/* * SensorProcessing.cpp * * Created on: 7 Mar 2022 * Author: Robin Marquardt */ #include "SensorProcessing.h" #include #include #include #include #include #include #include "../controllerdefinitions/AcsCtrlDefinitions.h" #include "Igrf13Model.h" #include "util/MathOperations.h" using namespace Math; SensorProcessing::SensorProcessing(AcsParameters *acsParameters_) : savedMagFieldEst{0, 0, 0} { validMagField = false; validGcLatitude = false; } SensorProcessing::~SensorProcessing() {} bool SensorProcessing::processMgm(const float *mgm0Value, bool mgm0valid, const float *mgm1Value, bool mgm1valid, const float *mgm2Value, bool mgm2valid, const float *mgm3Value, bool mgm3valid, const float *mgm4Value, bool mgm4valid, timeval timeOfMgmMeasurement, const AcsParameters::MgmHandlingParameters *mgmParameters, const double gpsLatitude, const double gpsLongitude, const double gpsAltitude, bool gpsValid, double *magFieldEst, bool *outputValid, double *magFieldModel, bool *magFieldModelValid, double *magneticFieldVectorDerivative, bool *magneticFieldVectorDerivativeValid) { if (!mgm0valid && !mgm1valid && !mgm2valid && !mgm3valid && !mgm4valid) { *outputValid = false; validMagField = false; return false; } // Transforming Values to the Body Frame (actually it is the geometry frame atm) float mgm0ValueBody[3] = {0, 0, 0}, mgm1ValueBody[3] = {0, 0, 0}, mgm2ValueBody[3] = {0, 0, 0}, mgm3ValueBody[3] = {0, 0, 0}, mgm4ValueBody[3] = {0, 0, 0}; bool validUnit[5] = {false, false, false, false, false}; uint8_t validCount = 0; if (mgm0valid) { MatrixOperations::multiply(mgmParameters->mgm0orientationMatrix[0], mgm0Value, mgm0ValueBody, 3, 3, 1); validCount += 1; validUnit[0] = true; } if (mgm1valid) { MatrixOperations::multiply(mgmParameters->mgm1orientationMatrix[0], mgm1Value, mgm1ValueBody, 3, 3, 1); validCount += 1; validUnit[1] = true; } if (mgm2valid) { MatrixOperations::multiply(mgmParameters->mgm2orientationMatrix[0], mgm2Value, mgm2ValueBody, 3, 3, 1); validCount += 1; validUnit[2] = true; } if (mgm3valid) { MatrixOperations::multiply(mgmParameters->mgm3orientationMatrix[0], mgm3Value, mgm3ValueBody, 3, 3, 1); validCount += 1; validUnit[3] = true; } if (mgm4valid) { MatrixOperations::multiply(mgmParameters->mgm4orientationMatrix[0], mgm4Value, mgm4ValueBody, 3, 3, 1); validCount += 1; validUnit[4] = true; } /* -------- MagFieldEst: Middle Value ------- */ float mgmValues[3][5] = { {mgm0ValueBody[0], mgm1ValueBody[0], mgm2ValueBody[0], mgm3ValueBody[0], mgm4ValueBody[0]}, {mgm0ValueBody[1], mgm1ValueBody[1], mgm2ValueBody[1], mgm3ValueBody[1], mgm4ValueBody[1]}, {mgm0ValueBody[2], mgm1ValueBody[2], mgm2ValueBody[2], mgm3ValueBody[2], mgm4ValueBody[2]}}; double mgmValidValues[3][validCount]; uint8_t j = 0; for (uint8_t i = 0; i < validCount; i++) { if (validUnit[i]) { mgmValidValues[0][j] = mgmValues[0][i]; mgmValidValues[1][j] = mgmValues[1][i]; mgmValidValues[2][j] = mgmValues[2][i]; j += 1; } } // Selection Sort double mgmValidValuesSort[3][validCount]; MathOperations::selectionSort(*mgmValidValues, *mgmValidValuesSort, 3, validCount); uint8_t n = ceil(validCount / 2); magFieldEst[0] = mgmValidValuesSort[0][n]; magFieldEst[1] = mgmValidValuesSort[1][n]; magFieldEst[2] = mgmValidValuesSort[2][n]; validMagField = true; //-----------------------Mag Rate Computation --------------------------------------------------- double timeDiff = timevalOperations::toDouble(timeOfMgmMeasurement - timeOfSavedMagFieldEst); for (uint8_t i = 0; i < 