#include "Max31865PT1000Handler.h"

#include <bitset>
#include <cmath>

#include "fsfw/datapool/PoolReadGuard.h"

Max31865PT1000Handler::Max31865PT1000Handler(object_id_t objectId, object_id_t comIF,
                                             CookieIF *comCookie)
    : DeviceHandlerBase(objectId, comIF, comCookie),
      sensorDataset(this),
      sensorDatasetSid(sensorDataset.getSid()) {
#if OBSW_VERBOSE_LEVEL >= 1
  debugDivider = new PeriodicOperationDivider(10);
#endif
}

Max31865PT1000Handler::~Max31865PT1000Handler() {}

void Max31865PT1000Handler::doStartUp() {
  if (internalState == InternalState::NONE) {
    internalState = InternalState::WARMUP;
    Clock::getUptime(&startTime);
  }

  if (internalState == InternalState::WARMUP) {
    dur_millis_t timeNow = 0;
    Clock::getUptime(&timeNow);
    if (timeNow - startTime >= 100) {
      internalState = InternalState::CONFIGURE;
    }
  }

  if (internalState == InternalState::CONFIGURE) {
    if (commandExecuted) {
      commandExecuted = false;
      internalState = InternalState::REQUEST_CONFIG;
    }
  }

  if (internalState == InternalState::REQUEST_CONFIG) {
    if (commandExecuted) {
      commandExecuted = false;
      internalState = InternalState::CONFIG_HIGH_THRESHOLD;
    }
  }

  if (internalState == InternalState::CONFIG_HIGH_THRESHOLD) {
    if (commandExecuted) {
      internalState = InternalState::REQUEST_HIGH_THRESHOLD;
      commandExecuted = false;
    }
  }

  if (internalState == InternalState::REQUEST_HIGH_THRESHOLD) {
    if (commandExecuted) {
      internalState = InternalState::CONFIG_LOW_THRESHOLD;
      commandExecuted = false;
    }
  }

  if (internalState == InternalState::CONFIG_LOW_THRESHOLD) {
    if (commandExecuted) {
      internalState = InternalState::REQUEST_LOW_THRESHOLD;
      commandExecuted = false;
    }
  }

  if (internalState == InternalState::REQUEST_LOW_THRESHOLD) {
    if (commandExecuted) {
      internalState = InternalState::CLEAR_FAULT_BYTE;
      commandExecuted = false;
    }
  }
  if (internalState == InternalState::CLEAR_FAULT_BYTE) {
    if (commandExecuted) {
      commandExecuted = false;
      internalState = InternalState::RUNNING;
      if (instantNormal) {
        setMode(MODE_NORMAL);
      } else {
        setMode(_MODE_TO_ON);
      }
    }
  }
}

void Max31865PT1000Handler::doShutDown() {
  commandExecuted = false;
  setMode(_MODE_POWER_DOWN);
}

ReturnValue_t Max31865PT1000Handler::buildNormalDeviceCommand(DeviceCommandId_t *id) {
  if (internalState == InternalState::RUNNING) {
    *id = Max31865Definitions::REQUEST_RTD;
    return buildCommandFromCommand(*id, nullptr, 0);
  } else if (internalState == InternalState::REQUEST_FAULT_BYTE) {
    *id = Max31865Definitions::REQUEST_FAULT_BYTE;
    return buildCommandFromCommand(*id, nullptr, 0);
  } else if (internalState == InternalState::CLEAR_FAULT_BYTE) {
    *id = Max31865Definitions::CLEAR_FAULT_BYTE;
    return buildCommandFromCommand(*id, nullptr, 0);
  } else {
    return DeviceHandlerBase::NOTHING_TO_SEND;
  }
}

