#include "Igrf13Model.h" Igrf13Model::Igrf13Model() {} Igrf13Model::~Igrf13Model() {} void Igrf13Model::magFieldComp(const double longitude, const double gcLatitude, const double altitude, timeval timeOfMagMeasurement, double* magFieldModelInertial) { double magFieldModel[3] = {0, 0, 0}; double phi = longitude, theta = gcLatitude; // geocentric /* Here is the co-latitude needed*/ theta -= 90. * M_PI / 180.; theta *= (-1); double rE = 6371200.0; // radius earth [m] /* Predefine recursive associated Legendre polynomials */ double P11 = 1; double P10 = P11; // P10 = P(n-1,m-0) double dP11 = 0; // derivative double dP10 = dP11; // derivative double P2 = 0, dP2 = 0, P20 = 0, dP20 = 0, K = 0; for (int m = 0; m <= igrfOrder; m++) { for (int n = 1; n <= igrfOrder; n++) { if (m <= n) { /* Calculation of Legendre Polynoms (normalised) */ if (n == m) { P2 = sin(theta) * P11; dP2 = sin(theta) * dP11 + cos(theta) * P11; P11 = P2; P10 = P11; P20 = 0; dP11 = dP2; dP10 = dP11; dP20 = 0; } else if (n == 1) { P2 = cos(theta) * P10; dP2 = cos(theta) * dP10 - sin(theta) * P10; P20 = P10; P10 = P2; dP20 = dP10; dP10 = dP2; } else { K = (pow((n - 1), 2) - pow(m, 2)) / ((2 * n - 1) * (2 * n - 3)); P2 = cos(theta) * P10 - K * P20; dP2 = cos(theta) * dP10 - sin(theta) * P10 - K * dP20; P20 = P10; P10 = P2; dP20 = dP10; dP10 = dP2; } /* gradient of scalar potential towards radius */ magFieldModel[0] += pow(rE / (altitude + rE), (n + 2)) * (n + 1) * ((updatedG[m][n - 1] * cos(m * phi) + updatedH[m][n - 1] * sin(m * phi)) * P2); /* gradient of scalar potential towards theta */ magFieldModel[1] += pow(rE / (altitude + rE), (n + 2)) * ((updatedG[m][n - 1] * cos(m * phi) + updatedH[m][n - 1] * sin(m * phi)) * dP2); /* gradient of scalar potential towards phi */ magFieldModel[2] += pow(rE / (altitude + rE), (n + 2)) * ((-updatedG[m][n - 1] * sin(m * phi) + updatedH[m][n - 1] * cos(m * phi)) * P2 * m); } } } magFieldModel[1] *= -1; magFieldModel[2] *= (-1 / sin(theta)); double JD2000 = 0; Clock::convertTimevalToJD2000(timeOfMagMeasurement, &JD2000); double UT1 = JD2000 / 36525.; double gst = 280.46061837 + 360.98564736629 * JD2000 + 0.0003875 * pow(UT1, 2) - 2.6e-8 * pow(UT1, 3); gst = std::fmod(gst, 360.); gst *= M_PI / 180.; double lst = gst + longitude; // local sidereal time [rad] magFieldModelInertial[0] = (magFieldModel[0] * cos(gcLatitude) + magFieldModel[1] * sin(gcLatitude)) * cos(lst) - magFieldModel[2] * sin(lst); magFieldModelInertial[1] = (magFieldModel[0] * cos(gcLatitude) + magFieldModel[1] * sin(gcLatitude)) * sin(lst) + magFieldModel[2] * cos(lst); magFieldModelInertial[2] = magFieldModel[0] * sin(gcLatitude) - magFieldModel[1] * cos(gcLatitude); // convert nT to uT VectorOperations::mulScalar(magFieldModelInertial, 1e-3, magFieldModelInertial, 3); } void Igrf13Model::updateCoeffGH(timeval timeOfMagMeasurement) { double JD2000Igrf = (2458850.0 - 2451545); // Begin of IGRF-13 (2020-01-01,00:00:00) in JD2000 double JD2000 = 0; Clock::convertTimevalToJD2000(timeOfMagMeasurement, &JD2000); double days = ceil(JD2000 - JD2000Igrf); for (int i = 0; i <= igrfOrder; i++) { for (int j = 0; j <= (igrfOrder - 1); j++) { updatedG[i][j] = coeffG[i][j] + svG[i][j] * (days / 365); updatedH[i][j] = coeffH[i][j] + svH[i][j] * (days / 365); } } } void Igrf13Model::schmidtNormalization() { double kronDelta = 0; schmidtFactors[0][0] = 1; for (int n = 1; n <= igrfOrder; n++) { if (n == 1) { schmidtFactors[0][n - 1] = 1; } else { schmidtFactors[0][n - 1] = schmidtFactors[0][n - 2] * (2 * n - 1) / n; } for (int m = 1; m <= igrfOrder; m++) { if (m == 1) { kronDelta = 1; } else { kronDelta = 0; } schmidtFactors[m][n - 1] = schmidtFactors[m - 1][n - 1] * sqrt((n - m + 1) * (kronDelta + 1) / (n + m)); } } for (int i = 0; i <= igrfOrder; i++) { for (int j = 0; j <= (igrfOrder - 1); j++) { coeffG[i][j] = schmidtFactors[i][j] * coeffG[i][j]; coeffH[i][j] = schmidtFactors[i][j] * coeffH[i][j]; svG[i][j] = schmidtFactors[i][j] * svG[i][j]; svH[i][j] = schmidtFactors[i][j] * svH[i][j]; } } }