3; i++) { magneticFieldVectorDerivative[i] = (magFieldEst[i] - savedMagFieldEst[i]) / timeDiff; savedMagFieldEst[i] = magFieldEst[i]; } *magneticFieldVectorDerivativeValid = true; if (timeOfSavedMagFieldEst.tv_sec == 0) { magneticFieldVectorDerivative[0] = 0; magneticFieldVectorDerivative[1] = 0; magneticFieldVectorDerivative[2] = 0; *magneticFieldVectorDerivativeValid = false; } timeOfSavedMagFieldEst = timeOfMgmMeasurement; *outputValid = true; // ---------------- IGRF- 13 Implementation here ------------------------------------------------ if (!gpsValid) { *magFieldModelValid = false; } else { // Should be existing class object which will be called and modified here. Igrf13Model igrf13; // So the line above should not be done here. Update: Can be done here as long updated coffs // stored in acsParameters ? igrf13.updateCoeffGH(timeOfMgmMeasurement); // maybe put a condition here, to only update after a full day, this // class function has around 700 steps to perform igrf13.magFieldComp(gpsLongitude, gpsLatitude, gpsAltitude, timeOfMgmMeasurement, magFieldModel); *magFieldModelValid = false; } return true; } void SensorProcessing::processSus( const uint16_t *sus0Value, bool sus0valid, const uint16_t *sus1Value, bool sus1valid, const uint16_t *sus2Value, bool sus2valid, const uint16_t *sus3Value, bool sus3valid, const uint16_t *sus4Value, bool sus4valid, const uint16_t *sus5Value, bool sus5valid, const uint16_t *sus6Value, bool sus6valid, const uint16_t *sus7Value, bool sus7valid, const uint16_t *sus8Value, bool sus8valid, const uint16_t *sus9Value, bool sus9valid, const uint16_t *sus10Value, bool sus10valid, const uint16_t *sus11Value, bool sus11valid, timeval timeOfSusMeasurement, const AcsParameters::SusHandlingParameters *susParameters, const AcsParameters::SunModelParameters *sunModelParameters, double *sunDirEst, bool *sunDirEstValid, double *sunVectorInertial, bool *sunVectorInertialValid, double *sunVectorDerivative, bool *sunVectorDerivativeValid) { if (sus0valid) { sus0valid = susConverter.checkSunSensorData(sus0Value); } if (sus1valid) { sus1valid = susConverter.checkSunSensorData(sus1Value); } if (sus2valid) { sus2valid = susConverter.checkSunSensorData(sus2Value); } if (sus3valid) { sus3valid = susConverter.checkSunSensorData(sus3Value); } if (sus4valid) { sus4valid = susConverter.checkSunSensorData(sus4Value); } if (sus5valid) { sus5valid = susConverter.checkSunSensorData(sus5Value); } if (sus6valid) { sus6valid = susConverter.checkSunSensorData(sus6Value); } if (sus7valid) { sus7valid = susConverter.checkSunSensorData(sus7Value); } if (sus8valid) { sus8valid = susConverter.checkSunSensorData(sus8Value); } if (sus9valid) { sus9valid = susConverter.checkSunSensorData(sus9Value); } if (sus10valid) { sus10valid = susConverter.checkSunSensorData(sus10Value); } if (sus11valid) { sus11valid = susConverter.checkSunSensorData(sus11Value); } if (!sus0valid && !sus1valid && !sus2valid && !sus3valid && !sus4valid && !sus5valid && !sus6valid && !sus7valid && !sus8valid && !sus9valid && !sus10valid && !sus11valid) { *sunDirEstValid = false; return; } else { // WARNING: NOT TRANSFORMED IN BODY FRAME YET // Transformation into Geomtry Frame float sus0VecBody[3] = {0, 0, 0}, sus1VecBody[3] = {0, 0, 0}, sus2VecBody[3] = {0, 0, 0}, sus3VecBody[3] = {0, 0, 0}, sus4VecBody[3] = {0, 0, 0}, sus5VecBody[3] = {0, 0, 0}, sus6VecBody[3] = {0, 0, 0}, sus7VecBody[3] = {0, 0, 0}, sus8VecBody[3] = {0, 0, 0}, sus9VecBody[3] = {0, 0, 0}, sus10VecBody[3] = {0, 0, 