ReturnValue_t Max31865PT1000Handler::buildTransitionDeviceCommand(DeviceCommandId_t *id) {
  switch (internalState) {
    case (InternalState::NONE):
    case (InternalState::WARMUP):
    case (InternalState::RUNNING):
      return DeviceHandlerBase::NOTHING_TO_SEND;
    case (InternalState::CONFIGURE): {
      *id = Max31865Definitions::CONFIG_CMD;
      uint8_t config[1] = {DEFAULT_CONFIG};
      return buildCommandFromCommand(*id, config, 1);
    }
    case (InternalState::REQUEST_CONFIG): {
      *id = Max31865Definitions::REQUEST_CONFIG;
      return buildCommandFromCommand(*id, nullptr, 0);
    }
    case (InternalState::CONFIG_HIGH_THRESHOLD): {
      *id = Max31865Definitions::WRITE_HIGH_THRESHOLD;
      return buildCommandFromCommand(*id, nullptr, 0);
    }
    case (InternalState::REQUEST_HIGH_THRESHOLD): {
      *id = Max31865Definitions::REQUEST_HIGH_THRESHOLD;
      return buildCommandFromCommand(*id, nullptr, 0);
    }
    case (InternalState::CONFIG_LOW_THRESHOLD): {
      *id = Max31865Definitions::WRITE_LOW_THRESHOLD;
      return buildCommandFromCommand(*id, nullptr, 0);
    }
    case (InternalState::REQUEST_LOW_THRESHOLD): {
      *id = Max31865Definitions::REQUEST_LOW_THRESHOLD;
      return buildCommandFromCommand(*id, nullptr, 0);
    }
    case (InternalState::CLEAR_FAULT_BYTE): {
      *id = Max31865Definitions::CLEAR_FAULT_BYTE;
      return buildCommandFromCommand(*id, nullptr, 0);
    }

    default:
#if FSFW_CPP_OSTREAM_ENABLED == 1
      sif::error << "Max31865PT1000Handler: Invalid internal state" << std::endl;
#else
      sif::printError("Max31865PT1000Handler: Invalid internal state\n");
#endif
      return HasReturnvaluesIF::RETURN_FAILED;
  }
}

