#include "SpiTestClass.h" #include "OBSWConfig.h" #include "devices/gpioIds.h" #include #include #include #include #include #include #include #include #include #include #include #include #include SpiTestClass::SpiTestClass(object_id_t objectId, GpioIF* gpioIF): TestTask(objectId), gpioIF(gpioIF) { if(gpioIF == nullptr) { sif::error << "SpiTestClass::SpiTestClass: Invalid GPIO ComIF!" << std::endl; } testMode = TestModes::GYRO_L3GD20H; spiTransferStruct.rx_buf = reinterpret_cast<__u64>(recvBuffer.data()); spiTransferStruct.tx_buf = reinterpret_cast<__u64>(sendBuffer.data()); } ReturnValue_t SpiTestClass::performOneShotAction() { switch(testMode) { case(TestModes::NONE): { break; } case(TestModes::MGM_LIS3MDL): { performLis3MdlTest(mgm2Lis3mdlChipSelect); break; } case(TestModes::MGM_RM3100): { performRm3100Test(mgm3Rm3100ChipSelect); break; } case(TestModes::GYRO_L3GD20H): { performL3gTest(gyro1L3gd20ChipSelect); break; } } return HasReturnvaluesIF::RETURN_OK; } ReturnValue_t SpiTestClass::performPeriodicAction() { return HasReturnvaluesIF::RETURN_OK; } void SpiTestClass::performRm3100Test(uint8_t mgmId) { /* Configure all SPI chip selects and pull them high */ acsInit(); /* Adapt accordingly */ if(mgmId != mgm1Rm3100ChipSelect and mgmId != mgm3Rm3100ChipSelect) { sif::warning << "SpiTestClass::performRm3100Test: Invalid MGM ID!" << std::endl; } gpioId_t currentGpioId = 0; uint8_t chipSelectPin = mgmId; if(chipSelectPin == mgm1Rm3100ChipSelect) { currentGpioId = gpioIds::MGM_1_RM3100_CS; } else { currentGpioId = gpioIds::MGM_3_RM3100_CS; } uint32_t rm3100speed = 976'000; uint8_t rm3100revidReg = 0x36; spi::SpiModes rm3100mode = spi::SpiModes::MODE_3; #ifdef RASPBERRY_PI std::string deviceName = "/dev/spidev0.0"; #else std::string deviceName = "/dev/spidev2.0"; #endif int fileDescriptor = 0; UnixFileGuard fileHelper(deviceName, &fileDescriptor, O_RDWR, "SpiComIF::initializeInterface"); if(fileHelper.getOpenResult()) { sif::error << "SpiTestClass::performRm3100Test: File descriptor could not be opened!" << std::endl; return; } setSpiSpeedAndMode(fileDescriptor, rm3100mode, rm3100speed); uint8_t revId = readRegister(fileDescriptor, currentGpioId, rm3100revidReg); sif::info << "SpiTestClass::performRm3100Test: Revision ID 0b" << std::bitset<8>(revId) << std::endl; /* Write configuration to CMM register */ writeRegister(fileDescriptor, currentGpioId, 0x01, 0x75); uint8_t cmmRegister = readRm3100Register(fileDescriptor , currentGpioId, 0x01); sif::info << "SpiTestClass::performRm3100Test: CMM register value: " << std::hex << "0x" << static_cast(cmmRegister) << std::dec << std::endl; /* Read the cycle count registers */ uint8_t cycleCountsRaw[6]; readMultipleRegisters(fileDescriptor, currentGpioId, 0x04, cycleCountsRaw, 6); uint16_t cycleCountX = cycleCountsRaw[0] << 8 | cycleCountsRaw[1]; uint16_t cycleCountY = cycleCountsRaw[2] << 8 | cycleCountsRaw[3]; uint16_t cycleCountZ = cycleCountsRaw[4] << 8 | cycleCountsRaw[5]; sif::info << "Cycle count X: " << cycleCountX << std::endl; sif::info << "Cycle count Y: " << cycleCountY << std::endl; sif::info << "Cycle count z: " << cycleCountZ << std::endl; writeRegister(fileDescriptor, currentGpioId, 