cnt; if (word.find(selfMatch) != string::npos) { rf.relevantBootCnt = &rf.img11Cnt; } break; } case 6: { iss >> word; if (word.find("img00lock:") == string::npos) { return false; } iss >> rf.img00Lock; break; } case 7: { iss >> word; if (word.find("img01lock:") == string::npos) { return false; } iss >> rf.img01Lock; break; } case 8: { iss >> word; if (word.find("img10lock:") == string::npos) { return false; } iss >> rf.img10Lock; break; } case 9: { iss >> word; if (word.find("img11lock:") == string::npos) { return false; } iss >> rf.img11Lock; break; } case 10: { iss >> word; if (word.find("bootflag:") == string::npos) { return false; } iss >> rf.bootFlag; break; } case 11: { iss >> word; int copyRaw = 0; int chipRaw = 0; if (word.find("last:") == string::npos) { return false; } iss >> chipRaw; if (iss.fail()) { return false; } iss >> copyRaw; if (iss.fail()) { return false; } if (chipRaw > 1 or copyRaw > 1) { return false; } rf.lastChip = static_cast(chipRaw); rf.lastCopy = static_cast(copyRaw); break; } case 12: { iss >> word; int copyRaw = 0; int chipRaw = 0; if (word.find("next:") == string::npos) { return false; } iss >> chipRaw; if (iss.fail()) { return false; } iss >> copyRaw; if (iss.fail()) { return false; } if (chipRaw > 2 or copyRaw > 2) { return false; } rf.mechanismNextChip = static_cast(chipRaw); rf.mechanismNextCopy = static_cast(copyRaw); break; } } if (iss.fail()) { return false; } lineIdx++; } if (lineIdx < 12) { return false; } return true; } void CoreController::resetRebootCount(xsc::Chip tgtChip, xsc::Copy tgtCopy) { std::string path = currMntPrefix + REBOOT_FILE; // Disable the reboot file mechanism parseRebootFile(path, rebootFile); if (tgtChip == xsc::ALL_CHIP and tgtCopy == xsc::ALL_COPY) { rebootFile.img00Cnt = 0; rebootFile.img01Cnt = 0; rebootFile.img10Cnt = 0; rebootFile.img11Cnt = 0; } else { if (tgtChip == xsc::CHIP_0) { if (tgtCopy == xsc::COPY_0) { rebootFile.img00Cnt = 0; } else { rebootFile.img01Cnt = 0; } } else { if (tgtCopy == xsc::COPY_0) { rebootFile.img10Cnt = 0; } else { rebootFile.img11Cnt = 0; } } } rewriteRebootFile(rebootFile); } void CoreController::rewriteRebootFile(RebootFile file) { std::string path = currMntPrefix + REBOOT_FILE; std::ofstream rebootFile(path); if (rebootFile.is_open()) { // Initiate reboot file first. Reboot handling will be on on initialization rebootFile << "on: " << file.enabled << "\nmaxcnt: " << file.maxCount << "\nimg00: " << file.img00Cnt << "\nimg01: " << file.img01Cnt << "\nimg10: " << file.img10Cnt << "\nimg11: " << file.img11Cnt << "\nimg00lock: " << file.img00Lock << "\nimg01lock: " << file.img01Lock << "\nimg10lock: " << file.img10Lock << "\nimg11lock: " << file.img11Lock << "\nbootflag: " << file.bootFlag << "\nlast: " << static_cast(file.lastChip) << " " << static_cast(file.lastCopy) << "\nnext: " << static_cast(file.mechanismNextChip) << " " << static_cast(file.mechanismNextCopy) << "\n"; } } void CoreController::setRebootMechanismLock(bool lock, xsc::Chip tgtChip, xsc::Copy tgtCopy) { std::string path = currMntPrefix + REBOOT_FILE; // Disable the reboot file mechanism parseRebootFile(path, rebootFile); if (tgtChip == xsc::CHIP_0) { if (tgtCopy == xsc::COPY_0) { rebootFile.img00Lock = lock; } else { rebootFile.img01Lock = lock; } } else { if (tgtCopy == xsc::COPY_0) { rebootFile.img10Lock = lock; } else { rebootFile.img11Lock = lock; } } rewriteRebootFile(rebootFile); } ReturnValue_t CoreController::timeFileHandler() { // Always set time. We could only set it if it is updated by GPS, but then the backup time would // become obsolete on GPS problems. if (opDivider10.check()) { // It is assumed that the system time is set from the GPS time timeval currentTime = {}; ReturnValue_t result = Clock::getClock_timeval(¤tTime); if (result != HasReturnvaluesIF::RETURN_OK) { return result; } std::string fileName = currMntPrefix + TIME_FILE; std::ofstream timeFile(fileName); if (not timeFile.good()) { sif::error << "CoreController::timeFileHandler: Error opening time file: " << strerror(errno) << std::endl; return RETURN_FAILED; } timeFile << "UNIX SECONDS: " << currentTime.tv_sec << std::endl; } return RETURN_OK; } ReturnValue_t CoreController::initClockFromTimeFile() { using namespace GpsHyperion; using namespace std; std::string fileName = currMntPrefix + TIME_FILE; if (std::filesystem::exists(fileName) and ((gpsFix == FixMode::UNKNOWN or gpsFix == FixMode::NOT_SEEN) or not utility::timeSanityCheck())) { ifstream timeFile(fileName); string nextWord; getline(timeFile, nextWord); istringstream iss(nextWord); iss >> nextWord; if (iss.bad() or nextWord != "UNIX") { return RETURN_FAILED; } iss >> nextWord; if (iss.bad() or nextWord != "SECONDS:") { return RETURN_FAILED; } iss >> nextWord; timeval currentTime = {}; char *checkPtr; currentTime.tv_sec = strtol(nextWord.c_str(), &checkPtr, 10); if (iss.bad() or *checkPtr) { return RETURN_FAILED; } #if OBSW_VERBOSE_LEVEL >= 1 time_t timeRaw = currentTime.tv_sec; std::tm *time = std::gmtime(&timeRaw); sif::info << "Setting system time from time files: " << std::put_time(time, "%c %Z") << std::endl; #endif return Clock::setClock(¤tTime); } return RETURN_OK; } void CoreController::readHkData() { ReturnValue_t result = RETURN_OK; result = hkSet.read(TIMEOUT_TYPE, MUTEX_TIMEOUT); if (result != RETURN_OK) { return; } Xadc xadc; result = xadc.getTemperature(hkSet.temperature.value); if (result != RETURN_OK) { hkSet.temperature.setValid(false); } else { hkSet.temperature.setValid(true); } result = xadc.getVccPint(hkSet.psVoltage.value); if (result != RETURN_OK) { hkSet.psVoltage.setValid(false); } else { hkSet.psVoltage.setValid(true); } result = xadc.getVccInt(hkSet.plVoltage.value); if (result != RETURN_OK) { hkSet.plVoltage.setValid(false); } else { hkSet.plVoltage.setValid(true); } #if OBSW_PRINT_CORE_HK == 1 hkSet.printSet(); #endif /* OBSW_PRINT_CORE_HK == 1 */ result = hkSet.commit(TIMEOUT_TYPE, MUTEX_TIMEOUT); if (result != RETURN_OK) { return; } } bool CoreController::isNumber(const std::string &s) { return !s.empty() && std::find_if(s.begin(), s.end(), [](unsigned char c) { return !std::isdigit(c); }) == s.end(); }