ReturnValue_t Max31865PT1000Handler::buildCommandFromCommand(DeviceCommandId_t deviceCommand,
                                                             const uint8_t *commandData,
                                                             size_t commandDataLen) {
  switch (deviceCommand) {
    case (Max31865Definitions::CONFIG_CMD): {
      commandBuffer[0] = static_cast<uint8_t>(Max31865Definitions::CONFIG_CMD);
      if (commandDataLen == 1) {
        commandBuffer[1] = commandData[0];
        DeviceHandlerBase::rawPacketLen = 2;
        DeviceHandlerBase::rawPacket = commandBuffer.data();
        return HasReturnvaluesIF::RETURN_OK;
      } else {
        return DeviceHandlerIF::NO_COMMAND_DATA;
      }
    }
    case (Max31865Definitions::CLEAR_FAULT_BYTE): {
      commandBuffer[0] = static_cast<uint8_t>(Max31865Definitions::CONFIG_CMD);
      commandBuffer[1] = Max31865Definitions::CLEAR_FAULT_BIT_VAL;
      DeviceHandlerBase::rawPacketLen = 2;
      DeviceHandlerBase::rawPacket = commandBuffer.data();
      return HasReturnvaluesIF::RETURN_OK;
    }
    case (Max31865Definitions::REQUEST_CONFIG): {
      commandBuffer[0] = static_cast<uint8_t>(Max31865Definitions::REQUEST_CONFIG);
      commandBuffer[1] = 0x00;  // dummy byte
      DeviceHandlerBase::rawPacketLen = 2;
      DeviceHandlerBase::rawPacket = commandBuffer.data();
      return HasReturnvaluesIF::RETURN_OK;
    }
    case (Max31865Definitions::WRITE_HIGH_THRESHOLD): {
      commandBuffer[0] = static_cast<uint8_t>(Max31865Definitions::WRITE_HIGH_THRESHOLD);
      commandBuffer[1] = static_cast<uint8_t>(HIGH_THRESHOLD >> 8);
      commandBuffer[2] = static_cast<uint8_t>(HIGH_THRESHOLD & 0xFF);
      DeviceHandlerBase::rawPacketLen = 3;
      DeviceHandlerBase::rawPacket = commandBuffer.data();
      return HasReturnvaluesIF::RETURN_OK;
    }
    case (Max31865Definitions::REQUEST_HIGH_THRESHOLD): {
      commandBuffer[0] = static_cast<uint8_t>(Max31865Definitions::REQUEST_HIGH_THRESHOLD);
      commandBuffer[1] = 0x00;  // dummy byte
      commandBuffer[2] = 0x00;  // dummy byte
      DeviceHandlerBase::rawPacketLen = 3;
      DeviceHandlerBase::rawPacket = commandBuffer.data();
      return HasReturnvaluesIF::RETURN_OK;
    }
    case (Max31865Definitions::WRITE_LOW_THRESHOLD): {
      commandBuffer[0] = static_cast<uint8_t>(Max31865Definitions::WRITE_LOW_THRESHOLD);
      commandBuffer[1] = static_cast<uint8_t>(LOW_THRESHOLD >> 8);
      commandBuffer[2] = static_cast<uint8_t>(LOW_THRESHOLD & 0xFF);
      DeviceHandlerBase::rawPacketLen = 3;
      DeviceHandlerBase::rawPacket = commandBuffer.data();
      return HasReturnvaluesIF::RETURN_OK;
    }
    case (Max31865Definitions::REQUEST_LOW_THRESHOLD): {
      commandBuffer[0] = static_cast<uint8_t>(Max31865Definitions::REQUEST_LOW_THRESHOLD);
      commandBuffer[1] = 0x00;  // dummy byte
      commandBuffer[2] = 0x00;  // dummy byte
      DeviceHandlerBase::rawPacketLen = 3;
      DeviceHandlerBase::rawPacket = commandBuffer.data();
      return HasReturnvaluesIF::RETURN_OK;
    }
    case (Max31865Definitions::REQUEST_RTD): {
      commandBuffer[0] = static_cast<uint8_t>(Max31865Definitions::REQUEST_RTD);
      // two dummy bytes
      commandBuffer[1] = 0x00;
      commandBuffer[2] = 0x00;
      DeviceHandlerBase::rawPacketLen = 3;
      DeviceHandlerBase::rawPacket = commandBuffer.data();
      return HasReturnvaluesIF::RETURN_OK;
    }
    case (Max31865Definitions::REQUEST_FAULT_BYTE): {
      commandBuffer[0] = static_cast<uint8_t>(Max31865Definitions::REQUEST_FAULT_BYTE);
      commandBuffer[1] = 0x00;
      DeviceHandlerBase::rawPacketLen = 2;
      DeviceHandlerBase::rawPacket = commandBuffer.data();
      return HasReturnvaluesIF::RETURN_OK;
    }
    default:
      // Unknown DeviceCommand
      return DeviceHandlerIF::COMMAND_NOT_IMPLEMENTED;
  }
}

void Max31865PT1000Handler::fillCommandAndReplyMap() {
  insertInCommandAndReplyMap(Max31865Definitions::CONFIG_CMD, 3);
  insertInCommandAndReplyMap(Max31865Definitions::REQUEST_CONFIG, 3);
  insertInCommandAndReplyMap(Max31865Definitions::WRITE_LOW_THRESHOLD, 3);
  insertInCommandAndReplyMap(Max31865Definitions::REQUEST_LOW_THRESHOLD, 3);
  insertInCommandAndReplyMap(Max31865Definitions::WRITE_HIGH_THRESHOLD, 3);
  insertInCommandAndReplyMap(Max31865Definitions::REQUEST_HIGH_THRESHOLD, 3);
  insertInCommandAndReplyMap(Max31865Definitions::REQUEST_RTD, 3, &sensorDataset);
  insertInCommandAndReplyMap(Max31865Definitions::REQUEST_FAULT_BYTE, 3);
  insertInCommandAndReplyMap(Max31865Definitions::CLEAR_FAULT_BYTE, 3);
}

