#include "SpiTestClass.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(XIPHOS_Q7S) #include "busConf.h" #endif #include "devices/gpioIds.h" #include "mission/devices/max1227.h" SpiTestClass::SpiTestClass(object_id_t objectId, GpioIF *gpioIF) : TestTask(objectId), gpioIF(gpioIF) { if (gpioIF == nullptr) { sif::error << "SpiTestClass::SpiTestClass: Invalid GPIO ComIF!" << std::endl; } testMode = TestModes::MAX1227; spiTransferStruct[0].rx_buf = reinterpret_cast<__u64>(recvBuffer.data()); setSendBuffer(); } ReturnValue_t SpiTestClass::performOneShotAction() { switch (testMode) { case (TestModes::NONE): { break; } case (TestModes::MGM_LIS3MDL): { performLis3MdlTest(mgm0Lis3mdlChipSelect); break; } case (TestModes::MGM_RM3100): { performRm3100Test(mgm1Rm3100ChipSelect); break; } case (TestModes::GYRO_L3GD20H): { performL3gTest(gyro1L3gd20ChipSelect); break; } case (TestModes::MAX1227): { performOneShotMax1227Test(); break; } } return returnvalue::OK; } ReturnValue_t SpiTestClass::performPeriodicAction() { switch (testMode) { case (TestModes::MAX1227): { performPeriodicMax1227Test(); break; } default: break; } return returnvalue::OK; } void SpiTestClass::performRm3100Test(uint8_t mgmId) { /* Configure all SPI chip selects and pull them high */ acsInit(); /* Adapt accordingly */ if (mgmId != mgm1Rm3100ChipSelect and mgmId != mgm3Rm3100ChipSelect) { sif::warning << "SpiTestClass::performRm3100Test: Invalid MGM ID!" << std::endl; } gpioId_t currentGpioId = 0; uint8_t chipSelectPin = mgmId; if (chipSelectPin == mgm1Rm3100ChipSelect) { currentGpioId = gpioIds::MGM_1_RM3100_CS; } else { currentGpioId = gpioIds::MGM_3_RM3100_CS; } uint32_t rm3100speed = 976'000; uint8_t rm3100revidReg = 0x36; spi::SpiModes rm3100mode = spi::SpiModes::MODE_3; #ifdef RASPBERRY_PI std::string deviceName = "/dev/spidev0.0"; #else std::string deviceName = "/dev/spidev2.0"; #endif int fileDescriptor = 0; UnixFileGuard fileHelper(deviceName, &fileDescriptor, O_RDWR, "SpiComIF::initializeInterface"); if (fileHelper.getOpenResult()) { sif::error << "SpiTestClass::performRm3100Test: File descriptor could not be opened!" << std::endl; return; } setSpiSpeedAndMode(fileDescriptor, rm3100mode, rm3100speed); uint8_t revId = readRegister(fileDescriptor, currentGpioId, rm3100revidReg); sif::info << "SpiTestClass::performRm3100Test: Revision ID 0b" << std::bitset<8>(revId) << std::endl; /* Write configuration to CMM register */ writeRegister(fileDescriptor, currentGpioId, 0x01, 0x75); uint8_t cmmRegister = readRm3100Register(fileDescriptor, currentGpioId, 0x01); sif::info << "SpiTestClass::performRm3100Test: CMM register value: " << std::hex << "0x" << static_cast(cmmRegister) << std::dec << std::endl; /* Read the cycle count registers */ uint8_t cycleCountsRaw[6]; readMultipleRegisters(fileDescriptor, currentGpioId, 0x04, cycleCountsRaw, 6); uint16_t cycleCountX = cycleCountsRaw[0] << 8 | cycleCountsRaw[1]; uint16_t cycleCountY = cycleCountsRaw[2] << 8 | cycleCountsRaw[3]; uint16_t cycleCountZ = cycleCountsRaw[4] << 8 | cycleCountsRaw[5]; sif::info << "Cycle count X: " << cycleCountX << std::endl; sif::info << "Cycle count Y: " << cycleCountY << std::endl; sif::info << "Cycle count z: " << cycleCountZ << std::endl; writeRegister(fileDescriptor, currentGpioId, 0x0B, 0x96); uint8_t tmrcReg = readRm3100Register(fileDescriptor, currentGpioId, 0x0B); sif::info << "SpiTestClass::performRm3100Test: TMRC register value: " << std::hex << "0x" << static_cast(tmrcReg) << std::dec << std::endl; TaskFactory::delayTask(10); uint8_t statusReg = readRm3100Register(fileDescriptor, currentGpioId, 0x34); sif::info << "SpiTestClass::performRm3100Test: Status Register 0b" << std::bitset<8>(statusReg) << std::endl; /* This means that data is not ready */ if ((statusReg & 0b1000'0000) == 0) { sif::warning << "SpiTestClass::performRm3100Test: Data not ready!" << std::endl; TaskFactory::delayTask(10); statusReg = readRm3100Register(fileDescriptor, currentGpioId, 0x34); if ((statusReg & 0b1000'0000) == 0) { return; } } uint32_t rm3100DefaultCycleCout = 0xC8; /* Gain scales lineary with cycle count and is 38 for cycle count 100 */ float rm3100Gain = rm3100DefaultCycleCout / 100.0 * 38.0; float scaleFactor = 1 / rm3100Gain; uint8_t rawValues[9]; readMultipleRegisters(fileDescriptor, currentGpioId, 0x24, rawValues, 9); /* The sensor generates 24 bit signed values */ int32_t rawX = ((rawValues[0] << 24) | (rawValues[1] << 16) | (rawValues[2] << 8)) >> 8; int32_t rawY = ((rawValues[3] << 24) | (rawValues[4] << 16) | (rawValues[5] << 8)) >> 8; int32_t rawZ = ((rawValues[6] << 24) | (rawValues[7] << 16) | (rawValues[8] << 8)) >> 8; float fieldStrengthX = rawX * scaleFactor; float fieldStrengthY = rawY * scaleFactor; float fieldStrengthZ = rawZ * scaleFactor; sif::info << "RM3100 measured field strengths in microtesla:" << std::endl; sif::info << "Field Strength X: " << fieldStrengthX << " uT" << std::endl; sif::info << "Field Strength Y: " << fieldStrengthY << " uT" << std::endl; sif::info << "Field Strength Z: " << fieldStrengthZ << " uT" << std::endl; } void SpiTestClass::performLis3MdlTest(uint8_t lis3Id) { /* Configure all SPI chip selects and pull them high */ acsInit(); /* Adapt accordingly */ if (lis3Id != mgm0Lis3mdlChipSelect and lis3Id != mgm2Lis3mdlChipSelect) { sif::warning << "SpiTestClass::performLis3MdlTest: Invalid MGM ID!" << std::endl; } gpioId_t currentGpioId = 0; uint8_t chipSelectPin = lis3Id; uint8_t whoAmIReg = 0b0000'1111; uint8_t whoAmIRegExpectedVal = 0b0011'1101; if (chipSelectPin == mgm0Lis3mdlChipSelect) { currentGpioId = gpioIds::MGM_0_LIS3_CS; } else { currentGpioId = gpioIds::MGM_2_LIS3_CS; } uint32_t spiSpeed = 10'000'000; spi::SpiModes spiMode = spi::SpiModes::MODE_0; #ifdef RASPBERRY_PI std::string deviceName = "/dev/spidev0.0"; #else std::string deviceName = "/dev/spidev2.0"; #endif int fileDescriptor = 0; UnixFileGuard fileHelper(deviceName, &fileDescriptor, O_RDWR, "SpiComIF::initializeInterface"); if (fileHelper.getOpenResult()) { sif::error << "SpiTestClass::performLis3Mdl3100Test: File descriptor could not be opened!" << std::endl; return; } setSpiSpeedAndMode(fileDescriptor, spiMode, spiSpeed); spiTransferStruct[0].delay_usecs = 0; uint8_t whoAmIRegVal = readStmRegister(fileDescriptor, currentGpioId, whoAmIReg, false); sif::info << "SpiTestClass::performLis3MdlTest: WHO AM I register 0b" << std::bitset<8>(whoAmIRegVal) << std::endl; if (whoAmIRegVal != whoAmIRegExpectedVal) { sif::warning << "SpiTestClass::performLis3MdlTest: WHO AM I register invalid!" << std::endl; } } void SpiTestClass::performL3gTest(uint8_t l3gId) { /* Configure all SPI chip selects and pull them high */ acsInit(); gpioId_t currentGpioId = 0; uint8_t chipSelectPin = l3gId; uint8_t whoAmIReg = 0b0000'1111; uint8_t whoAmIRegExpectedVal = 0b1101'0111; if (chipSelectPin == gyro1L3gd20ChipSelect) { currentGpioId = gpioIds::GYRO_1_L3G_CS; } else { currentGpioId = gpioIds::GYRO_3_L3G_CS; } uint32_t spiSpeed = 3'900'000; spi::SpiModes spiMode = spi::SpiModes::MODE_3; #ifdef RASPBERRY_PI std::string deviceName = "/dev/spidev0.0"; #else std::string deviceName = "/dev/spidev2.0"; #endif int fileDescriptor = 0; UnixFileGuard fileHelper(deviceName, &fileDescriptor, O_RDWR, "SpiComIF::initializeInterface"); if (fileHelper.getOpenResult()) { sif::error << "SpiTestClass::performLis3Mdl3100Test: File descriptor could not be opened!" << std::endl; return; } setSpiSpeedAndMode(fileDescriptor, spiMode, spiSpeed); uint8_t whoAmIRegVal = readStmRegister(fileDescriptor, currentGpioId, whoAmIReg, false); sif::info << "SpiTestClass::performLis3MdlTest: WHO AM I register 0b" << std::bitset<8>(whoAmIRegVal) << std::endl; if (whoAmIRegVal != whoAmIRegExpectedVal) { sif::warning << "SpiTestClass::performL3gTest: Read WHO AM I register invalid!" << std::endl; } uint8_t ctrlReg1Addr = 0b0010'0000; { uint8_t commandRegs[5]; commandRegs[0] = 0b0000'1111; commandRegs[1] = 0x0; commandRegs[2] = 0x0; /* Configure big endian data format */ commandRegs[3] = 0b0100'0000; commandRegs[4] = 0x0; writeMultipleStmRegisters(fileDescriptor, currentGpioId, ctrlReg1Addr, commandRegs, sizeof(commandRegs)); uint8_t readRegs[5]; readMultipleRegisters(fileDescriptor, currentGpioId, ctrlReg1Addr, readRegs, sizeof(readRegs)); for (uint8_t idx = 0; idx < sizeof(readRegs); idx++) { if (readRegs[idx] != commandRegs[0]) { sif::warning << "SpiTestClass::performL3gTest: Read control register " << static_cast(idx + 1) << " not equal to configured value" << std::endl; } } } uint8_t readOutBuffer[14]; readMultipleStmRegisters(fileDescriptor, currentGpioId, ctrlReg1Addr, readOutBuffer, sizeof(readOutBuffer)); uint8_t statusReg = readOutBuffer[7]; sif::info << "SpiTestClass::performL3gTest: Status Register 0b" << std::bitset<8>(statusReg) << std::endl; uint16_t l3gRange = 245; float scaleFactor = static_cast(l3gRange) / INT16_MAX; /* The sensor spits out little endian */ int16_t angVelocRawX = (readOutBuffer[8] << 8) | readOutBuffer[9]; int16_t angVelocRawY = (readOutBuffer[10] << 8) | readOutBuffer[11]; int16_t angVelocRawZ = (readOutBuffer[12] << 8) | readOutBuffer[13]; float angVelocX = scaleFactor * angVelocRawX; float angVelocY = scaleFactor * angVelocRawY; float angVelocZ = scaleFactor * angVelocRawZ; sif::info << "Angular velocities for the L3GD20H in degrees per second:" << std::endl; sif::info << "X: " << angVelocX << std::endl; sif::info << "Y: " << angVelocY << std::endl; sif::info << "Z: " << angVelocZ << std::endl; } void SpiTestClass::performOneShotMax1227Test() { using namespace max1227; adcCfg.testRadSensorExtConvWithDelay = false; adcCfg.testRadSensorIntConv = false; bool setAllSusOn = false; bool susIntConv = false; bool susExtConv = false; if (setAllSusOn) { for (uint8_t idx = 0; idx < 12; idx++) { adcCfg.testSus[idx].doTest = true; } } else { for (uint8_t idx = 0; idx < 12; idx++) { adcCfg.testSus[idx].doTest = false; } } if (susIntConv) { for (uint8_t idx = 0; idx < 12; idx++) { adcCfg.testSus[idx].intConv = true; } } if (susExtConv) { for (uint8_t idx = 0; idx < 12; idx++) { adcCfg.testSus[idx].extConv = true; } } adcCfg.plPcduAdcExtConv = true; adcCfg.plPcduAdcIntConv = false; // Is problematic, don't know why adcCfg.plPcduAdcExtConvAsOne = false; performMax1227Test(); } void SpiTestClass::performPeriodicMax1227Test() { using namespace max1227; performMax1227Test(); } void SpiTestClass::performMax1227Test() { std::string deviceName = ""; #ifdef XIPHOS_Q7S deviceName = q7s::SPI_DEFAULT_DEV; #elif defined(RASPBERRY_PI) #elif defined(EGSE) #elif defined(TE0720_1CFA) #endif int fd = 0; UnixFileGuard fileHelper(deviceName, &fd, O_RDWR, "SpiComIF::initializeInterface"); if (fileHelper.getOpenResult()) { sif::error << "SpiTestClass::performLis3Mdl3100Test: File descriptor could not be opened!" << std::endl; return; } uint32_t spiSpeed = 976'000; spi::SpiModes spiMode = spi::SpiModes::MODE_3; setSpiSpeedAndMode(fd, spiMode, spiSpeed); max1227RadSensorTest(fd); int idx = 0; bool firstTest = true; for (auto &susCfg : adcCfg.testSus) { if (susCfg.doTest) { if (firstTest) { firstTest = false; sif::info << "---------- SUS ADC Values -----------" << std::endl; } sif::info << "SUS " << std::setw(2) << idx << ": "; max1227SusTest(fd, susCfg); } idx++; } max1227PlPcduTest(fd); } void SpiTestClass::max1227RadSensorTest(int fd) { using namespace max1227; if (adcCfg.testRadSensorExtConvWithDelay) { sendBuffer[0] = max1227::buildResetByte(true); spiTransferStruct[0].len = 1; transfer(fd, gpioIds::CS_RAD_SENSOR); usleep(200); sendBuffer[0] = max1227::buildSetupByte(ClkSel::EXT_CONV_EXT_TIMED, RefSel::INT_REF_WITH_WAKEUP, DiffSel::NONE_0); spiTransferStruct[0].len = 1; transfer(fd, gpioIds::CS_RAD_SENSOR); size_t tmpSz = spiTransferStruct[0].len; max1227::prepareExternallyClockedRead0ToN(sendBuffer.data(), 7, tmpSz); size_t tmpLen = tmpSz; spiTransferStruct[0].len = 1; transfer(fd, gpioIds::CS_RAD_SENSOR); std::memcpy(sendBuffer.data(), sendBuffer.data() + 1, tmpLen - 1); spiTransferStruct[0].len = tmpLen - 1; usleep(65); transfer(fd, gpioIds::CS_RAD_SENSOR); arrayprinter::print(recvBuffer.data(), 13, OutputType::HEX); uint16_t adcRaw[8] = {}; adcRaw[0] = (recvBuffer[0] << 8) | recvBuffer[1]; adcRaw[1] = (recvBuffer[2] << 8) | recvBuffer[3]; adcRaw[2] = (recvBuffer[4] << 8) | recvBuffer[5]; adcRaw[3] = (recvBuffer[6] << 8) | recvBuffer[7]; adcRaw[4] = (recvBuffer[8] << 8) | recvBuffer[9]; adcRaw[5] = (recvBuffer[10] << 8) | recvBuffer[11]; adcRaw[6] = (recvBuffer[12] << 8) | recvBuffer[13]; adcRaw[7] = (recvBuffer[14] << 8) | recvBuffer[15]; arrayprinter::print(recvBuffer.data(), 17, OutputType::HEX); for (int idx = 0; idx < 8; idx++) { sif::info << "ADC raw " << idx << ": " << adcRaw[idx] << std::endl; } tmpSz = spiTransferStruct[0].len; max1227::prepareExternallyClockedTemperatureRead(sendBuffer.data(), tmpSz); spiTransferStruct[0].len = 1; transfer(fd, gpioIds::CS_RAD_SENSOR); usleep(65); spiTransferStruct[0].len = 24; std::memmove(sendBuffer.data(), sendBuffer.data() + 1, 24); transfer(fd, gpioIds::CS_RAD_SENSOR); int16_t tempRaw = ((recvBuffer[22] & 0x0f) << 8) | recvBuffer[23]; float temp = max1227::getTemperature(tempRaw); sif::info << "Temperature: " << temp << std::endl; } if (adcCfg.testRadSensorIntConv) { sendBuffer[0] = max1227::buildResetByte(false); spiTransferStruct[0].len = 1; transfer(fd, gpioIds::CS_RAD_SENSOR); usleep(5); // Now use internal conversion sendBuffer[0] = max1227::buildSetupByte(ClkSel::INT_CONV_INT_TIMED_CNVST_AS_AIN, RefSel::INT_REF_NO_WAKEUP, DiffSel::NONE_0); spiTransferStruct[0].len = 1; transfer(fd, gpioIds::CS_RAD_SENSOR); usleep(10); sendBuffer[0] = buildConvByte(ScanModes::CHANNELS_0_TO_N, 7, true); spiTransferStruct[0].len = 1; transfer(fd, gpioIds::CS_RAD_SENSOR); usleep(65); spiTransferStruct[0].len = 18; // Shift out zeros shiftOutZeros(); transfer(fd, gpioIds::CS_RAD_SENSOR); setSendBuffer(); arrayprinter::print(recvBuffer.data(), 14); uint16_t adcRaw[8] = {}; int16_t tempRaw = ((recvBuffer[0] & 0x0f) << 8) | recvBuffer[1]; sif::info << "Temperature: " << tempRaw * 0.125 << " C" << std::endl; adcRaw[0] = (recvBuffer[2] << 8) | recvBuffer[3]; adcRaw[1] = (recvBuffer[4] << 8) | recvBuffer[5]; adcRaw[2] = (recvBuffer[6] << 8) | recvBuffer[7]; adcRaw[3] = (recvBuffer[8] << 8) | recvBuffer[9]; adcRaw[4] = (recvBuffer[10] << 8) | recvBuffer[11]; adcRaw[5] = (recvBuffer[12] << 8) | recvBuffer[13]; adcRaw[6] = (recvBuffer[14] << 8) | recvBuffer[15]; adcRaw[7] = (recvBuffer[16] << 8) | recvBuffer[17]; for (int idx = 0; idx < 8; idx++) { sif::info << "ADC