0}, sus11VecBody[3] = {0, 0, 0}; if (sus0valid) { MatrixOperations::multiply( susParameters->sus0orientationMatrix[0], susConverter.getSunVectorSensorFrame(sus0Value, susParameters->sus0coeffAlpha, susParameters->sus0coeffBeta), sus0VecBody, 3, 3, 1); } if (sus1valid) { MatrixOperations::multiply( susParameters->sus1orientationMatrix[0], susConverter.getSunVectorSensorFrame(sus1Value, susParameters->sus1coeffAlpha, susParameters->sus1coeffBeta), sus1VecBody, 3, 3, 1); } if (sus2valid) { MatrixOperations::multiply( susParameters->sus2orientationMatrix[0], susConverter.getSunVectorSensorFrame(sus2Value, susParameters->sus2coeffAlpha, susParameters->sus2coeffBeta), sus2VecBody, 3, 3, 1); } if (sus3valid) { MatrixOperations::multiply( susParameters->sus3orientationMatrix[0], susConverter.getSunVectorSensorFrame(sus3Value, susParameters->sus3coeffAlpha, susParameters->sus3coeffBeta), sus3VecBody, 3, 3, 1); } if (sus4valid) { MatrixOperations::multiply( susParameters->sus4orientationMatrix[0], susConverter.getSunVectorSensorFrame(sus4Value, susParameters->sus4coeffAlpha, susParameters->sus4coeffBeta), sus4VecBody, 3, 3, 1); } if (sus5valid) { MatrixOperations::multiply( susParameters->sus5orientationMatrix[0], susConverter.getSunVectorSensorFrame(sus5Value, susParameters->sus5coeffAlpha, susParameters->sus5coeffBeta), sus5VecBody, 3, 3, 1); } if (sus6valid) { MatrixOperations::multiply( susParameters->sus6orientationMatrix[0], susConverter.getSunVectorSensorFrame(sus6Value, susParameters->sus6coeffAlpha, susParameters->sus6coeffBeta), sus6VecBody, 3, 3, 1); } if (sus7valid) { MatrixOperations::multiply( susParameters->sus7orientationMatrix[0], susConverter.getSunVectorSensorFrame(sus7Value, susParameters->sus7coeffAlpha, susParameters->sus7coeffBeta), sus7VecBody, 3, 3, 1); } if (sus8valid) { MatrixOperations::multiply( susParameters->sus8orientationMatrix[0], susConverter.getSunVectorSensorFrame(sus8Value, susParameters->sus8coeffAlpha, susParameters->sus8coeffBeta), sus8VecBody, 3, 3, 1); } if (sus9valid) { MatrixOperations::multiply( susParameters->sus9orientationMatrix[0], susConverter.getSunVectorSensorFrame(sus9Value, susParameters->sus9coeffAlpha, susParameters->sus9coeffBeta), sus9VecBody, 3, 3, 1); } if (sus10valid) { MatrixOperations::multiply( susParameters->sus10orientationMatrix[0], susConverter.getSunVectorSensorFrame(sus10Value, susParameters->sus10coeffAlpha, susParameters->sus10coeffBeta), sus10VecBody, 3, 3, 1); } if (sus11valid) { MatrixOperations::multiply( susParameters->sus11orientationMatrix[0], susConverter.getSunVectorSensorFrame(sus11Value, susParameters->sus11coeffAlpha, susParameters->sus11coeffBeta), sus11VecBody, 3, 3, 1); } /* ------ Mean Value: susDirEst ------ */ bool validIds[12] = {sus0valid, sus1valid, sus2valid, sus3valid, sus4valid, sus5valid, sus6valid, sus7valid, sus8valid, sus9valid, sus10valid, sus11valid}; float susVecBody[3][12] = {{sus0VecBody[0], sus1VecBody[0], sus2VecBody[0], sus3VecBody[0], sus4VecBody[0], sus5VecBody[0], sus6VecBody[0], sus7VecBody[0], sus8VecBody[0], sus9VecBody[0], sus10VecBody[0], sus11VecBody[0]}, {sus0VecBody[1], sus1VecBody[1], sus2VecBody[1], sus3VecBody[1], sus4VecBody[1], sus5VecBody[1], sus6VecBody[1], sus7VecBody[1], sus8VecBody[1], sus9VecBody[1], sus10VecBody[1], sus11VecBody[1]}, {sus0VecBody[2], sus1VecBody[2], sus2VecBody[2], sus3VecBody[2], sus4VecBody[2], sus5VecBody[2], sus6VecBody[2], sus7VecBody[2], sus8VecBody[2], sus9VecBody[2], sus10VecBody[2], sus11VecBody[2]}}; double