ReturnValue_t Max31865PT1000Handler::scanForReply(const uint8_t *start, size_t remainingSize,
                                                  DeviceCommandId_t *foundId, size_t *foundLen) {
  size_t rtdReplySize = 3;
  size_t configReplySize = 2;

  if (remainingSize == rtdReplySize and internalState == InternalState::RUNNING) {
    *foundId = Max31865Definitions::REQUEST_RTD;
    *foundLen = rtdReplySize;
    return RETURN_OK;
  }

  if (remainingSize == 3) {
    switch (internalState) {
      case (InternalState::CONFIG_HIGH_THRESHOLD): {
        *foundLen = 3;
        *foundId = Max31865Definitions::WRITE_HIGH_THRESHOLD;
        commandExecuted = true;
        return RETURN_OK;
      }
      case (InternalState::REQUEST_HIGH_THRESHOLD): {
        *foundLen = 3;
        *foundId = Max31865Definitions::REQUEST_HIGH_THRESHOLD;
        return RETURN_OK;
      }
      case (InternalState::CONFIG_LOW_THRESHOLD): {
        *foundLen = 3;
        *foundId = Max31865Definitions::WRITE_LOW_THRESHOLD;
        commandExecuted = true;
        return RETURN_OK;
      }
      case (InternalState::REQUEST_LOW_THRESHOLD): {
        *foundLen = 3;
        *foundId = Max31865Definitions::REQUEST_LOW_THRESHOLD;
        return RETURN_OK;
      }
      default: {
        sif::debug << "Max31865PT1000Handler::scanForReply: Unknown internal state" << std::endl;
        return RETURN_OK;
      }
    }
  }

  if (remainingSize == configReplySize) {
    if (internalState == InternalState::CONFIGURE) {
      commandExecuted = true;
      *foundLen = configReplySize;
      *foundId = Max31865Definitions::CONFIG_CMD;
    } else if (internalState == InternalState::REQUEST_FAULT_BYTE) {
      *foundId = Max31865Definitions::REQUEST_FAULT_BYTE;
      *foundLen = 2;
      internalState = InternalState::RUNNING;
    } else if (internalState == InternalState::CLEAR_FAULT_BYTE) {
      *foundId = Max31865Definitions::CLEAR_FAULT_BYTE;
      *foundLen = 2;
      if (mode == _MODE_START_UP) {
        commandExecuted = true;
      } else {
        internalState = InternalState::RUNNING;
      }
    } else {
      *foundId = Max31865Definitions::REQUEST_CONFIG;
      *foundLen = configReplySize;
    }
  }