raw " << idx << ": " << adcRaw[idx] << std::endl; } } } void SpiTestClass::max1227SusTest(int fd, SusTestCfg &cfg) { using namespace max1227; if (cfg.extConv) { sendBuffer[0] = max1227::buildResetByte(false); spiTransferStruct[0].len = 1; transfer(fd, cfg.gpioId); usleep(65); sendBuffer[0] = max1227::buildSetupByte(ClkSel::EXT_CONV_EXT_TIMED, RefSel::INT_REF_NO_WAKEUP, DiffSel::NONE_0); spiTransferStruct[0].len = 1; transfer(fd, cfg.gpioId); size_t tmpSz = spiTransferStruct[0].len; max1227::prepareExternallyClockedRead0ToN(sendBuffer.data(), 5, tmpSz); transfer(fd, cfg.gpioId); uint16_t adcRaw[6] = {}; adcRaw[0] = (recvBuffer[1] << 8) | recvBuffer[2]; adcRaw[1] = (recvBuffer[3] << 8) | recvBuffer[4]; adcRaw[2] = (recvBuffer[5] << 8) | recvBuffer[6]; adcRaw[3] = (recvBuffer[7] << 8) | recvBuffer[8]; adcRaw[4] = (recvBuffer[9] << 8) | recvBuffer[10]; adcRaw[5] = (recvBuffer[11] << 8) | recvBuffer[12]; sif::info << "Ext Conv [" << std::hex << std::setw(3); for (int idx = 0; idx < 5; idx++) { sif::info << adcRaw[idx]; if (idx < 6) { sif::info << ","; } } sif::info << std::dec << "]" << std::endl; // | Temperature: " << temp << " C" << std::endl; } if (cfg.intConv) { sendBuffer[0] = max1227::buildResetByte(false); spiTransferStruct[0].len = 1; transfer(fd, cfg.gpioId); usleep(65); // Now use internal conversion sendBuffer[0] = max1227::buildSetupByte(ClkSel::INT_CONV_INT_TIMED_CNVST_AS_AIN, RefSel::INT_REF_NO_WAKEUP, DiffSel::NONE_0); spiTransferStruct[0].len = 1; transfer(fd, cfg.gpioId); usleep(10); sendBuffer[0] = buildConvByte(ScanModes::CHANNELS_0_TO_N, 5, true); spiTransferStruct[0].len = 1; transfer(fd, cfg.gpioId); usleep(65); spiTransferStruct[0].len = 14; // Shift out zeros shiftOutZeros(); transfer(fd, cfg.gpioId); setSendBuffer(); // arrayprinter::print(recvBuffer.data(), 14); float temp = static_cast(((recvBuffer[0] & 0x0f) << 8) | recvBuffer[1]) * 0.125; uint16_t adcRaw[6] = {}; adcRaw[0] = (recvBuffer[2] << 8) | recvBuffer[3]; adcRaw[1] = (recvBuffer[4] << 8) | recvBuffer[5]; adcRaw[2] = (recvBuffer[6] << 8) | recvBuffer[7]; adcRaw[3] = (recvBuffer[8] << 8) | recvBuffer[9]; adcRaw[4] = (recvBuffer[10] << 8) | recvBuffer[11]; adcRaw[5] = (recvBuffer[12] << 8) | recvBuffer[13]; sif::info << "Int Conv [" << std::hex << std::setw(3); for (int idx = 0; idx < 6; idx++) { sif::info << adcRaw[idx]; if (idx < 5) { sif::info << ","; } } sif::info << std::dec << "] | T[C] " << temp << std::endl; } } void SpiTestClass::max1227PlPcduTest(int fd) { using namespace max1227; if ((adcCfg.plPcduAdcExtConv or adcCfg.plPcduAdcIntConv or adcCfg.plPcduAdcExtConvAsOne) and adcCfg.vbatSwitch) { // This enables the ADC ReturnValue_t result = gpioIF->pullHigh(gpioIds::PLPCDU_ENB_VBAT0); if (result != returnvalue::OK) { return; } result = gpioIF->pullHigh(gpioIds::PLPCDU_ENB_VBAT1); if (result != returnvalue::OK) { return; } adcCfg.vbatSwitch = false; // Takes a bit of time until the ADC is usable TaskFactory::delayTask(50); sendBuffer[0] = max1227::buildResetByte(false); spiTransferStruct[0].len = 1; transfer(fd, gpioIds::PLPCDU_ADC_CS); } if (adcCfg.plPcduAdcExtConv) { sendBuffer[0] = max1227::buildSetupByte(ClkSel::EXT_CONV_EXT_TIMED, RefSel::INT_REF_NO_WAKEUP, DiffSel::NONE_0); spiTransferStruct[0].len = 1; transfer(fd, gpioIds::PLPCDU_ADC_CS); uint8_t n = 11; size_t tmpSz = spiTransferStruct[0].len; max1227::prepareExternallyClockedRead0ToN(sendBuffer.data(), n, tmpSz); spiTransferStruct[0].len = tmpSz; size_t dummy = 0; max1227::prepareExternallyClockedTemperatureRead(sendBuffer.data() + spiTransferStruct[0].len, dummy); // + 1 to account for temp conversion byte spiTransferStruct[0].len += 1; transfer(fd, gpioIds::PLPCDU_ADC_CS); uint16_t adcRaw[n + 1] = {}; for (uint8_t idx = 0; idx < n + 1; idx++) { adcRaw[idx] = (recvBuffer[idx * 2 + 1] << 8) | recvBuffer[idx * 2 + 2]; } spiTransferStruct[0].len = 24; // Shift out zeros shiftOutZeros(); transfer(fd, gpioIds::PLPCDU_ADC_CS); setSendBuffer(); int16_t tempRaw = ((recvBuffer[22] & 0x0f) << 8) | recvBuffer[23]; sif::info << "PL PCDU ADC ext conv [" << std::hex << std::setfill('0'); for (int idx = 0; idx < n + 1; idx++) { sif::info << std::setw(3) << adcRaw[idx]; if (idx < n) { sif::info << ","; } } sif::info << "]" << std::endl; sif::info << "Temperature: " << max1227::getTemperature(tempRaw) << " C" << std::endl; } if (adcCfg.plPcduAdcExtConvAsOne) { sendBuffer[0] = max1227::buildSetupByte(ClkSel::EXT_CONV_EXT_TIMED, RefSel::INT_REF_NO_WAKEUP, DiffSel::NONE_0); spiTransferStruct[0].len = 1; transfer(fd, gpioIds::PLPCDU_ADC_CS); uint8_t n = 11; size_t tmpLen = spiTransferStruct[0].len; max1227::prepareExternallyClockedRead0ToN(sendBuffer.data(), n, tmpLen); max1227::prepareExternallyClockedTemperatureRead(sendBuffer.data() + spiTransferStruct[0].len, tmpLen); spiTransferStruct[0].len = tmpLen; transfer(fd, gpioIds::PLPCDU_ADC_CS); uint16_t adcRaw[n + 1] = {}; for (uint8_t idx = 0; idx < n + 1; idx++) { adcRaw[idx] = (recvBuffer[idx * 2 + 1] << 8) | recvBuffer[idx * 2 + 2]; } int16_t tempRaw = ((recvBuffer[spiTransferStruct[0].len - 2] & 0x0f) << 8) | recvBuffer[spiTransferStruct[0].len - 1]; sif::info << "PL PCDU ADC ext conv [" << std::hex << std::setfill('0'); for (int idx = 0; idx < n + 1; idx++) { sif::info << std::setw(3) << adcRaw[idx]; if (idx < n) { sif::info << ","; } } sif::info << "]" << std::endl; sif::info << "Temperature: " << max1227::getTemperature(tempRaw) << " C" << std::endl; } if (adcCfg.plPcduAdcIntConv) { sendBuffer[0] = max1227::buildResetByte(true); spiTransferStruct[0].len = 1; transfer(fd, gpioIds::PLPCDU_ADC_CS); // Now use internal conversion sendBuffer[0] = max1227::buildSetupByte(ClkSel::INT_CONV_INT_TIMED_CNVST_AS_AIN, RefSel::INT_REF_NO_WAKEUP, DiffSel::NONE_0); spiTransferStruct[0].len = 1; transfer(fd, gpioIds::PLPCDU_ADC_CS); usleep(10); uint8_t n = 11; sendBuffer[0] = buildConvByte(ScanModes::CHANNELS_0_TO_N, n, true); spiTransferStruct[0].len = 1; transfer(fd, gpioIds::PLPCDU_ADC_CS); usleep(65); spiTransferStruct[0].len = 26; // Shift out zeros shiftOutZeros(); transfer(fd, gpioIds::PLPCDU_ADC_CS); setSendBuffer(); uint16_t adcRaw[n + 1] = {}; int16_t tempRaw = ((recvBuffer[0] & 0x0f) << 8) | recvBuffer[1]; sif::info << "PL PCDU ADC int conv [" << std::hex << std::setfill('0'); for (int idx = 0; idx < n + 1; idx++) { adcRaw[idx] = (recvBuffer[idx * 2 + 2] << 8) | recvBuffer[idx * 2 + 3]; sif::info << std::setw(3) << adcRaw[idx]; if (idx < n) { sif::info << ","; } } sif::info << "]" << std::endl; sif::info << "Temperature: " << max1227::getTemperature(tempRaw) << " C" << std::endl; } } void SpiTestClass::acsInit() { using namespace gpio; GpioCookie *gpioCookie = new GpioCookie(); #ifdef RASPBERRY_PI GpiodRegularByChip *gpio = nullptr; std::string rpiGpioName = "gpiochip0"; gpio = new GpiodRegularByChip(rpiGpioName, mgm0Lis3mdlChipSelect, "MGM_0_LIS3", Direction::OUT, Levels::HIGH); gpioCookie->addGpio(gpioIds::MGM_0_LIS3_CS, gpio); gpio = new GpiodRegularByChip(rpiGpioName, mgm1Rm3100ChipSelect, "MGM_1_RM3100", Direction::OUT, Levels::HIGH); gpioCookie->addGpio(gpioIds::MGM_1_RM3100_CS, gpio); gpio = new GpiodRegularByChip(rpiGpioName, gyro0AdisChipSelect, "GYRO_0_ADIS", Direction::OUT, Levels::HIGH); gpioCookie->addGpio(gpioIds::GYRO_0_ADIS_CS, gpio); gpio = new GpiodRegularByChip(rpiGpioName, gyro1L3gd20ChipSelect, "GYRO_1_L3G", Direction::OUT, Levels::HIGH); gpioCookie->addGpio(gpioIds::GYRO_1_L3G_CS, gpio); gpio = new GpiodRegularByChip(rpiGpioName, gyro3L3gd20ChipSelect, "GYRO_2_L3G", Direction::OUT, Levels::HIGH); gpioCookie->addGpio(gpioIds::GYRO_3_L3G_CS, gpio); gpio = new GpiodRegularByChip(rpiGpioName, mgm2Lis3mdlChipSelect, "MGM_2_LIS3", Direction::OUT, Levels::HIGH); gpioCookie->addGpio(gpioIds::MGM_2_LIS3_CS, gpio); gpio = new GpiodRegularByChip(rpiGpioName, mgm3Rm3100ChipSelect, "MGM_3_RM3100", Direction::OUT, Levels::HIGH); gpioCookie->addGpio(gpioIds::MGM_3_RM3100_CS, gpio); #elif defined(XIPHOS_Q7S) GpiodRegularByLineName *gpio = nullptr; gpio = new GpiodRegularByLineName(q7s::gpioNames::MGM_0_CS, "MGM_0_LIS3", Direction::OUT, Levels::HIGH); gpioCookie->addGpio(gpioIds::MGM_0_LIS3_CS, gpio); gpio = new GpiodRegularByLineName(q7s::gpioNames::MGM_1_CS, "MGM_1_RM3100", Direction::OUT, Levels::HIGH); gpioCookie->addGpio(gpioIds::MGM_1_RM3100_CS, gpio); gpio = new GpiodRegularByLineName(q7s::gpioNames::MGM_2_CS, "MGM_2_LIS3", Direction::OUT, Levels::HIGH); gpioCookie->addGpio(gpioIds::MGM_2_LIS3_CS, gpio); gpio = new GpiodRegularByLineName(q7s::gpioNames::MGM_1_CS, "MGM_3_RM3100", Direction::OUT, Levels::HIGH); gpioCookie->addGpio(gpioIds::MGM_3_RM3100_CS, gpio); gpio = new GpiodRegularByLineName(q7s::gpioNames::GYRO_0_ADIS_CS, "GYRO_0_ADIS", Direction::OUT, Levels::HIGH); gpioCookie->addGpio(gpioIds::GYRO_0_ADIS_CS, gpio); gpio = new GpiodRegularByLineName(q7s::gpioNames::GYRO_1_L3G_CS, "GYRO_1_L3G", Direction::OUT, Levels::HIGH); gpioCookie->addGpio(gpioIds::GYRO_1_L3G_CS, gpio); gpio = new GpiodRegularByLineName(q7s::gpioNames::GYRO_2_ADIS_CS, "GYRO_2_ADIS", Direction::OUT, Levels::HIGH); gpioCookie->addGpio(gpioIds::GYRO_2_ADIS_CS, gpio); gpio = new GpiodRegularByLineName(q7s::gpioNames::GYRO_3_L3G_CS, "GYRO_3_L3G", Direction::OUT, Levels::HIGH); gpioCookie->addGpio(gpioIds::GYRO_3_L3G_CS, gpio); // Enable pins must be pulled low for regular operations gpio = new GpiodRegularByLineName(q7s::gpioNames::GYRO_0_ENABLE, "GYRO_0_ENABLE", Direction::OUT, Levels::LOW); gpioCookie->addGpio(gpioIds::GYRO_0_ENABLE, gpio); gpio = new GpiodRegularByLineName(q7s::gpioNames::GYRO_0_ENABLE, "GYRO_2_ENABLE", Direction::OUT, Levels::LOW); gpioCookie->addGpio(gpioIds::GYRO_2_ENABLE, gpio); #endif if (gpioIF != nullptr) { gpioIF->addGpios(gpioCookie); } } void SpiTestClass::setSpiSpeedAndMode(int spiFd, spi::SpiModes mode, uint32_t speed) { int modeUnix = 0; switch (mode) { case (spi::SpiModes::MODE_0): { modeUnix = SPI_MODE_0; break; } case (spi::SpiModes::MODE_1): { modeUnix = SPI_MODE_1; break; } case (spi::SpiModes::MODE_2): { modeUnix = SPI_MODE_2; break; } case (spi::SpiModes::MODE_3): { modeUnix = SPI_MODE_3; break; } } int retval = ioctl(spiFd, SPI_IOC_WR_MODE, &modeUnix); // reinterpret_cast(&mode)); if (retval != 0) { utility::handleIoctlError("SpiTestClass::performRm3100Test: Setting SPI mode failed!"); } retval = ioctl(spiFd, SPI_IOC_WR_MAX_SPEED_HZ, &speed); if (retval != 0) { utility::handleIoctlError("SpiTestClass::performRm3100Test: Setting SPI speed failed!"); } } void SpiTestClass::writeRegister(int fd, gpioId_t chipSelect, uint8_t reg, uint8_t value) { spiTransferStruct[0].len = 2; sendBuffer[0] = reg; sendBuffer[1] = value; if (gpioIF != nullptr and chipSelect != gpio::NO_GPIO) { gpioIF->pullLow(chipSelect); } int retval = ioctl(fd, SPI_IOC_MESSAGE(1), &spiTransferStruct); if (retval < 0) { utility::handleIoctlError("SpiTestClass::writeRegister: Write failed"); } if (gpioIF != nullptr and chipSelect != gpio::NO_GPIO) { gpioIF->pullHigh(chipSelect); } } void SpiTestClass::writeStmRegister(int fd, gpioId_t chipSelect, uint8_t reg, uint8_t value, bool autoIncrement) { if (autoIncrement) { reg |= STM_AUTO_INCR_MASK; } writeRegister(fd, chipSelect, reg, value); } void SpiTestClass::writeMultipleStmRegisters(int fd, gpioId_t chipSelect, uint8_t reg, uint8_t *values, size_t len) { if (values == nullptr) { return; } reg |= STM_AUTO_INCR_MASK; /* Clear read mask */ reg &= ~STM_READ_MASK; writeMultipleRegisters(fd, chipSelect, reg, values, len); } void SpiTestClass::writeMultipleRegisters(int fd, gpioId_t chipSelect, uint8_t reg, uint8_t *values, size_t len) { if (values == nullptr) { return; } sendBuffer[0] = reg; std::memcpy(sendBuffer.data() + 1, values, len); spiTransferStruct[0].len = len + 1; if (gpioIF != nullptr and chipSelect != gpio::NO_GPIO) { gpioIF->pullLow(chipSelect); } int retval = ioctl(fd, SPI_IOC_MESSAGE(1), &spiTransferStruct); if (retval < 0) { utility::handleIoctlError("SpiTestClass::readRegister: Read failed"); } if (gpioIF != nullptr and chipSelect != gpio::NO_GPIO) { gpioIF->pullHigh(chipSelect); } } uint8_t SpiTestClass::readRm3100Register(int fd, gpioId_t chipSelect, uint8_t reg) { return readStmRegister(fd, chipSelect, reg, false); } void SpiTestClass::readMultipleStmRegisters(int fd, gpioId_t chipSelect, uint8_t reg, uint8_t *reply, size_t len) { reg |= STM_AUTO_INCR_MASK; readMultipleRegisters(fd, chipSelect, reg, reply, len); } void SpiTestClass::shiftOutZeros() { spiTransferStruct[0].tx_buf = 0; } void SpiTestClass::setSendBuffer() { spiTransferStruct[0].tx_buf = reinterpret_cast<__u64>(sendBuffer.data()); } void SpiTestClass::readMultipleRegisters(int fd, gpioId_t chipSelect, uint8_t reg, uint8_t *reply, size_t len) { if (reply == nullptr) { return; } spiTransferStruct[0].len = len + 1; sendBuffer[0] = reg | STM_READ_MASK; for (uint8_t idx = 0; idx < len; idx++) { sendBuffer[idx + 1] = 0; } if (gpioIF != nullptr and chipSelect != gpio::NO_GPIO) { gpioIF->pullLow(chipSelect); } int retval = ioctl(fd, SPI_IOC_MESSAGE(1), &spiTransferStruct); if (retval < 0) { utility::handleIoctlError("SpiTestClass::readRegister: Read failed"); } if (gpioIF != nullptr and chipSelect != gpio::NO_GPIO) { gpioIF->pullHigh(chipSelect); } std::memcpy(reply, recvBuffer.data() + 1, len); } uint8_t SpiTestClass::readStmRegister(int fd, gpioId_t chipSelect, uint8_t reg, bool autoIncrement) { reg |= STM_READ_MASK; if (autoIncrement) { reg |= STM_AUTO_INCR_MASK; } return readRegister(fd, chipSelect, reg); } uint8_t SpiTestClass::readRegister(int fd, gpioId_t chipSelect, uint8_t reg) { spiTransferStruct[0].len = 2; sendBuffer[0] = reg; sendBuffer[1] = 0; if (gpioIF != nullptr and chipSelect != gpio::NO_GPIO) { gpioIF->pullLow(chipSelect); } int retval = ioctl(fd, SPI_IOC_MESSAGE(1), &spiTransferStruct); if (retval < 0) { utility::handleIoctlError("SpiTestClass::readRegister: Read failed"); } if (gpioIF != nullptr and chipSelect != gpio::NO_GPIO) { gpioIF->pullHigh(chipSelect); } return recvBuffer[1]; } ReturnValue_t SpiTestClass::transfer(int fd, gpioId_t chipSelect = gpio::NO_GPIO) { int retval = 0; ReturnValue_t result = returnvalue::OK; if (chipSelect != gpio::NO_GPIO) { result = gpioIF->pullLow(chipSelect); if (result != returnvalue::OK) { return result; } } retval = ioctl(fd, SPI_IOC_MESSAGE(1), &spiTransferStruct); if (retval < 0) { utility::handleIoctlError("SpiTestClass::transfer: ioctl failed"); return returnvalue::FAILED; } if (chipSelect != gpio::NO_GPIO) { result = gpioIF->pullHigh(chipSelect); if (result != returnvalue::OK) { return result; } } return returnvalue::OK; }