susMeanValue[3] = {0, 0, 0}; for (uint8_t i = 0; i < 12; i++) { if (validIds[i]) { susMeanValue[0] += susVecBody[0][i]; susMeanValue[1] += susVecBody[1][i]; susMeanValue[2] += susVecBody[2][i]; } } VectorOperations::normalize(susMeanValue, sunDirEst, 3); *sunDirEstValid = true; } /* -------- Sun Derivatiative --------------------- */ double timeDiff = timevalOperations::toDouble(timeOfSusMeasurement - timeOfSavedSusDirEst); for (uint8_t i = 0; i < 3; i++) { sunVectorDerivative[i] = (sunDirEst[i] - savedSunVector[i]) / timeDiff; savedSunVector[i] = sunDirEst[i]; } *sunVectorDerivativeValid = true; if (timeOfSavedSusDirEst.tv_sec == 0) { sunVectorDerivative[0] = 0; sunVectorDerivative[1] = 0; sunVectorDerivative[2] = 0; *sunVectorDerivativeValid = false; } timeOfSavedSusDirEst = timeOfSusMeasurement; /* -------- Sun Model Direction (IJK frame) ------- */ // if (useSunModel) eventuell double JD2000 = MathOperations::convertUnixToJD2000(timeOfSusMeasurement); // Julean Centuries double JC2000 = JD2000 / 36525; double meanLongitude = (sunModelParameters->omega_0 + (sunModelParameters->domega) * JC2000) * PI / 180; double meanAnomaly = (sunModelParameters->m_0 + sunModelParameters->dm * JC2000) * PI / 180.; double eclipticLongitude = meanLongitude + sunModelParameters->p1 * sin(meanAnomaly) + sunModelParameters->p2 * sin(2 * meanAnomaly); double epsilon = sunModelParameters->e - (sunModelParameters->e1) * JC2000; sunVectorInertial[0] = cos(eclipticLongitude); sunVectorInertial[1] = sin(eclipticLongitude) * cos(epsilon); sunVectorInertial[2] = sin(eclipticLongitude) * sin(epsilon); *sunVectorInertialValid = true; } void SensorProcessing::processRmu(const double rmu0Value[], bool rmu0valid, const double rmu1Value[], bool rmu1valid, const double rmu2Value[], bool rmu2valid, timeval timeOfrmuMeasurement, const AcsParameters::RmuHandlingParameters *rmuParameters, double *satRatEst, bool *satRateEstValid) { if (!rmu0valid && !rmu1valid && !rmu2valid) { *satRateEstValid = false; return; } // Transforming Values to the Body Frame (actually it is the geometry frame atm) double rmu0ValueBody[3] = {0, 0, 0}, rmu1ValueBody[3] = {0, 0, 0}, rmu2ValueBody[3] = {0, 0, 0}; bool validUnit[3] = {false, false, false}; uint8_t validCount = 0; if (rmu0valid) { MatrixOperations::multiply(rmuParameters->rmu0orientationMatrix[0], rmu0Value, rmu0ValueBody, 3, 3, 1); validCount += 1; validUnit[0] = true; } if (rmu1valid) { MatrixOperations::multiply(rmuParameters->rmu1orientationMatrix[0], rmu1Value, rmu1ValueBody, 3, 3, 1); validCount += 1; validUnit[1] = true; } if (rmu2valid) { MatrixOperations::multiply(rmuParameters->rmu2orientationMatrix[0], rmu2Value, rmu2ValueBody, 3, 3, 1); validCount += 1; validUnit[2] = true; } /* -------- SatRateEst: Middle Value ------- */ double rmuValues[3][3] = {{rmu0ValueBody[0], rmu1ValueBody[0], rmu2ValueBody[0]}, {rmu0ValueBody[1], rmu1ValueBody[1], rmu2ValueBody[1]}, {rmu0ValueBody[2], rmu1ValueBody[2], rmu2ValueBody[2]}}; double rmuValidValues[3][validCount]; uint8_t j = 0; for (uint8_t i = 0; i < validCount; i++) { if (validUnit[i]) { rmuValidValues[0][j] = rmuValues[0][i]; rmuValidValues[1][j] = rmuValues[1][i]; rmuValidValues[2][j] = rmuValues[2][i]; j += 1; } } // Selection Sort double rmuValidValuesSort[3][validCount]; MathOperations::selectionSort(*rmuValidValues, *rmuValidValuesSort, 3, validCount); uint8_t n = ceil(validCount / 2); satRatEst[0] = rmuValidValuesSort[0][n]; satRatEst[1] = rmuValidValuesSort[1][n]; satRatEst[2] = rmuValidValuesSort[2][n]; *satRateEstValid = true; } void SensorProcessing::processGps(const double gps0latitude, const double gps0longitude, const bool validGps, double *gcLatitude, double *gdLongitude) { // name to convert not process if (validGps) { // Transforming from Degree to Radians and calculation geocentric lattitude from geodetic *gdLongitude = gps0longitude * PI / 180; double latitudeRad = gps0latitude * PI / 180; double eccentricityWgs84 = 0.0818195; double factor = 1 - pow(eccentricityWgs84, 2); *gcLatitude = atan(factor * tan(latitudeRad)); validGcLatitude = true; } } void SensorProcessing::process(acsctrl::SusDataRaw *susData, timeval now, ACS::SensorValues *sensorValues, ACS::OutputValues *outputValues, const AcsParameters *acsParameters) { sensorValues->update(); // processGps(sensorValues->gps0latitude, sensorValues->gps0longitude, sensorValues->gps0Valid, // &outputValues->gcLatitude, &outputValues->gdLongitude); outputValues->mgmUpdated = processMgm( sensorValues->mgm0Lis3Set.fieldStrengths.value, sensorValues->mgm0Lis3Set.fieldStrengths.isValid(), sensorValues->mgm1Rm3100Set.fieldStrengths.value, sensorValues->mgm1Rm3100Set.fieldStrengths.isValid(), sensorValues->mgm2Lis3Set.fieldStrengths.value, sensorValues->mgm2Lis3Set.fieldStrengths.isValid(), sensorValues->mgm3Rm3100Set.fieldStrengths.value, sensorValues->mgm3Rm3100Set.fieldStrengths.isValid(), sensorValues->imtqMgmSet.mtmRawNt.value, sensorValues->imtqMgmSet.mtmRawNt.isValid(), now, &acsParameters->mgmHandlingParameters, outputValues->gcLatitude, outputValues->gdLongitude, sensorValues->gps0altitude, sensorValues->gps0Valid, outputValues->magFieldEst, &outputValues->magFieldEstValid, outputValues->magFieldModel, &outputValues->magFieldModelValid, outputValues->magneticFieldVectorDerivative, &outputValues->magneticFieldVectorDerivativeValid); // VALID outputs- PoolVariable ? processSus(sensorValues->susSets[0].channels.value, sensorValues->susSets[0].channels.isValid(), sensorValues->susSets[1].channels.value, sensorValues->susSets[1].channels.isValid(), sensorValues->susSets[2].channels.value, sensorValues->susSets[2].channels.isValid(), sensorValues->susSets[3].channels.value, sensorValues->susSets[3].channels.isValid(), sensorValues->susSets[4].channels.value, sensorValues->susSets[4].channels.isValid(), sensorValues->susSets[5].channels.value, sensorValues->susSets[5].channels.isValid(), sensorValues->susSets[6].channels.value, sensorValues->susSets[6].channels.isValid(), sensorValues->susSets[7].channels.value, sensorValues->susSets[7].channels.isValid(), sensorValues->susSets[8].channels.value, sensorValues->susSets[8].channels.isValid(), sensorValues->susSets[9].channels.value, sensorValues->susSets[9].channels.isValid(), sensorValues->susSets[10].channels.value, sensorValues->susSets[10].channels.isValid(), sensorValues->susSets[11].channels.value, sensorValues->susSets[11].channels.isValid(), now, &acsParameters->susHandlingParameters, &acsParameters->sunModelParameters, outputValues->sunDirEst, &outputValues->sunDirEstValid, outputValues->sunDirModel, &outputValues->sunDirModelValid, outputValues->sunVectorDerivative, &outputValues->sunVectorDerivativeValid); // VALID outputs ? // processRmu(sensorValues->rmu0, sensorValues->rmu0Valid, sensorValues->rmu1, // sensorValues->rmu1Valid, sensorValues->rmu2, sensorValues->rmu2Valid, now, // &acsParameters->rmuHandlingParameters, outputValues->satRateEst, // &outputValues->satRateEstValid); }