  return RETURN_OK;
}

ReturnValue_t Max31865PT1000Handler::interpretDeviceReply(DeviceCommandId_t id,
                                                          const uint8_t *packet) {
  switch (id) {
    case (Max31865Definitions::REQUEST_CONFIG): {
      if (packet[1] != DEFAULT_CONFIG) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
        // it propably would be better if we at least try one restart..
        sif::error << "Max31865PT1000Handler: 0x" << std::hex << this->getObjectId()
                   << ": Invalid configuration reply" << std::endl;
#else
        sif::printError("Max31865PT1000Handler: %04x: Invalid configuration reply!\n",
                        this->getObjectId());
#endif
        return HasReturnvaluesIF::RETURN_OK;
      }
      // set to true for invalid configs too for now.
      if (internalState == InternalState::REQUEST_CONFIG) {
        commandExecuted = true;
      } else if (internalState == InternalState::RUNNING) {
        // we should propably generate a telemetry with the config byte
        // as payload here.
      }
      break;
    }
    case (Max31865Definitions::REQUEST_LOW_THRESHOLD): {
      uint16_t readLowThreshold = packet[1] << 8 | packet[2];
      if (readLowThreshold != LOW_THRESHOLD) {
#if FSFW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1
        sif::warning << "Max31865PT1000Handler::interpretDeviceReply: Object ID: " << std::hex
                     << this->getObjectId() << ": Missmatch between "
                     << "written and readback value of low threshold register" << std::endl;
#else
        sif::printWarning(
            "Max31865PT1000Handler::interpretDeviceReply: Missmatch between "
            "written and readback value of low threshold register\n");
#endif
#endif
      }
      commandExecuted = true;
      break;
    }
    case (Max31865Definitions::REQUEST_HIGH_THRESHOLD): {
      uint16_t readHighThreshold = packet[1] << 8 | packet[2];
      if (readHighThreshold != HIGH_THRESHOLD) {
#if FSFW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1
        sif::warning << "Max31865PT1000Handler::interpretDeviceReply: Object ID: " << std::hex
                     << this->getObjectId() << ": Missmatch between "
                     << "written and readback value of high threshold register" << std::endl;
#else
        sif::printWarning(
            "Max31865PT1000Handler::interpretDeviceReply: Missmatch between "
            "written and readback value of high threshold register\n");
#endif
#endif
      }
      commandExecuted = true;
      break;
    }
    case (Max31865Definitions::REQUEST_RTD): {
      // first bit of LSB reply byte is the fault bit
      uint8_t faultBit = packet[2] & 0b0000'0001;
      if (resetFaultBit) {
        internalState = InternalState::CLEAR_FAULT_BYTE;
        resetFaultBit = false;
      } else if (faultBit == 1) {
        // Maybe we should attempt to restart it?
        internalState = InternalState::REQUEST_FAULT_BYTE;
        resetFaultBit = true;
      }

      // RTD value consists of last seven bits of the LSB reply byte and
      // the MSB reply byte
      uint16_t adcCode = ((packet[1] << 8) | packet[2]) >> 1;
      // do something with rtd value, will propably be stored in
      // dataset.
      float rtdValue = adcCode * RTD_RREF_PT1000 / INT16_MAX;
      // calculate approximation
      float approxTemp = adcCode / 32.0 - 256.0;

#if OBSW_DEBUG_RTD == 1
#if OBSW_VERBOSE_LEVEL >= 1
      if (debugDivider->checkAndIncrement()) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
        sif::info << "Max31865: Object ID: " << std::hex << this->getObjectId()
                  << ": Measured resistance is " << rtdValue << " Ohms." << std::endl;
        sif::info << "Approximated temperature is " << approxTemp << " C" << std::endl;
#else
        sif::printInfo("Max31685: Measured resistance is %f Ohms\n", rtdValue);
        sif::printInfo("Approximated temperature is %f C\n", approxTemp);
#endif
      }
#endif
#endif
      PoolReadGuard pg(&sensorDataset);
      if (pg.getReadResult() != HasReturnvaluesIF::RETURN_OK) {
        // Configuration error
#if FSFW_CPP_OSTREAM_ENABLED == 1
        sif::warning << "Max31865PT1000Handler::interpretDeviceReply: Object ID: " << std::hex
                     << this->getObjectId() << ": Error reading dataset!" << std::endl;
#else
        sif::printWarning(
            "Max31865PT1000Handler::interpretDeviceReply: "
            "Error reading dataset!\n");
#endif
        return pg.getReadResult();
      }

      if (not sensorDataset.isValid()) {
        sensorDataset.setValidity(true, false);
        sensorDataset.rtdValue.setValid(true);
        sensorDataset.temperatureCelcius.setValid(true);
      }