0x0B, 0x95); uint8_t tmrcReg = readRm3100Register(fileDescriptor, currentGpioId, 0x0B); sif::info << "SpiTestClass::performRm3100Test: TMRC register value: " << std::hex << "0x" << static_cast(tmrcReg) << std::dec << std::endl; TaskFactory::delayTask(10); uint8_t statusReg = readRm3100Register(fileDescriptor, currentGpioId, 0x34); sif::info << "SpiTestClass::performRm3100Test: Status Register 0b" << std::bitset<8>(statusReg) << std::endl; /* This means that data is not ready */ if((statusReg & 0b1000'0000) == 0) { sif::warning << "SpiTestClass::performRm3100Test: Data not ready!" << std::endl; TaskFactory::delayTask(10); uint8_t statusReg = readRm3100Register(fileDescriptor, currentGpioId, 0x34); if((statusReg & 0b1000'0000) == 0) { return; } } uint32_t rm3100DefaultCycleCout = 0xC8; /* Gain scales lineary with cycle count and is 38 for cycle count 100 */ float rm3100Gain = rm3100DefaultCycleCout / 100.0 * 38.0; float scaleFactor = 1 / rm3100Gain; uint8_t rawValues[9]; readMultipleRegisters(fileDescriptor, currentGpioId, 0x24, rawValues, 9); /* The sensor generates 24 bit signed values */ int32_t rawX = ((rawValues[0] << 24) | (rawValues[1] << 16) | (rawValues[2] << 8)) >> 8; int32_t rawY = ((rawValues[3] << 24) | (rawValues[4] << 16) | (rawValues[5] << 8)) >> 8; int32_t rawZ = ((rawValues[6] << 24) | (rawValues[7] << 16) | (rawValues[8] << 8)) >> 8; float fieldStrengthX = rawX * scaleFactor; float fieldStrengthY = rawY * scaleFactor; float fieldStrengthZ = rawZ * scaleFactor; sif::info << "RM3100 measured field strenghts in microtesla:" << std::endl; sif::info << "Field Strength X: " << fieldStrengthX << " \xC2\xB5T" << std::endl; sif::info << "Field Strength Y: " << fieldStrengthY << " \xC2\xB5T" << std::endl; sif::info << "Field Strength Z: " << fieldStrengthZ << " \xC2\xB5T" << std::endl; } void SpiTestClass::performLis3MdlTest(uint8_t lis3Id) { /* Configure all SPI chip selects and pull them high */ acsInit(); /* Adapt accordingly */ if(lis3Id != mgm0Lis3mdlChipSelect and lis3Id != mgm2Lis3mdlChipSelect) { sif::warning << "SpiTestClass::performLis3MdlTest: Invalid MGM ID!" << std::endl; } gpioId_t currentGpioId = 0; uint8_t chipSelectPin = lis3Id; uint8_t whoAmIReg = 0b0000'1111; uint8_t whoAmIRegExpectedVal = 0b0011'1101; if(chipSelectPin == mgm0Lis3mdlChipSelect) { currentGpioId = gpioIds::MGM_0_LIS3_CS; } else { currentGpioId = gpioIds::MGM_2_LIS3_CS; } uint32_t spiSpeed = 3'900'000; spi::SpiModes spiMode = spi::SpiModes::MODE_3; #ifdef RASPBERRY_PI std::string deviceName = "/dev/spidev0.0"; #else std::string deviceName = "/dev/spidev2.0"; #endif int fileDescriptor = 0; UnixFileGuard fileHelper(deviceName, &fileDescriptor, O_RDWR, "SpiComIF::initializeInterface"); if(fileHelper.getOpenResult()) { sif::error << "SpiTestClass::performLis3Mdl3100Test: File descriptor could not be opened!" << std::endl; return; } setSpiSpeedAndMode(fileDescriptor, spiMode, spiSpeed); spiTransferStruct.delay_usecs = 0; uint8_t whoAmIRegVal = readStmRegister(fileDescriptor, currentGpioId, whoAmIReg, false); sif::info << "SpiTestClass::performLis3MdlTest: WHO AM I register 0b" << std::bitset<8>(whoAmIRegVal) << std::endl; if(whoAmIRegVal != whoAmIRegExpectedVal) { sif::warning << "SpiTestClass::performLis3MdlTest: WHO AM I register invalid!" << std::endl; } } void SpiTestClass::performL3gTest(uint8_t l3gId) { /* Configure all SPI chip selects and pull them high */ acsInit(); l3gId = gyro2L3gd20ChipSelect; /* Adapt accordingly */ if(l3gId != gyro1L3gd20ChipSelect and l3gId != gyro2L3gd20ChipSelect) { sif::warning << "SpiTestClass::performLis3MdlTest: Invalid MGM ID!" << std::endl; } gpioId_t currentGpioId = 0; uint8_t chipSelectPin = l3gId; uint8_t whoAmIReg = 0b0000'1111; uint8_t whoAmIRegExpectedVal = 0b1101'0111; if(chipSelectPin == gyro1L3gd20ChipSelect) { currentGpioId = gpioIds::GYRO_1_L3G_CS; } else { currentGpioId = gpioIds::GYRO_3_L3G_CS; } uint32_t spiSpeed = 3'900'000; spi::SpiModes spiMode = spi::SpiModes::MODE_3; #ifdef RASPBERRY_PI std::string deviceName = "/dev/spidev0.0"; #else std::string deviceName = "/dev/spidev2.0"; #endif int fileDescriptor = 0; UnixFileGuard fileHelper(deviceName, &fileDescriptor, O_RDWR, "SpiComIF::initializeInterface"); if(fileHelper.getOpenResult()) { sif::error << "SpiTestClass::performLis3Mdl3100Test: File descriptor could not be opened!" << std::endl; return; } setSpiSpeedAndMode(fileDescriptor, spiMode, spiSpeed); uint8_t whoAmIRegVal = readStmRegister(fileDescriptor, currentGpioId, whoAmIReg, false); sif::info << "SpiTestClass::performLis3MdlTest: WHO AM I register 0b" << std::bitset<8>(whoAmIRegVal) << std::endl; if(whoAmIRegVal != whoAmIRegExpectedVal) { sif::warning << "SpiTestClass::performL3gTest: Read WHO AM I register invalid!" << std::endl; } uint8_t ctrlReg1Addr = 0b0010'0000; { uint8_t commandRegs[5]; commandRegs[0] = 0b0000'1111; commandRegs[1] = 0x0; commandRegs[2] = 0x0; /* Configure big endian data format */ commandRegs[3] = 0b0100'0000; commandRegs[4] = 0x0; writeMultipleStmRegisters(fileDescriptor, currentGpioId, ctrlReg1Addr, commandRegs, sizeof(commandRegs)); uint8_t readRegs[5]; readMultipleRegisters(fileDescriptor, currentGpioId, ctrlReg1Addr, readRegs, sizeof(readRegs)); for(uint8_t idx = 0; idx < sizeof(readRegs); idx++) { if(readRegs[idx] != commandRegs[0]) { sif::warning << "SpiTestClass::performL3gTest: Read control register " << static_cast(idx + 1) << " not equal to configured value" << std::endl; } } } uint8_t readOutBuffer[14]; readMultipleStmRegisters(fileDescriptor, currentGpioId, ctrlReg1Addr, readOutBuffer, sizeof(readOutBuffer)); uint8_t statusReg = readOutBuffer[7]; sif::info << "SpiTestClass::performL3gTest: Status Register 0b" << std::bitset<8>(statusReg) << std::endl; uint16_t l3gRange = 245; float scaleFactor = static_cast(l3gRange) / INT16_MAX; /* The sensor spits out little endian */ int16_t angVelocRawX = (readOutBuffer[8] << 8) | readOutBuffer[9]; int16_t angVelocRawY = (readOutBuffer[10] << 8) | readOutBuffer[11]; int16_t angVelocRawZ = (readOutBuffer[12] << 8) | readOutBuffer[13]; float angVelocX = scaleFactor * angVelocRawX; float angVelocY = scaleFactor * angVelocRawY; float angVelocZ = scaleFactor * angVelocRawZ; sif::info << "Angular velocities for the L3GD20H in degrees per second:" << std::endl; sif::info << "X: " << angVelocX << std::endl; sif::info << "Y: " << angVelocY << std::endl; sif::info << "Z: " << angVelocZ << std::endl; } void SpiTestClass::acsInit() { GpioCookie* gpioCookie = new GpioCookie(); GpiodRegular* gpio = nullptr; #ifdef RASPBERRY_PI std::string rpiGpioName = "gpiochip0"; gpio = new GpiodRegular(rpiGpioName, mgm0Lis3mdlChipSelect, "MGM_0_LIS3", gpio::Direction::OUT, 1); gpioCookie->addGpio(gpioIds::MGM_0_LIS3_CS, gpio); gpio = new GpiodRegular(rpiGpioName, mgm1Rm3100ChipSelect, "MGM_1_RM3100", gpio::Direction::OUT, 1); gpioCookie->addGpio(gpioIds::MGM_1_RM3100_CS, gpio); gpio = new GpiodRegular(rpiGpioName, gyro0AdisChipSelect, "GYRO_0_ADIS", gpio::Direction::OUT, 1); gpioCookie->addGpio(gpioIds::GYRO_0_ADIS_CS, gpio); gpio = new GpiodRegular(rpiGpioName, gyro1L3gd20ChipSelect, "GYRO_1_L3G", gpio::Direction::OUT, 1); gpioCookie->addGpio(gpioIds::GYRO_1_L3G_CS, gpio); gpio = new GpiodRegular(rpiGpioName, gyro2L3gd20ChipSelect, "GYRO_2_L3G", gpio::Direction::OUT, 1); gpioCookie->addGpio(gpioIds::GYRO_2_L3G_CS, gpio); gpio = new GpiodRegular(rpiGpioName, mgm2Lis3mdlChipSelect, "MGM_2_LIS3", gpio::Direction::OUT, 1); gpioCookie->addGpio(gpioIds::MGM_2_LIS3_CS, gpio); gpio = new GpiodRegular(rpiGpioName, mgm3Rm3100ChipSelect, "MGM_3_RM3100", gpio::Direction::OUT, 1); gpioCookie->addGpio(gpioIds::MGM_3_RM3100_CS, gpio); #elif defined(XIPHOS_Q7S) std::string q7sGpioName5 = "gpiochip5"; std::string q7sGpioName6 = "gpiochip6"; gpio = new GpiodRegular(q7sGpioName5, mgm0Lis3mdlChipSelect, "MGM_0_LIS3", gpio::Direction::OUT, gpio::HIGH); gpioCookie->addGpio(gpioIds::MGM_0_LIS3_CS, gpio); gpio = new GpiodRegular(q7sGpioName5, mgm1Rm3100ChipSelect, "MGM_1_RM3100", gpio::Direction::OUT, gpio::HIGH); gpioCookie->addGpio(gpioIds::MGM_1_RM3100_CS, gpio); gpio = new GpiodRegular(q7sGpioName5, gyro0AdisChipSelect, "GYRO_0_ADIS", gpio::Direction::OUT, gpio::HIGH); gpioCookie->addGpio(gpioIds::GYRO_0_ADIS_CS, gpio); gpio = new GpiodRegular(q7sGpioName5, gyro1L3gd20ChipSelect, "GYRO_1_L3G", gpio::Direction::OUT, gpio::HIGH); gpioCookie->addGpio(gpioIds::GYRO_1_L3G_CS, gpio); gpio = new GpiodRegular(q7sGpioName5, gyro2L3gd20ChipSelect, "GYRO_2_L3G", gpio::Direction::OUT, gpio::HIGH); gpioCookie->addGpio(gpioIds::GYRO_3_L3G_CS, gpio); gpio = new GpiodRegular(q7sGpioName6, mgm2Lis3mdlChipSelect, "MGM_2_LIS3", gpio::Direction::OUT, gpio::HIGH); gpioCookie->addGpio(gpioIds::MGM_2_LIS3_CS, gpio); gpio = new GpiodRegular(q7sGpioName5, mgm3Rm3100ChipSelect, "MGM_3_RM3100", gpio::Direction::OUT, gpio::HIGH); gpioCookie->addGpio(gpioIds::MGM_3_RM3100_CS, gpio); #endif if(gpioIF != nullptr) { gpioIF->addGpios(gpioCookie); } } void SpiTestClass::setSpiSpeedAndMode(int spiFd, spi::SpiModes mode, uint32_t speed) { int mode_test = SPI_MODE_3; int retval = ioctl(spiFd, SPI_IOC_WR_MODE, &mode_test);//reinterpret_cast(&mode)); if(retval != 0) { utility::handleIoctlError("SpiTestClass::performRm3100Test: Setting SPI mode failed!"); } retval = ioctl(spiFd, SPI_IOC_WR_MAX_SPEED_HZ, &speed); if(retval != 0) { utility::handleIoctlError("SpiTestClass::performRm3100Test: Setting SPI speed failed!"); } } void SpiTestClass::writeRegister(int fd, gpioId_t chipSelect, uint8_t reg, uint8_t value) { spiTransferStruct.len = 2; sendBuffer[0] = reg; sendBuffer[1] = value; if(gpioIF != nullptr and chipSelect != gpio::NO_GPIO) { gpioIF->pullLow(chipSelect); } int retval = ioctl(fd, SPI_IOC_MESSAGE(1), &spiTransferStruct); if(retval < 0) { utility::handleIoctlError("SpiTestClass::writeRegister: Write failed"); } if(gpioIF != nullptr and chipSelect != gpio::NO_GPIO) { gpioIF->pullHigh(chipSelect); } } void SpiTestClass::writeStmRegister(int fd, gpioId_t chipSelect, uint8_t reg, uint8_t value, bool autoIncrement) { if(autoIncrement) { reg |= STM_AUTO_INCR_MASK; } writeRegister(fd, chipSelect, reg, value); } void SpiTestClass::writeMultipleStmRegisters(int fd, gpioId_t chipSelect, uint8_t reg, uint8_t *values, size_t len) { if(values == nullptr) { return; } reg |= STM_AUTO_INCR_MASK; /* Clear read mask */ reg &= ~STM_READ_MASK; writeMultipleRegisters(fd, chipSelect, reg, values, len); } void SpiTestClass::writeMultipleRegisters(int fd, gpioId_t chipSelect, uint8_t reg, uint8_t *values, size_t len) { if(values == nullptr) { return; } sendBuffer[0] = reg; std::memcpy(sendBuffer.data() + 1, values, len); spiTransferStruct.len = len + 1; if(gpioIF != nullptr and chipSelect != gpio::NO_GPIO) { gpioIF->pullLow(chipSelect); } int retval = ioctl(fd, SPI_IOC_MESSAGE(1), &spiTransferStruct); if(retval < 0) { utility::handleIoctlError("SpiTestClass::readRegister: Read failed"); } if(gpioIF != nullptr and chipSelect != gpio::NO_GPIO) { gpioIF->pullHigh(chipSelect); } } uint8_t SpiTestClass::readRm3100Register(int fd, gpioId_t chipSelect, uint8_t reg) { return readStmRegister(fd, chipSelect, reg, false); } void SpiTestClass::readMultipleStmRegisters(int fd, gpioId_t chipSelect, uint8_t reg, uint8_t *reply, size_t len) { reg |= STM_AUTO_INCR_MASK; readMultipleRegisters(fd, chipSelect, reg, reply, len); } void SpiTestClass::readMultipleRegisters(int fd, gpioId_t chipSelect, uint8_t reg, uint8_t *reply, size_t len) { if(reply == nullptr) { return; } spiTransferStruct.len = len + 1; sendBuffer[0] = reg | STM_READ_MASK; for(uint8_t idx = 0; idx < len ; idx ++) { sendBuffer[idx + 1] = 0; } if(gpioIF != nullptr and chipSelect != gpio::NO_GPIO) { gpioIF->pullLow(chipSelect); } int retval = ioctl(fd, SPI_IOC_MESSAGE(1), &spiTransferStruct); if(retval < 0) { utility::handleIoctlError("SpiTestClass::readRegister: Read failed"); } if(gpioIF != nullptr and chipSelect != gpio::NO_GPIO) { gpioIF->pullHigh(chipSelect); } std::memcpy(reply, recvBuffer.data() + 1, len); } uint8_t SpiTestClass::readStmRegister(int fd, gpioId_t chipSelect, uint8_t reg, bool autoIncrement) { reg |= STM_READ_MASK; if(autoIncrement) { reg |= STM_AUTO_INCR_MASK; } return readRegister(fd, chipSelect, reg); } uint8_t SpiTestClass::readRegister(int fd, gpioId_t chipSelect, uint8_t reg) { spiTransferStruct.len = 2; sendBuffer[0] = reg; sendBuffer[1] = 0; if(gpioIF != nullptr and chipSelect != gpio::NO_GPIO) { gpioIF->pullLow(chipSelect); } int retval = ioctl(fd, SPI_IOC_MESSAGE(1), &spiTransferStruct); if(retval < 0) { utility::handleIoctlError("SpiTestClass::readRegister: Read failed"); } if(gpioIF != nullptr and chipSelect != gpio::NO_GPIO) { gpioIF->pullHigh(chipSelect); } return recvBuffer[1]; }