      sensorDataset.rtdValue = rtdValue;
      sensorDataset.temperatureCelcius = approxTemp;
      break;
    }
    case (Max31865Definitions::REQUEST_FAULT_BYTE): {
      faultByte = packet[1];
#if OBSW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1
      sif::warning << "Max31865PT1000Handler::interpretDeviceReply: Object ID: " << std::hex
                   << this->getObjectId()
                   << ": Fault byte"
                      " is: 0b"
                   << std::bitset<8>(faultByte) << std::endl;
#else
      sif::printWarning(
          "Max31865PT1000Handler::interpretDeviceReply: Fault byte"
          " is: 0b" BYTE_TO_BINARY_PATTERN "\n",
          BYTE_TO_BINARY(faultByte));
#endif
#endif
      ReturnValue_t result = sensorDataset.read();
      if (result != HasReturnvaluesIF::RETURN_OK) {
        // Configuration error
#if FSFW_CPP_OSTREAM_ENABLED == 1
        sif::debug << "Max31865PT1000Handler::interpretDeviceReply: Object ID: " << std::hex
                   << this->getObjectId()
                   << ":"
                      "Error reading dataset!"
                   << std::endl;
#else
        sif::printDebug(
            "Max31865PT1000Handler::interpretDeviceReply: "
            "Error reading dataset!\n");
#endif
        return result;
      }
      sensorDataset.errorByte.setValid(true);
      sensorDataset.errorByte = faultByte;
      if (faultByte != 0) {
        sensorDataset.temperatureCelcius.setValid(false);
      }

      result = sensorDataset.commit();
      if (result != HasReturnvaluesIF::RETURN_OK) {
        // Configuration error
#if FSFW_CPP_OSTREAM_ENABLED == 1
        sif::debug << "Max31865PT1000Handler::interpretDeviceReply: Object ID: " << std::hex
                   << this->getObjectId() << ": Error commiting dataset!" << std::endl;
#else
        sif::printDebug(
            "Max31865PT1000Handler::interpretDeviceReply: "
            "Error commiting dataset!\n");
#endif
        return result;
      }

      break;
    }
    default:
      break;
  }
  return HasReturnvaluesIF::RETURN_OK;
}

void Max31865PT1000Handler::debugInterface(uint8_t positionTracker, object_id_t objectId,
                                           uint32_t parameter) {}

uint32_t Max31865PT1000Handler::getTransitionDelayMs(Mode_t modeFrom, Mode_t modeTo) {
  return 25000;
}

ReturnValue_t Max31865PT1000Handler::getSwitches(const uint8_t **switches,
                                                 uint8_t *numberOfSwitches) {
  return DeviceHandlerBase::NO_SWITCH;
}

void Max31865PT1000Handler::doTransition(Mode_t modeFrom, Submode_t subModeFrom) {
  DeviceHandlerBase::doTransition(modeFrom, subModeFrom);
}

ReturnValue_t Max31865PT1000Handler::initializeLocalDataPool(localpool::DataPool &localDataPoolMap,
                                                             LocalDataPoolManager &poolManager) {
  localDataPoolMap.emplace(Max31865Definitions::PoolIds::RTD_VALUE, new PoolEntry<float>({0}));
  localDataPoolMap.emplace(Max31865Definitions::PoolIds::TEMPERATURE_C,
                           new PoolEntry<float>({0}, 1, true));
  localDataPoolMap.emplace(Max31865Definitions::PoolIds::FAULT_BYTE, new PoolEntry<uint8_t>({0}));
  //    poolManager.subscribeForPeriodicPacket(sensorDatasetSid,
  //            false, 4.0, false);
  return HasReturnvaluesIF::RETURN_OK;
}

void Max31865PT1000Handler::setInstantNormal(bool instantNormal) {
  this->instantNormal = instantNormal;
}

void Max31865PT1000Handler::modeChanged() {
  if (mode == MODE_OFF) {
    internalState = InternalState::NONE;
  }
}